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The aim of this work was to investigate the influence of sample preparation 
including variation in moisture content and particle size on the accuracy of 
near infrared (NIR) spectroscopy models developed to predict Klason 
lignin, total lignin, and holocellulose in wood. Seventy-five samples of 
sawdust obtained from a eucalyptus plantation were divided into aliquots 
and submitted to three different treatments: traditional (TRAD), large 
particle dried at room temperature (LPRT), and large particle oven-dried 
(LPOD). The influence of sample preparation method on models’ accuracy 
was compared by statistical analysis. Overall, grinding to a larger particle 
size and drying at room temperature (treatment LPRT) did not decrease 
the accuracy of the prediction models when compared to the TRAD 
sample preparation method. These findings were more evident for Klason 
lignin and holocellulose. This is relevant because resources used for 
sample preparation (i.e. grinding and drying) can be minimized, which is 
expected to reduce the costs associated with analysis of wood properties 
by NIR. 
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INTRODUCTION 
 

Near infrared (NIR) spectroscopy is a successful scientific tool for characterizing 

many biomaterials, including wood (Tsuchikawa 2007; Pažitný et al. 2011; Tsuchikawa 

and Schwanninger 2013). The number of publications reporting NIR spectroscopy 

application to forestry, wood, and wood products is increasing systematically (Tsuchikawa 

and Kobori 2015; Sandak et al. 2016). These applications include determination of wood 

quality and pulp characteristics (Birkett and Gambino 1989; Castillo et al. 2012), 

prediction of lignin syringyl/guaiacyl content (Hein et al. 2010; Lupoi et al. 2014; 

Ramadevi et al. 2016), and the prediction of ashes, extractives, lignin, holocellulose, and 

wood cellulose content (Wright et al. 1990; He and Hu 2013; Zhou et al. 2015, 2016). 

Additional uses include characterization of anatomical, physical, and mechanical 

properties of wood (Hein 2012; Milagres et al. 2013; Sundaram et al. 2015); wood 

bioenergy (Fagan et al. 2011; Hou and Li 2011; Ramalho et al. 2017), and discrimination 

of similar rare woods (Yang et al. 2012; Shou et al. 2014). 
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NIR is a rapid, nondestructive, and safe method for determining the variability of 

many wood traits from a single sample. Providing a quick and reliable quantitative 

estimation of Klason lignin, holocellulose, and α-cellulose content can improve the 

efficiency of feedstock processing in industrial environments. Additionally, NIR provides 

great advantages for plant germplasm screening, genetic engineering, and industrial crop 

cultivation. 

 The success of NIR-based analyses is driven by many factors such as 

understanding how instrument parameters and sample conditions affect the spectral 

signatures, as well as how to extract useful information from the spectra. Wood processing 

before analysis is a key factor because significant variability in prediction may be 

introduced by the sample preparation method (Hein et al. 2010). For example, moisture 

content that is not uniform among samples can introduce an undesirable source of variation. 

Conversely, care must be taken when drying samples in order to avoid potential sample 

damage or changes in the chemical structure of the wood (Sandak et al. 2016). 

The influence of sample moisture content on the NIR spectra has been described 

previously (Tsuchikawa and Tsutsumi 1998; Thygesen and Lundqvist 2000a, b; Watanabe 

et al. 2006; Schwanninger et al. 2011). Overall, studies suggest that the samples can be 

oven-dried to decrease moisture content before being read by the NIR (Lupoi et al. 2014). 

Because water is a strong absorber in the NIR region, samples with high moisture are 

strongly dominated by the signature from water. However, it remains unknown whether 

different temperatures and sample moisture content influence the statistics generated with 

the prediction models developed from those spectra. 

