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Fiber quality greatly influences the performance of medium-density 
fiberboard (MDF). To evaluate the fiber quality more accurately during 
refining, a novel quantitative parameter-property relationship model was 
developed based on the support vector machine (SVM) algorithm. Based 
on the mill production conditions, a total data set of 1173 experimental 
fiber quality data points under a wide range of five refining parameters was 
employed to train and verify the model. By comparing the effectiveness 
between the model using nonlinear SVM and the model based on multiple 
linear regression (MLR), the values of mean absolute error (MAE), mean 
relative error (MRE), root mean square error (RMSE), and Theil’s 
inequality coefficient (TIC) were reduced 92.19%, 92.36%, 87.29%, and 
87.21%, respectively. The results showed that the performance of the 
predictive model developed using SVM was superior to the MLR model. 
Furthermore, the variations of the percentage of qualified fibers with each 
production parameter were predicted using the established model. The 
prediction model that resulted can be applied to predict the fiber quality 
during the refining process in an MDF production mill. 
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INTRODUCTION 

 

Medium-density fiberboard (MDF) has been widely applied in the furniture and 

interior decoration markets due to its dimensional stability, workability, flatness, smooth 

appearance, good bond strength, and screw-holding ability (Hua et al. 2012). A crucial step 

in the fiberboard production is the refining process (Runkler et al. 2003). It is impractical 

and costly to evaluate which fiber qualities are affected by certain production parameters 

through experimental determination techniques during the refining process. Production 

parameters are mainly adjusted based on the experience of workers, which suffers from 

poor accuracy due to the lack of theoretical guidance on the model of fiber quality relating 

to production parameters. Therefore, it is essential to develop new models to predict fiber 

quality according to production parameters. 

To investigate the influence of production parameters during refining on the fiber 

or the fiberboard quality, some studies have been carried out over the past decade. Chen 

and Hua (2009) developed a constraint relationship between the fiber productivity and fiber 

quality using third-order polynomial and linear regressions, and an optimization method 

was developed to adjust the fiber quality by modifying fiber productivity that depends on 

the feeding screw revolution speed and the opening percentage of the discharge valve. The 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Gao et al. (2018). “Fiber quality in fiberboard,” BioResources 13(4), 8184-8197.  8185 

relationship between the content of bark and the fiber quality was investigated by Jia et al. 

(2015). It was demonstrated that the fiber screening value first presented an increasing 

trend and then descended with an increase in bark content. Xing et al. (2006) investigated 

the influence of thermo-mechanical refining on the properties of MDF panels made from 

black spruce bark, and the results showed that the preheating retention time was an 

important factor for both the modulus of rupture and the modulus of elasticity. The steam 

pressure was an important factor for internal bond strength, modulus of rupture (MOR), 

and modulus of elasticity (MOE). The previously described studies revealed the 

relationship between the production parameters during refining and the quality of fiber or 

fiberboard based on linear or polynomial regression, which was shown to be disadvantaged 

by low accuracy and the inability to predict the quality online.  

To address these drawbacks, some researchers developed models between the 

production parameters during refining and the quality of fiber or fiberboard with intelligent 

algorithms. To determine the process set points leading to minimum production cost for 

the target quality, Gerstorfer et al. (2001) established a Takagi-Sugeno-Fuzzy model for 

the refining process based on the experts’ knowledge as well as the data collected. The 

neuro-fuzzy modeling methods were used by Runkler et al. (2003) to model the wood chip 

refiner process for fiberboard production to provide online predictions of the two important 

quality indices (flexural strength and water uptake). The results showed that the model 

accuracies achieved were approximately ± 5 N/mm2 for flexural strength and 

approximately ± 10%/24 h for water uptake. However, the fuzzy rules were determined on 

the dependence of experts’ technological experience, which only leads to a certain extent 

of improvement on the prediction accuracy. Because the artificial neural network (ANN) 

can model highly nonlinear systems without using complex deduction rules or large data 

(Huang and Lu 2016), it was used as a predictive method to determine the moisture 

resistance of particle- and fiberboards under cyclic testing conditions by Esteban et al. 

(2010). However, the training procedure for ANN models is not only time consuming but 

it is also possible to get trapped in local minima (Hong et al. 2013).  

With the advantages of a simple structure, good generalization ability, nonlinear 

modeling properties (Wang et al. 2009; Zhou et al. 2016; Sun et al. 2016), and avoidance 

of the problems of over-fitting, local extremum, and dimension disaster (Shi et al. 2010; 

Zhao et al. 2014; Sun et al. 2016), the support vector machine (SVM) has become a 

promising classification and regression algorithm. The SVM can be used for classification 

of data and text, system modeling and prediction, pattern recognition, anomaly detection, 

and time series prediction (Jiao et al. 2016) in many fields (Mokhtarzad et al. 2017; 

Roushangar and Ghasempour 2017; Huang et al. 2018). Among these fields, Zhang et al. 

