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Wood products are usually treated with wood preservatives to protect them 
from deterioration. Pressure or non-pressure preservative treatments can be 
utilized to incorporate biocide into the wood, depending on the applications of 
the end-products. Thermal and chemical modifications of wood represent 
alternative treatments that enhance the dimensional properties of wood and 
provide biological resistance. However, there is also a current trend to apply 
nanotechnology for wood preservation. Nanomaterials with unique properties 
can enhance the performance of wood preservatives, thereby increasing the 
service lifetime of the wood products. Nanotechnology can be applied for this 
purpose through impregnation of wood with a suspension of metallic 
nanoparticles, or through encapsulation of biocide with nanocarriers. 
Additionally, various nanomaterials also can be used in wood modification, 
especially coating treatment to provide superior service ability. Nevertheless, 
more studies are required to provide guidelines regarding the safety upon 
application of nanomaterials. This review will give an overview of current 
wood preservation techniques. Additionally, this paper examines current 
research on how nanotechnology is being applied for wood preservation. 
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INTRODUCTION 
 
 Wood is one of mankind’s most valuable and useful natural resources. It plays an 

important role in various human activities, such as the construction and furnishing of 

building interiors. However, wood is prone to degradation caused by numerous organisms 

and abiotic factors. When wood is exposed to moisture and weathering conditions, fungi 

and insects can consume the lignocellulose component in wood (Upreti and Pandey 2005; 

Wong et al. 2014). A 10% weight loss due to fungal attack resulted in losing more than 

50% strength of wood (Ross 2010). Consequently, various wood preservation methods 

have been developed to increase the service lifetime of wood, thereby reducing 

replacement costs and allowing for more efficient use of wood in many applications. 

 The most common wood preservation method involves the application of 

preservative chemicals (Okorski et al. 2015). Factors such as the treatment methods, type 

of preservatives used, degree of penetration, and retention of the preservatives on wood all 

contribute to the level of protection achieved by each particular treatment (Coggins 2008).  
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 Apart from the application of preservative chemicals, heat or chemical reagents 

have been employed to modify the lignocellulose component in the wood cell walls (Hill 

2006; Sandberg et al. 2017). Figure 1 shows a bibliometric analysis that indicates a 

dramatic increase in the number of publications on the modification of woods to improve 

both their dimensional properties and biological resistance. Moreover, several wood 

modification systems have already been established and commercialized. For instance, 

Accoya® (Accsys Group 2017), Kebony® (Kebony 2017), Tricoya® (Tricoya Technologies 

Ltd 2017), and Westwood (Westwood Timber Group 2017) are the well-known commercial 

brands for modified wood. 

 

 
Fig. 1. Wood modification related publications per year, from 1955 to 2016. Reproduced with 
permission from Burnard et al. (2017). 
 

 One of the emerging fields that has seen great potential for the industry is the use 

of nanotechnology in wood preservation (Evans et al. 2008). With this method, nanosized 

metallic wood preservatives, such as silver, copper, and zinc oxide, can be directly applied 

to wood through a vacuum pressure treatment in which pieces of wood are impregnated 

under the vacuum and pressure in a closed cylinder. The treatment will result an adequate 

amount of preservative retained in wood and subsequently protect the wood from certain 

targeted fungi or insects (Taghiyari et al. 2014; Harandi et al. 2016). These preservatives 

may have a deeper level of penetration and higher homogeneous uptake of the particles 

into the wood, compared to the penetration and uptake rates when using conventional 

formulations (Matsunaga et al. 2009). Another advantage is the fact that the encapsulation 

of hydrophobic biocide with nanocarriers enables better water dispensability and protects 

it from degradation (Iavicoli et al. 2017). Additionally, various nanomaterials can be used 

for surface modification of wood such as coating treatment to enhance its hydrophobicity 

and resistance to weathering (Fufa and Hovde 2010; Hubbe et al. 2015). However, the 

assessment for the potential risk related with introduction of nanoparticles in wood 

preservation remains crucial.  This review paper attempts to give an overview of the 

current wood preservation methods including wood modifications, wood preservatives, 

and preservation treatments.  The first part of the review deals with so-called conventional 

technologies.  The second main section evaluates current studies into the efficacy and 

introduction of nanotechnology into the field.  
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CONVENTIONAL WOOD PRESERVATION METHODS 
 

 The treatment methods and the utilization of particular chemicals depend on the 

following factors: the species of wood, the length of service lifetime, the cost of treatment, 

the decay risk, and the end-of-life disposal (Tascioglu et al. 2013; Brischke and 

Thelandersson 2014). The degree of wood preservation treatment depends on the level of 

protection required. There are currently two methods of wood protection, namely wood 

modification and wood preservative systems. 