Wood preparation before analysis is normally based on mechanical treatment that 

produces wood powder. TAPPI T257 CM-02 (2002) recommends grinding wood to a 

particle size that passes a 40 mesh (0.4 mm) screen, whereas heating the material during 

grinding or regrinding the material should be avoided. However, the resulting particle size 

may be too large for NIR spectroscopy analysis, and it then becomes necessary to regrind 

or fractionate the sample (Schwanninger et al. 2004). Additionally, it is known from TAPPI 

T264 CM-07 (2007) that different fractions may contain varying quantities of some wood 

constituents, so that their removal could modify the chemical composition of the sample. 

Similarly, regrinding can also significantly modify the chemical composition of the wood 

material. 

This study evaluated the effects of sample preparation (i.e., variation in moisture 

content and particle size) for NIR spectra acquisition on the accuracy of multivariate 

models for predicting Klason lignin, total lignin, and holocellulose associated with wood 

quality. While the effects of moisture content and particle size on NIR spectral 

determination have been previously described, this research attempted to find a less tedious 

sample preparation method for estimation of chemical components of wood. If costs 

associated with sample preparation can be minimized (i.e., grinding and drying) without 

compromising model accuracy, then the costs associated with NIR analysis can be reduced. 

 
 
EXPERIMENTAL 
 

Materials 
The wood material used came from a Eucalyptus benthamii progeny test plot 

installed in 2011 in the municipality of Encruzilhada do Sul, in the state of Rio Grande do 

Sul, Brazil (S -30.65268 e W -52.46839). The test plot area was 1.3 ha, and the spacing 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Baldin et al. (2018). “Near infrared sample prep,” BioResources 13(3), 5394-5407.  5396 

between trees was 3.50 m by 2.14 m, which allowed a total of 1394 trees in the experiment. 

Samples for the study were taken 55 months after planting the trees. 

 

Methods 
Selection of trees and sample collection 

An initial sample was collected from all 1394 trees using a non-destructive method. 

This procedure included using a drill equipped with a special bit to collect core sawdust 

from four spots at the diameter of breast height, or 130 cm from the ground. The sawdust 

was processed into smaller particles using a Willye mill equipped with a 1 mm sieve. The 

portion of the sample that passed through the 1 mm sieve was analyzed using the NIR. 

Based on the spectra, the variable pulp yield and the syringyl/guaiacyl (S/G) ratio were 

estimated using calibration models developed for Eucalyptus globulus and Eucalyptus 

grandis (Alves et al. 2011a, 2012). Subsequently, the estimates of pulp yield and S/G ratio 

from the 1394 trees were used to select 75 representative Eucalyptus benthamii trees for 

the development of predictive models based on NIR spectroscopy. The selected subgroup 

included 20 trees with high pulp yield (55% to 62%), 20 with low pulp yield (36% to 43%), 

and 25 with intermediate values (44% to 54%). Additionally, 5 trees were selected to 

represent high S/G value (1.70 to 2.10) and 5 to represent low S/G (1.10 to 1.69). 

A log of about 70 cm was collected immediately above the diameter of breast height 

(approximately 130 cm from the ground) from all 75 trees. This log was then chopped into 

chips. An aliquot of this material was used for standard wet chemistry tests, and another 

portion was used for measurements with the NIR as described below. 

 

Wet chemistry analysis 

Chips without bark and knots were classified following SCAN CM-40:01 (2001). 

The accepted fraction was ground in a knife mill and sieved according to TAPPI standard 

T257 CM-02 (2002), where the fraction that passed through the 40 mesh (40 openings per 

mm2 or size of the opening equal to 0.47 mm) and retained in the 60 mesh (0.31 mm) was 

used for analysis. Subsequently, the chemical properties of Klason lignin, total lignin, and 

holocellulose were determined by wet analysis chemistry and served as the dependent 

variables for which the calibration models in the NIR were adjusted against. The standards 

used in the wet analysis chemistry were TAPPI T222 OM-2 (2002), TAPPI UM-250 

(1991), and TAPPI T203 CM-99 (1999), for Klason lignin, total lignin, and holocellulose, 

respectively. All analyses were performed on a dry matter basis. 