(2016) employed the SVM method to establish parameters-properties models in the 

papermaking field. Although SVM has been employed in many fields because of its 

advantages of nonlinear relationship expression, it has not been used for the modeling of 

fiber quality during the refining process in MDF production. 

This study is aimed at increasing the percentage of qualified fibers (QF) by 

adjusting five parameters, i.e., the conveyer screw revolution speed (SR), accumulated chip 

height (CH), opening ratio of the discharge valve (OV), content of log bark (CB), and 

content of Chinese poplar (CP) during refining. The QF were evaluated by fiber size, i.e., 

the screen mesh grades of the fibers. Firstly, a large amount of fiber quality data was 

collected from the MDF production mill under a wide range of SR, CH, OV, CB, and CP 

to uncover the relationship between the refining parameters and fiber quality. Secondly, 

SVM was utilized to construct the nonlinear predictive model of fiber quality during the 
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refining. The experimental values and predicted outputs of the model were compared, and 

the accuracy of the model was established. Thirdly, the results from the SVM-based model 

and the multiple linear regression (MLR)-based model were compared, showing that the 

SVM model predicted fiber quality more effectively and accurately than that from the MLR. 

 

 
EXPERIMENTAL  
 
Materials 
Data collection 

The data were collected in a production line at a MDF mill in Northern China and 

two major species, namely Chinese poplar (Populus lasiocarpa Oliv.) and Chinese larch 

(Larix potaninii Batalin), were used in the production. In the production line, the 4000 kW 

refiner (model: 50-ICP; Andritz Group, Graz, Austria) utilized had double 1372-mm 

diameter disks running at a rotational velocity of 1,500 r/min.  

Figure 1 shows the major components of the refiner. A feeding screw (2) transfers 

the wood chips in the hopper (1) to the pre-heater (3). The preheating retention time was 

determined by CH. Chips were discharged to the refiner (6) using a conveyer screw (4) 

after the steam-softening. Through the discharge pipe (5), the refined fibers were unloaded 

under the steam pressure in the refiner. The opening ratio of the valve installed on the 

discharge pipe (5) was used to adjust the amount of unloaded fibers. 

 

 
 

Fig. 1. The major components of the refiner: 1) Hopper, 2) Feeding screw, 3) Pre-heater, 4) 
Conveyer screw, 5) Discharge pipe, and 6) Refiner 
 

In the chip washing and steaming processes, the moisture content of the wood chips 

increased. However, during the chip transportation, the feeding screw squeezed the 

moisture from the chips in the feeding pipe and brought the final moisture content of the 

chips to 50%.  

In the pre-heating process, the steaming pressures usually slightly fluctuate from 

0.766 MPa to 0.990 MPa (corresponding to a steaming temperature that ranged from 168.6 
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°C to 179.5 °C). The gap between the two refining disks was pre-set to 0.1 mm. The sensors 

installed on the production line measured five refining parameters, including SR, CH, OV, 

CB, and CP, hourly under usual production conditions.  

Generally, large fiber size would produce panels with poor board appearance, while 

smaller-sized fibers could cause the reduction in panel strength (Shi et al. 2006). 

Technically, the good fiber shape for MDF requires a moderate ratio of length/width of the 

fiber (Chen 2012). Based on the mill’s practices, the fibers with a size between 20 to 120 

screen mesh were considered to be qualified in this study.  

In the fiber processing, 10 g of fiber were collected and weighed with a balance off 

the production line to determine the fiber sizes for each measurement. The percentage of 

the QF in the total amount = (The weight of qualified fiber (g) / 10 g) × 100%.  

It was hypothesized that the response variable (QF) during the refining could be 

estimated by correlating the predictor variables (SR, CH, OV, CB, and CP). A large sample 

size, 1,173 measurements for each variable, was analyzed in this study. Two models, 

namely, MLR and SVM, were developed for predicting the fiber quality. The accuracies 

of the two models were validated and compared using the data collected in the MDF 

production line. 

 

Methods 
Support vector machine algorithm 

The SVM, proposed by Vapnik (1999), is a relatively new and promising 

classification and regression algorithm based on the statistical learning theory and 

structural risk minimization principle. Based on this principle, SVM possesses an optimum 

network structure that is beneficial to reduce the global error of the model (Xiao et al. 

2014). 