  

Wood Modification 
 The properties of wood can be improved by modifying the cell wall polymers with 

different types of modification methods. The modification methods usually produce non-

toxic materials and can be easily disposed at the end of products life time without any 

environmental hazard. Modification methods that have been developed can be classed as 

thermal, chemical, surface, and impregnation modification methods. 

 
Thermal modification  

 Thermal modification, or heat treatment, has the advantage of enabling treated 

wood to remain an environmentally friendly product without the use of chemical products. 

This treatment consists of heating the wood at predetermined temperatures (between 150 

°C and 280 ºC) and times in hot media (water, steam, or oil) or under an inert atmosphere 

(Cao et al. 2011; Candelier et al. 2013; Wang et al. 2016b; Okon et al. 2017). These 

systems may be referred to as thermal (dry) or hygrothermal (high water vapour), 

depending on the treatment atmosphere. 

 The chemical reactions involved during thermal treatment include decomposition 

of hemicellulose, structural changes in crystalline cellulose, and lignin repolymerization 

(Yildiz and Gümüşkaya 2007; González-Peña et al. 2009). According to the study of 

Rekola et al. (2014), heat treatment is also most likely to increase the hydrophobicity of 

wood and thus reduce the absorption of liquids into the cell walls.   

 The industry has currently established several commercialized heat treatment 

technologies (Militz 2002), which are briefly outlined below. Each technology has its own 

strengths and suitability for different species of wood. The main difference between each 

of the industrial thermal treatment processes is the medium in which the wood is treated.  

 ThermoWood® process was developed and licensed to the International 

ThermoWood Association (Oksanen and Mayes 2003). ThermoWood® is the best 

established and most widely used technology in the industry. It has the highest production 

rates, about 179,507 m3, in Europe (ThermoWood 2016). ThermoWood® offers two 

standard treatment classes, namely Thermo-S (stability) and Thermo-D (durability); each 

designed for different end-use applications.  

 In the Netherlands, the Plato process was developed by Royal Dutch Shell (The 

Hague, Netherlands) and patented in 1989 (Militz and Tjeerdsma 2001). This process 

utilizes the presence of the abundant moisture in wood cell wall to provoke reactivity in 

the cell wall components under comparably low temperatures. Because relatively mild 

conditions limit unwanted reactions, Plato process is therefore able to reduce strength loss 

due to heat treatment.  

 Furthermore, there are many other useful heat-based processes utilized in the 

industry, such as Westwood (Westwood Timber Group 2010), Retification (Vernois 2001), 

Termovuoto (Jebrane et al. 2018), Les Bois Perdure (Jebrane et al. 2018), hot oil (Unsal et 
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al. 2011; Lacić et al. 2014), and hot-pressing methods (Candan et al. 2013; Silva et al. 

2013). Although heat-treated wood possesses improved dimensional properties and fungal 

resistance, the disadvantage is that thermally modified wood is generally not resistant to 

termite attacks. Fortunately, this drawback can be overcome by combining the heat 

treatment with minimal chemical modifications. For instance, a study conducted by Salman 

et al. (2017) shows that the impregnation of vinylic monomers before thermal modification 

improves the termite resistance of wood. Another downside of thermal modification is heat 

treatment gives wood a brownish color, which turns into a greyish color when expose to 

sunlight (Baysal et al. 2014). Additionally, strength of wood will decrease depending on 

the treatment conditions (Mburu et al. 2007; Candelier et al. 2017). Therefore, thermal 

treated wood is not recommended for applications where wood strength is a necessity. 