 

Treatments and Fourier transform near-infrared (FT-NIR) acquisition 

The aliquot of sawdust designed for NIR analysis was initially processed into 

smaller particles in a Willye mill equipped with a 1 mm sieve. A fraction of the material 

that passed through this sieve was collected and split into 3 aliquots for application of the 

treatments. There were three treatments: traditional (TRAD), large particle dried at room 

temperature (LPRT), and large particle oven-dried (LPOD). Descriptions of the three 

treatments, including drying method and particle size, are provided in Table 1. Briefly, 

TRAD treatment is the protocol commonly used for NIR analysis. The LPRT and LPOD 

treatments are sample preparation methods that reduce sample grinding and facilitate the 

drying process. 

After the treatments were applied, diffuse reflectance spectra were acquired using 

a Fourier transform NIR (FT-NIR) spectrometer (Model: MPA, BrukerOptik GmbH, 

Ettlingen, Germany). The spectra were read between 12000 cm-1 and 4000 cm-1 with a 
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resolution of 8 cm-1 and used to develop prediction models for Klason lignin, total lignin, 

and holocellulose. 

 
Table 1. Description of the Three Treatments (i.e., Sample Preparation Method) 
Applied before NIR Spectra Acquisition 

 TRAD  LPRT  LPOD  

Drying Temperature (°C)1 22 22 60 

Drying Time (h) 24 24 48 

Final Moisture content (%) 12 12 7 

Particle size (mm2) 0.47-0.31 1 1 
1Drying methods were done in a room temperature (22 °C) or forced-air oven drying (60 °C) 
2Material that passed through the 1mm sieve and material that passed through the 0.47 mm 
sieve (40 mesh) but was retained in the 0.31 mm sieve (60 mesh). 

 

Multivariate statistics and data analysis 

Calibrations were performed using the Bruker Opus 6.2 software package. In the 

same software all spectra were pre-processed with four different procedures: 1) first 

derivative (1stDer); 2) vector normalization (VN); 3) first derivative + vector 

normalization (1stDer + VN); and 4) first derivative + a multiplicative correction of the 

signal (1stDer + MSC). Optimization of Savitzky-Golay (SG) smoothing was used for 

spectroscopy analysis. 

Model calibration was determined by regression analysis of the partial least squares 

(PLS), as recommended by Gierlinger et al. (2002). The models for the treatments were 

adjusted with the same number of latent variables (LVs) needed to provide the best fit. The 

number of variables adopted for each model was considered as a function of the decrease 

of the root mean square error of cross-validation (RMSECV) and the increase of the 

coefficient of determination (R²) and residual predictive deviation (RPD).  

Spectral bands above 10000 cm-1 were excluded because in this region the spectrum 

presented noise repetitions that did not contain relevant information about the properties of 

interest. The spectral ranges used for construction of calibration models were based on the 

recommendations of Schwanninger et al. (2011). The anomalous samples visibly different 

from the normal distribution were detected as outliers and excluded from the model. 

Calibration models were developed for Klason lignin, total lignin, and 

holocellulose using all 75 observations in each treatment. Subsequently, these models were 

run in 15 different regions of the spectra to generate replications that allowed statistical 

testing of model accuracy. A statistical analysis was applied to verify the difference 

between the mean values of the validation error (RMSECV) of the models using the 

statistical software Genes (Cruz 2001). When the null hypothesis was rejected, a 

comparison of means was done by means of a Tukey test (5%) and data compliance was 

verified through the error normality tests (Shapiro Wilks). 