The basic principle is as follows (Chu et al. 2017). Training data are presented in 

the form{xi, yi}
n 

i=1, where xi values are the input data, yi values are the corresponding output 

data, and n is the number of training data points. The SVM is used to search an optimal 

regression function, which can estimate all of the training data (Drucker et al. 1997). The 

regression function can be expressed as, 

bxwx T  )()(f           (1) 

where w∈Rn denotes the weight vector, φ(x) denotes the nonlinear mapping function, and 

b denotes the bias. As mentioned previously, SVM is based on risk minimization, while w 

and b are estimated by minimizing the regularized risk function as below, 
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where 1/2‖w‖2  is the flatness of the function, C is the penalty factor, which is the correlation 

between empirical error and flatness of the model (Yan and Shi 2010), ε is a prescribed 

parameter, and Lε(yi, f(xi)) is the ε-insensitive loss function that can be defined as: 
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By introducing the slack variables ξ and ξ*, Eq. 2 can be written as: 
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The dual objective optimization problem can be solved using the Lagrange 

multipliers (Ma et al. 2003). Finally, the regression function is obtained as the following 

equation, 
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where ai and a
* 

i  are the Lagrangian operators, nsv is the number of support vectors, and 

K(xi, yi) is the kernel function. It is important to select the kernel function and its parameters 

because the generalization performance of SVM depends on the type of kernel function, 

its parameters, and several internal parameters of SVM (Zhao et al. 2016). 

The Gaussian Radial Basis Function (RBF) is mostly used for the kernel function 

due to its properties of good generalization and nonlinear forecast as well as its 

characteristic of few parameters that need to be adjusted (Bishop 1995; Keerthi and Lin 

2003). Therefore, in this study, the Gaussian RBF was selected as the kernel function using 

the following formula, 
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where σ is the width of RBF.  

Therefore, there are two variables that need to be selected in the SVM model, which 

are the constant “C” and the width of the Gaussian RBF kernel “σ”. In this study, the 

optimization of these parameters was performed by a systematic grid search of the 

parameters using the cross-validation on the training set. 

 

The SVM predictive model for fiber quality 

In this paper, the software used for analysis was Matlab (MathWorks, R2010a, 

Natick, MA, USA). The diagram of the SVM predictive model is illustrated in Fig. 2. The 

details of the operation process for the SVM model are discussed below. 

 

Step 1: Data preprocessing 

To ensure the training stability of the SVM and avoid the bad influence caused by 

discrepancy of quantitative dimension, the data from experiments were normalized with 

the following mapping function, 

minmax

min=
xx

xx
x M




         (8) 

where xM is the normalized data, x is the original data, and xmax and xmin denote the 

maximum and minimum raw input values, respectively. The original data were normalized 

to the range of 0 to 1. 
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Step 2: Cross validation (CV) to select the best parameters of regression, C, and σ 

First, the fitness function (mean square error) was determined based on 3-CV, ε 

was pre-set as 10-4, and the range of C and σ were defined and meshed. Second, the fitness 

function was recalculated through updating C and σ within the grid. Finally, the C and σ 

that generate the minimum average mean square error (MSE) of the three models were 

selected as the best parameters.  

 

 
 
Fig. 2. Diagram of the support vector machine predictive model 

 
Step 3: Building the SVM model for fiber quality 

The SVM model for fiber quality was trained and established based on the best 

parameters obtained in step 2, which can be used to investigate the relationships between 

the parameters and the property. 

 

Step 4: SVM regression prediction 

The built SVM model was used to predict the training set and test set, and then the 

fiber quality under prediction was compared with the experimental data. 

 

Step 5: Evaluation of predictive performance  

The predicted performance was evaluated in terms of mean absolute error (MAE), 

mean relative error (MRE), root mean square error (RMSE), and Theil’s inequality 

coefficient (TIC). They are defined according to the following formulas, respectively, 
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where yi are the actual outputs (experimental qualified fibers), 


iy
 the outputs of models 

(predicted qualified fibers), and n is the number of compounds in the analyzed data set. 

 
 
RESULTS AND DISCUSSION 
 
Results of the SVM Algorithm  

The inputs for the fiber quality model using the SVM algorithm were SR, CH, OV, 

CB, and CP, and the output was QF. Out of a total set consisting of 1173 groups of data 

from the experiment, 887 groups of data were used to build the model as a training set, 

while 286 groups of data were used to validate the model established as a test set. In 

selecting the SVM parameters, K-CV can effectively avoid the occurrence of overlearning 

and under-learning. In this paper, the optimization of the SVM parameters was carried out 

by 3-CV. Figure 3 illustrates the SVM parameter selection process and results (contour 

map and 3D view). As shown in Fig. 3a, contour lines represent the C and σ corresponded 

MSE based on the K-CV method. The most optimum condition where the MSE of the 3-

CV method equaled 0.00025373 was selected. The final optimization results were C = 1 

and σ = 5.6569. 