 

Chemical modification  

 Chemical modification of wood involves forming a stable bond between a reagent 

and wood cell wall components (lignocellulose). It can be classified as either cell wall 

modification, filling of wood cell cavities, or a combination (Ormondroyd et al. 2015). The 

main objective is to reduce the overall hydroxyl group content of lignocellulose in the cell 

walls of woods through these modifications, thereby increasing resistance of the cells to 

fungi or water. The main advantage of chemical over thermal modification is that 

mechanical strength of wood is less affected, and the resulting material is harder and 

denser. Chemical modification of wood, especially acetylation and furfurylation, has been 

well-studied, and it has consequently been scaled-up for industrial uses (Mantanis 2017). 

 Acetylation is a process in which the hydroxyl groups (OH) of hemicelluloses and 

lignin react with an acetyl group (CH3CO) of acetic anhydride through esterification to 

form an ester (Kozarić et al. 2016). The reaction of hydroxyl groups within the wood cell 

wall with acetic anhydride is illustrated in Fig. 2 (Homan and Jorissen 2004). The 

acetylation of wood can be carried out with or without a catalyst, within a temperature 

range of 100 °C and 130 °C, followed by a vacuum process to remove unreacted volatile 

reagents or by-products (Obataya and Minato 2008). However, acetylation without the use 

of a catalyst is still preferable due to cost saving and environmental pollution issues (Ashori 

et al. 2014). 
 

 
  

Fig. 2. Reaction of hydroxyl group in wood cell walls with acetic anhydride 

 Other acetylation reagents such as ketene, vinyl acetate, isopropenyl acetate, and 

commercial vinegar are often considered as an alternative option to acetic anhydride in 

acetylation (Jebrane et al. 2011b; Azeh et al. 2012, 2013; Nagarajappa and Pandey 2016). 

However, different performances were observed when an assortment of acetylation 

reagents were used as by-products, whose impact on wood properties were produced after 

the modification process. For example, non-toxic and volatile acetaldehyde is produced as 

a by-product after wood is treated with vinyl acetate via a transesterification reaction (Cetin 
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and Ozmen 2011). This method gives a comparatively stiffer product, compared to 

acetylation by means of acetic anhydride (Jebrane et al. 2011a). 

  Because the acetyl functional group is less reactive towards water molecules, 

acetylation results in a decrease in hygroscopicity of the treated wood. Several studies have 

demonstrated that acetylation improves the dimensional stability, fungal resistance, 

photostability, and weathering of treated wood (Özmen et al. 2013; Popescu et al. 2014; 

Giridhar et al. 2017). Acetylation does not drastically change the wood’s initial color and 

creates a pale color that is stable towards weathering (Gobakken and Lebow 2009). 

However, the acetylated wood is vulnerable to staining fungi and sensitive to alkali 

(Gobakken et al. 2010) 

 Furfurylation is another well-known and environmentally friendly modification 

method. It improves the physical properties of wood by causing cell wall bulking 

(Sandberg et al. 2017). Furfuryl alcohol (C5H6O2) is a low molecular organic chemical that 

has a strong polarity and can be obtained from hydrolysate of agricultural waste (Tathod 

and Dhepe 2015). Figure 3 demonstrates the polymerization of furfuryl alcohol and its 

reaction with wood cell wall polymers (Gérardin 2016). Wood is first impregnated with a 

mixture of furfuryl alcohol via vacuum pressure treatment. It is then heated to form a wood 

polymer composite through in-situ polymerization (Li et al. 2016). 

 

 
 
Fig. 3. Polymerization of furfuryl alcohol and its reaction with wood cell wall polymers 

  

 A catalyst is essential for controlling the polymerization of furfuryl alcohol (Li et 

al. 2015). Sejati et al. (2017) investigated the effects of different catalysts (maleic 

anhydride, maleic acid, citric acid, itaconic acid, and tartaric acid) on the furfurylation of 

beech wood (Fagus sylvatica L.). The authors suggested that tartaric acid is a promising 

new catalyst for wood furfurylation. In another study conducted by Yao et al. (2017), 

lignin-derived acids, such as lignosulfonic acid and sulfomethylated lignin acid combined 

with borate, could also be a promising catalyst system.  