 
 
RESULTS AND DISCUSSION 
 

Wet Chemistry 
The descriptive statistics of chemical components observed in Eucalyptus 

benthamii are presented in Table 2. The mean values of Klason lignin, total lignin, and 

holocellulose found in wood are in agreement with other species of the genus previously 
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studied at similar age (Estopa et al. 2017). Total lignin content was 31.3%, which is lower 

than what was reported by Trugilho et al. (2015) in Eucalyptus cloeziana (32.3%) and 

higher than what was determined for 75 Eucalyptus clones (27.3%) commercially used in 

Brazil (Gomide et al. 2010). Klason lignin averaged 27.7% and was higher than what was 

previously reported for E. benthamii (26.2%, Alves et al. 2011b), and for E. urophylla × 

E. grandis (26.9%, Baillères et al. 2002).  

 

Table 2. Descriptive Statistics of Chemical Components of Eucalyptus benthamii 

Chemical component Mean (%) Range (%) SD (%) N¹ 

Klason Lignin 27.7 24.6 to 30.7 1.3 75 

Total Lignin 31.3 28.1 to 34.4 1.2 75 

Holocellulose 64.8 56.2 to 68.2 1.8 75 

1 Number of samples 

 

Holocellulose content averaged 64.8%, which is lower than in hardwood trees 

(79.6%, Zhou et al. 2015), but higher than the value reported by Trugilho et al. (2015) for 

Eucalyptus urophylla x Eucalyptus grandis (59.7%). Of note, E. urograndis is the hybrid 

that is planted the most in Brazil. 

In most Eucalyptus species the lignin content decreases as the tree develops and 

forms the adult wood. In contrast, the content of carbohydrates tends to increase as time 

progresses (Trugilho et al. 1996; Estopa et al. 2017).  

Although the determination of Klason lignin, total lignin, and holocellulose was 

relevant for comparison of the dataset against published studies, the main goal of the wet 

chemistry analysis was to produce reference data for the NIR. The authors observed 

considerable variation in the dataset and ensured accuracy of the reference methods, which 

are the two most important factors for calibration and development of accurate NIR models 

(Alves et al. 2011a). 

 

 
 

Fig. 1. a) Score plot obtained by PCA applied to NIR spectra collected from the three different 
treatments; b) Absorbance versus wavenumber plot for untreated average NIR spectra of the 
three treatments. Bands assigned to chemical compounds are represented by numbers and listed 
in Table 3 
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Effect of Treatments on the Spectra 
The PCA applied to the FT-NIR spectra highlighted the discriminating ability of 

the NIR to separate samples by plotting the averaged spectra of 75 samples for each 

treatment (Fig. 1a). The PCA scores plot of spectra acquired from the wood specimens 

shows at least two groups (indicated by dotted circles). The two main components together 

explain 92% of the variability of the data analyzed, of which 61% is explained by the 

Principal Component 1 (PC1) and 31% is explained by Principal Component 2 (PC2). 

The differences in the spectra due to treatment effect were assessed by plotting and 

overlapping the average of the 75 samples for each treatment (Fig. 1b). The reference for 

the NIR region interpretation is based on Watanabe et al. (2006), Schawninger et al. 

(2011), and Sandak et al. (2011) (Table 3). 

Overall, the three spectra showed strong absorption bands. This was due to the 

overtone of the OH stretching vibration at 7200 cm-1 to 6000 cm-1 and the combination of 

OH stretching and deformation vibrations at 5400 cm-1 to 4800 cm-1 and 4900 cm-1 to 4600 

cm-1. The spectra of the three bands increased progressively, with LPRT having the highest 

peak, followed by TRAD and LPOD (Fig. 1b). The lowest absorbance peaks were seen in 

the spectra recorded from samples with the lowest moisture content (LPOD treatment). 

This observation agrees with results published by Inagaki et al. (2008). Variation in the 

NIR spectra due to sample moisture content was observed throughout the NIR range, which 

indicated that the absorption peaks due to OH bonding of water were substantially 

overlapped in the original spectra. This variation in absorbance due to moisture content is 

governed by the adsorption/desorption mechanism, where the wood–water interaction or 

the physicochemical properties of water play an important role. Because the NIR light 

absorption by wood overlapped with that of water, the spectroscopic information was 

compromised. Importantly, the mechanism of which moisture content in wood influences 

the acquisition and behavior of NIR spectra has been extensively discussed previously 

(Tsuchikawa and Tsutsumi 1998; Thygesen and Lundqvist 2000a, b; Watanabe et al. 2006; 

Schwanninger et al. 2011; Pecoraro et al. 2015). 