 

 
 
Fig. 3. SVM parameter selection process and results: (a) contour map, and (b) 3D view 

 

To estimate the accuracy of the fiber quality model, the experimental data were 

compared with the predicted outputs as shown in Fig. 4. In Fig. 4a, the scatter plots of the 

predictive versus the experimental outputs for the qualified fibers were observed. If the 

model exactly matched the actual values, all data points would be on the main diagonal. It 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Gao et al. (2018). “Fiber quality in fiberboard,” BioResources 13(4), 8184-8197.  8191 

was revealed that the data points were indeed close to the main diagonal, indicating good 

model accuracy. As described in Fig. 4b, the relative deviations of the predicted qualified 

fibers values in comparison with experimental values indicated that the new model 

established by the SVM algorithm clearly possessed promising prediction properties. 

 

 
Fig. 4. Predicted versus experimental qualified fibers using the SVM algorithm: (a) predicted 
qualified fibers, and (b) relative deviation 

 
As described in Fig. 5, the percent of value shows 97.02% in the range of 0% to 

5%, 2.39% in 5% to 10%, 0.43% in 10% to 15%, and 0.17% in 15% to 20%. The associated 

estimation error for the majority of data points (99.41%) lies in the range of 0% to 10%, 

which demonstrates a good predictive accuracy for the fiber quality. 

 

 
Fig. 5. Percent of value for relative deviation range under the SVM model 
 

The Comparison of Results for SVM and MLR 
The performance of SVM was compared with that of MLR based on the training 

set and test set. Figure 6 shows the predicted qualified fibers versus the experimental ones 

using the MLR algorithm. In Fig. 6a, the predicted qualified fibers were not in good 

agreement with the corresponding experimental fiber quality, and fewer data points of 
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qualified fibers were close to the diagonal. As shown in Fig. 6b, approximately 11.2% of 

the relative deviation of predicted qualified fibers was above 20%, and the maximum value 

even reached up to 51.2%. This demonstrated that the fiber quality prediction was not a 

simple linear problem, and the fiber quality model established by the MLR linear algorithm 

had certain limitations. 

 

 
Fig. 6. Predicted versus experimental qualified fibers using the MLR algorithm: (a) predicted 
qualified fibers, and (b) relative deviation 
 

The errors of the MLR algorithm were compared with that of the SVM algorithm, 

and the detailed results are listed in Table 1. As can be seen in Table 1, on the basis of 

MAE, the SVM achieved a decrease of 92.19% compared to the MLR. Similar results were 

obtained from the other error analyses, such as a MRE with a decrease of 92.36%, RMSE 

with a decrease of 87.29%, and TIC with a decrease of 87.21%. It was demonstrated that 

the SVM algorithm performed better than the MLR in predicting fiber quality. 

 

Table 1. Comparison of Errors by the MLR and SVM Algorithms 

Algorithms Sets No. MAE MRE (%) RMSE TIC 

MLR 

Training 887 5.425 8.326 7.110 0.050 

Test 286 8.538 15.917 10.934 0.086 

Total 1173 6.184 10.177 8.210 0.059 

SVM 

Training 887 0.248 0.360 0.286 0.002 

Test 286 1.212 2.075 2.052 0.017 

Total 1173 0.483 0.778 1.043 0.008 

 
Application of the Predictive Model of Fiber Quality 

According to actual producing conditions, the ranges of production parameters 

selected in the prediction model are shown in Table 2. Because the established predictive 

model of fiber quality was effective and accurate, the effect of variation of single 

parameters on fiber quality was analyzed. 

 

Table 2. The Range of Production Refining Parameters 

Parameter SR (r/min) CH (m)  OV (%) CB (%) CP (%) 

Range 40 to 72 4 to 5.9 13.4 to 68 5.8 to 23.4 11.2 to 41.5 
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One parameter was selected as a variable and the other four parameters remained 

unchanged in each prediction. A parameter was selected as a variable with its range 

provided in Table 2. However, the values of parameters selected as constants were SR = 

50 r/min, CH = 5 m, OV = 45%, CB = 12.55%, and CP = 24%. By inputting those values 

into the developed fiber quality model, the variations of each production parameter with 

the fiber quality were obtained as shown in Fig. 7.  