 

Table 3. NIR Absorption Bands Associated with Components Present in Wood 
Specimens. Index Numbers Related to the Specifics Bands Indicated in Fig. 1. 

Index Wavenumber (cm-1) Bond Vibration Structure Ref.1 

1 ≅6913 OH stretching first overtone Phenolic OH group 1 

2 6800 OH stretching first overtone Glucomannan 2 

3 6775 OH stretching first overtone 
Semi-crystalline region in 
cellulose 

2 

4 6281 OH stretching first overtone 
Crystalline region in 
cellulose 

2 

5 5935 CH stretching first overtone Aromatic skeletal in lignin 3 

6 5800 
CH stretching of first 
overtone 

Furanose or pyranose in 
hemicelluloses 

1 

7 5220 and 5051 
OH stretching plus OH 
deformation 

Water 2 

8 4780 and 4762 
OH and CH deformation plus 
OH stretching 

Cellulose and xylan 2 

1 References consulted: 1 - Watanabe et al. (2006); 2 - Schwanninger et al. (2011); 3 - Sandak 
et al. (2011) 
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The principal component analysis grouped LPOD treatment in a separate cluster 

and combined LPRT and TRAD treatments in another (Fig. 1a). In LPOD treatment, the 

dried wood showed only hygroscopic water, and the water band was expressed with less 

intensity at the range of approximately 5200 cm-1 (combination of stretching and 

deformation vibrations for OH). However, the location of the band can be modified with 

increased moisture content in the wood, with NIR absorption also apparent at 5000 cm-1, 

5080 cm-1, and 4920 cm-1 (Schwanninger et al. 2011). From a different prospective, 

analyzing the NIR spectra could be a tool to screen the content and the state of water in 

unknown samples (Tsuchikawa and Tsutsumi 1998; Terazawa et al. 2003; Inagaki et al. 

2008). It should be noted that the shapes of the bands were similar among treatments (Fig. 

1b), and the most conspicuous changes in the spectra of treated wood were only observed 

when analyzing the wavenumbers (Table 3). 

Overall, the spectral absorption was more influenced by sample moisture content 

than particle size (Fig. 1b). The greatest absorbance values were evidenced in the TRAD 

and LPRT treatments, which had greater moisture content compared with LPOD (12.0% 

vs. 7.0%). This result is somewhat expected because water has great capacity to absorb 

electromagnetic radiation (Achata et al. 2015). Therefore, the results suggested that when 

preparing wood samples for NIR analysis, controlling sample moisture content might be 

more important than trying to grind samples to a particle size smaller than 1 mm. Thus, 

LPOD may be preferred particularly for preparation of a large number of samples. It should 

be noted that alternative methods that minimize the drying time should be studied. 

Differences between NIR spectra recorded from 0.5 mm or 4.0 mm particle size 

appear to be less significant with absorbance variation continuously similar along the NIR 

spectral range (Hein et al. 2010). These same authors mentioned that the ball milling 

process resulted in more homogeneous spectra when compared to solid wood particles (e.g. 

wood chips).  

This was not surprising, since the band at 1400 nm of the fine powder was stronger 

than that of the raw wood meal. The more intensive the ball milling, the higher the 

percentage of fine material in the sample, and this explains the increase in absorbance 

values in some spectra regions (Schwanninger et al. 2004). However, ball milling is a time-

consuming laboratorial procedure that can preclude processing of a large number of 

samples. Variations in particle size between 30 mesh and 60 mesh of Eucalyptus wood did 

not have a significant effect on the NIR spectra (Baillères et al. 2002). Nevertheless, in 

Eucalyptus globulus the NIR-estimated lignin content was influenced by particle size (Poke 

and Raymond 2006). 

 

Calibration Models  
The partial least square regression models for chemical components predicted by 

NIR spectroscopy for each treatment are presented in Table 4. The Klason lignin models 

presented promising statistics and showed potential for providing a method of accessing 

quality control for individual samples (Figs. 2a to 2c). Predicted and observed values for 

Klason lignin contents exhibited good correlations with R² of 0.87, 0.90, and 0.86 for 

LPRT, LPOD, and TRAD treatments, respectively. The RPD values of validations were 

lower than 3, indicating that such models may be adequate for screenings or for genetic 

studies (Schimleck et al. 2003). 
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Table 4. Cross-validation Statistics of Partial Least Square Regression Models 
for Calibration of Chemical Components in Eucalyptus benthamii 

Treatment Component PreProRange VL R²cv RMSECV RPD Outliers 

 Klason lignin 3 (d+j) 5 0.86 0.51 2.75 12 

TRAD Total Lignin 1 (d+j) 4 0.80 0.59 2.25 9 

 Holocellulose 2f 6 0.81 0.72 2.34 6 

 Klason lignin 2g 8 0.87 0.49 2.85 14 

LPRT Total Lignin 3(c+i) 6 0.78 0.66 2.14 7 

 Holocellulose 3 (c+i) 6 0.84 0.69 2.52 11 

 Klason lignin 2 (a+d) 3 0.90 0.46 3.17 13 

LPOD Total Lignin 1h 4 0.82 0.61 2.39 8 

 Holocellulose 1(b+i) 5 0.81 0.75 2.31 8 

Where 1stDer: First Derivative, VN: Vector Normalization, PreProRange: pre-processing treatment 
and wavenumber range (cm-1); VL: Average number of factors used in model construction; R²cv: 
Coefficient of Determination for Cross-Validation.; RMSECV: Root Mean Standard Error of Cross-
Validation; RPD: Residual predictive deviation; Outliers: Number of outliers removed from calibration 
models. 
1 – 1stDer             a – 9403.7-7498.2 cm-1; b – 9403.7-6098.1 cm-1; c – 7502.1-6098 cm-1; 
2 – 1stDer+VN      d – 6102-5446.3 cm-1 e – 6102-5446 cm-1; f – 6102-4597.7 cm-1;  
3 – VN                   g – 6101.9-4246.7 cm-1; h – 5176.3-4246.7 cm-1; i – 5450.1-4246.7 cm-1;  
                               j – 4601.5-4246.7 cm-1 

 

 

Overall, values of R2 for total lignin and holocellulose can be considered acceptable 

(i.e. 0.82 in LPOD and 0.84 in LPRT), and the RMSECV values were below 0.61% and 

0.69%, respectively (Table 4, Figs. 2f and 2h). Validation of these calibrations produced 

good correlations between wet chemistry predicted values in the laboratory and NIR-

predicted values. Other researchers have published calibration models for total lignin in 

Eucalyptus trees. However, these models showed lower R² (0.71) and higher RMSECV 

(0.90%) (Milagres et al. 2013). A better calibration (R² = 0.78) was developed using NIR 

analysis for predicting Klason lignin content from solid wood in Eucalyptus globulus (Poke 

and Raymond 2006). For holocellulose, Hou and Li (2011) developed a model containing 

8 PLS vectors, which resulted in high R² (0.98) and low RMSECV (0.34%). 

With regard to the lignin content in Eucalyptus benthamii wood, calibration models 

with coefficient of determination of 0.64 and RMSECV of 0.68% have been published 

(Estopa et al. 2017). The present study yielded excellent cross-validation statistics for 

lignin content, with higher coefficient of determination and lower RMSECV for all 

treatments (Table 4). 

 

Comparison of PLS-R Models 
An important goal of this study was to evaluate differences between the calibration 

models related to different sample preparation protocols prior to collecting the spectra. It 

was anticipated that if no difference between treatments was evident, then the sample 

preparation work can be minimized, which reduces costs and increases the speed of NIR 

analysis. 