 

 

 

 
 

Fig. 7. Variations of the percentage of qualified fibers with each production parameter: (a) SR, (b) 
CH, (c) OV, (d) CB, and (e) CP 

 

As shown in Fig. 7a, when the SR was less than 62 r/min, the percentage of 

qualified fibers increased with the increase of SR. However, when it was more than 62 
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r/min, the percentage of qualified fibers decreased with the increase of SR. The increase in 

SR led to the increase in the amount of chips and resulted in enhanced friction among fibers 

between refining disks. The increased friction greatly reduced the excess crushing and 

cutting of fibers due to its direct contact with the disks and improved the fiber quality. 

However, too much feed caused by the excessive conveyer screw revolution speed led to 

the increase of the gap between disks. This reduced the force between the wood chips, 

resulting in insufficient defibrination. Consequently, more coarse fibers were produced, 

resulting in a reduction in the amount of qualified fibers. 

As shown in Fig. 7b, when the CH was less than 5 m, the percentage of qualified 

fibers increased with the increase of CH; however, when it was more than 5 m, the 

percentage of qualified fibers decreased with the increase of CH. The CH had a positive 

correlation with steaming time, which is a vital parameter deciding the degree of softening 

of wood chips. The increase in CH extended the steaming time of the chips and weakened 

the inter-fiber connection. As a result, the percentage of qualified fibers increased due to 

better fiber shape and less mechanical damage of fibers during refining. Nevertheless, 

excess steaming time destroyed the fiber itself due to the increase of the proportion of 

rupture of long molecular chains of the cellulose and hemicellulose in fiber cells, and the 

intensification of the loss of intercellular layer material, which was likely to generate more 

tiny fibers and resulted in a decreased percentage of qualified fibers.  

As shown in Fig. 7c, the percentage of qualified fibers generally decreased with the 

increase of OV. The increase in OV caused a gradual increase of the pressure difference 

between the inside and outside of grinding chamber, where the chips defibered, and the 

aggravating of fluidity outward of fibers. This led to the decrease of the percentage of 

qualified fibers due to the increase in coarse fibers caused by the insufficient grinding, 

which resulted from less refining time. However, there existed an optimum point at 18.2%, 

where the fluidity outward and degree of grind of fibers achieved a balance, leading to the 

optimum fiber size. 

As shown in Fig. 7d, when the CB was less than approximately 12%, the percentage 

of qualified fibers increased with the increase of CB. However, when the CB was more 

than approximately 12%, it decreased with the increase of CB. The fiber quality was 

improved by the longer bast fibers in the bark. However, if the bark content was too high, 

excess skinny fiber in the bark resulted in the reduction of the percentage of qualified fibers.  

As shown in Fig. 7e, when the CP was less than approximately 24%, the percentage 

of qualified fibers increased with the increase of CP. However, when the CP was more than 

approximately 24%, it decreased with the increase of CP. Chinese poplar is a broad-leaved 

wood whose fibers are shorter. Therefore, the proportion of coarse fibers decreased and the 

proportion of finer fibers slightly increased when the CP increased, improving the ratio of 

qualified fibers. Nevertheless, too much CP resulted in the exceeding proportion of finer 

fibers, which reduced the percentage of qualified fibers. 

 

 

CONCLUSIONS 
 
1. Using 1173 groups of mill production data, an effective and powerful model based on 

the SVM algorithm was developed to predict the fiber quality during the refining 

process in the MDF production. The model was constructed with five predictor 

variables including the conveyer screw revolution speed (SR), accumulated chip height 

(CH), opening ratio of the discharge valve (OV), content of log bark (CB), and content 
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of Chinese poplar (CP), which enable the evaluation of fiber quality more 

comprehensive and more suitable to be used in the mill conditions. 

2. The predicted outputs of the SVM model were compared with the experimental data. 

The results showed that the predicted values agreed with the experimental ones well, 

and the estimation relative deviation for the majority of data points (99.41%) were in 

the range of 0% to 10%, indicating that the new model established by the SVM 

algorithm had a good predictive accuracy. 

3. The performance of the SVM was compared with that of MLR based on the training 

set and test set. The results demonstrated that the MAE, MRE, RMSE, and TIC values 

of the total data set of the SVM were decreased by 92.19%, 92.36%, 87.29%, and 

87.21%, respectively. Compared to the model established by MLR, the model 

established by SVM possessed better properties in accuracy and validity. 

4.  Additionally, the variations of the percentage of qualified fiber with each parameter 

were presented using the developed predictive model, and the reasons of variations 

were described. It was demonstrated that the model established by the SVM algorithm 

can be used as a promising guideline for a fiberboard mill manager to predict fiber 

quality. 
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