When a clear decision cannot be made regarding the choice of the best model, more 

rigorous examination of the results is required. Examining the cross-validation of the 

models resulting from the combination of multiple data sets could help in making such a 

decision (Alves et al. 2011a). Alternatively, statistics such as comparison of means can be 

applied to differentiate the values of RMSECV. 
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Fig. 2. Cross-validation predictions of Klason lignin, total lignin, and holocellulose in Eucalyptus 
benthamii 

 

The mean comparison test applied on the 15 RMSECV values of the calibration 

models for each treatment is presented in Fig. 3. Regarding Klason lignin, LPOD treatment 

yielded satisfactory prediction and was not statistically different than TRAD treatment 

(Fig. 3a). Additionally, no difference was observed between the LPOD and LPRT 

treatments. This finding indicated that for measurement of Klason lignin, samples do not 

need to be ground to a particle size smaller than 1 mm or reduced to a moisture content 

smaller than 12%. This is relevant as it substantially reduces sample preparation time and 

labor cost. 
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Fig. 3. Treatment effect on RMSECV values for calibration models of Klason lignin (a); total lignin 
(b); and holocellulose (c) 
* Means followed by the same letter in the column do not differ by Tukey test at 5% probability 

 

With regard to total lignin, the model error in LPOD and TRAD treatments was 

smaller than that in LPRT treatment (Fig. 3b). This indicated that, for analyses of total 

lignin, samples should be ground to particles sizes less than 1 mm or, if grinding to 1 mm, 

sample moisture content should be reduced to less than 12%. A noteworthy observation 

was that LPOD treatment, which had samples with lower moisture content, presented the 

overall best statistics for total lignin model fit. This was mainly because the bands related 

to water adsorption were excluded from the calibration models. Moisture content was 

important for selecting the best models for total lignin, and was also an indicator of dryness 

of wood particles after sample preparation. For holocellulose, TRAD treatment produced 

better predictions than LPOD treatment, but did not differ from LPRT (Fig. 3c). This 

indicated that in addition to measurements of Klason lignin, LPRT treatment can be applied 

on samples when analyzing holocellulose.  

NIR analysis has commonly been performed using the fraction of the wood milled 

through the 40 mesh to 60 mesh, particularly because this is the fraction used for gold 

standard wet chemistry analyses. However, this study demonstrated that accurate NIR 

models could be developed using samples of larger particle size (i.e. 1 mm, LPRT and 

LPOD treatments). Furthermore, except for the determination of total lignin that required 

either smaller particle size (TRAD treatment) or lower sample moisture content (LPOD 

treatment), this study demonstrated that samples of larger particle size (1 mm) can be dried 

at room temperature. The authors expected that the alternative sample preparation methods 

evaluated in this study could be applied to wood samples other than Eucalyptus. However, 

special attention should be given to sample final moisture content because of the disturbing 

effects of water on the quality of the NIR spectra. Additionally, further research is 

warranted using similar sample preparation methods, particularly on wood samples that 

expand the range of Klason lignin, total lignin, and holocellulose outside the boundaries 

evaluated in this study.  
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CONCLUSIONS 
 

1. This study demonstrated that sample preparation work can be minimized (i.e., grinding 

to 1 mm and drying at room temperature), which can considerably reduce the costs 

associated with NIR analysis.  

2. Compared with the traditional sample preparation method, grinding to a larger particle 

size and drying at room temperature (LPRT treatment) did not affect the accuracy of 

the prediction models, particularly for Klason lignin and holocellulose. For analysis of 

total lignin, samples can be ground to a larger particle size, but the quality of the 

calibration model was only equivalent to the traditional method when moisture content 

was reduced to 7% (LPOD).  

3. Promising NIR models were developed for predicting chemical components (i.e., total 

lignin, Klason lignin, and holocellulose) associated with wood quality. Statistical 

analysis of the error associated with the developed NIR models demonstrated minor 

differences between the treatments.  
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