 With the retention of polyfurfuryl alcohol, the properties of wood such as hardness, 

resistance to microbial decay and insect attack, modulus of rupture, modulus of elasticity 

and dimensional stability can be improved (Lande et al. 2004). The degree of improvement 

depends on the loading of polyfurfuryl alcohol. Generally, furfurylation is more suitable 

for wood species with more open pits that have loose and ordered structures (Dong et al. 

2016). As furfurylated wood is more rigid than acetylated wood; therefore, it is better suited 

with applications such as decking and countertops. However, furfurylated wood has a 

lower dimensional stability than acetylated wood and thus, it is not suitable to be used in 

joinery products such as windows and doors (Brelid 2013). Furthermore, high hardness is 

achieved at the cost of increased brittleness of furfurylated wood. In addition, furfurylation 
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also has a greater effect on the color of the wood by darkening it and graying on weathering 

(Mantanis and Lykidis 2015). 

 Other than acetylation and furfurylation, impregnation modification is another 

technique to modify the wood where a monomer is impregnated into wood, and then 

polymerize, co-polymerize, or cross-link it in-situ with a carrier monomer, using either a 

catalyst or radiation techniques (Kartal et al. 2004b; Sun et al. 2016). Additionally, the 

surface of the wood also can be modified to improve its hydrophobicity. For instance, 

Filgueira et al. (2017) demonstrated that the hydrophobicity of the surface of beech wood 

(Fagus sylvatica L.) is improved using water insoluble condensed tannins and 

hydroxypropyl condensed tannins from P. radiata bark, assisted by laccase.  

 While modifying treatments can usually improve the resistance against fungal 

attack and mechanical properties of wood, most of them do not provide sufficient long-

term protection against wood damaging insects. Therefore, chemical protection from 

preservatives is still currently regarded as indispensable for wood preservation. 

 

Preservative System 
 A preservative system refers to any wood preservation treatment that applies wood 

preservatives (chemical substances) to protect wood against fungi and insects. These 

preservatives can be distinguished by their respective solvents such as oil-borne, water-

borne, and organic solvent-borne preservatives. Each of the preservatives has different 

characteristic and chemical properties. Thus, when choosing the suitable wood 

preservative, several factors should be considered such as long-term chemical stability, 

insignificant effects on wood strength, and safety of the treated wood products to 

consumers (Ozdemir et al. 2015). 

 

Wood preservatives  

 In general, oil-borne preservatives such as creosote and pentachlorophenol can 

provide long-term protection (Kitchens and Amburgey 2015). These preservatives have 

excellent thermal and chemical stability and are highly resistant to leaching as they are 

insoluble in water. However, these oil-borne preservatives give the treated wood a blackish 

color and exude a pungent smell (Kang et al. 2005). Generally, they are also harmful to 

humans and the environment (Chen et al. 2006). Therefore, oil-borne preservatives are 

usually only applied on poles, train railways, and other outdoor applications that present 

no risk of human contact and minimal effects on the environment (Roman 2015).  

 Water-borne preservatives, which mainly include metallic preservatives that can be 

solubilized in water, are effective against a wide range of wood-destroying organisms. 

Chromium copper arsenate (CCA), copper azole, and ammoniacal copper zinc arsenate are 

the common water-borne preservatives used in market (Rawat et al. 2015; Sivrikaya et al. 

2016). The preservatives are “fixed” onto wood by reacting with or precipitating in treated 

wood (Sabiha et al. 2015). Although these preservatives are odorless and do not affect 

wood’s appearance, metallic preservative additives may cause corrosion of the coating or 

metal fasteners in wood products (Zelinka 2014; Narciso and Eng 2017). Metallic 

preservative additives are also easily leached through rainfall, and they represent an 

environmental hazard because they contain heavy metals (Mercer and Frostick 2012, 

2014). Therefore, CCA has been banned in many countries due to arsenic’s toxicity (Coles 

et al. 2014).  

 Recently, organic solvent-borne preservatives such as triazoles and pyrethroids 

have been developed to replace the toxic metallic preservatives (Volkmer et al. 2010; 
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Tapin-Lingua et al. 2016). Preservatives in this class are non-toxic, non-volatile, odorless, 

and hypoallergenic (Griggs et al. 2017). As a result, they are used for indoor applications. 

Usually, these additives are delivered by using a light organic carrier solvent such as white 

spirit or petroleum-based hydrocarbon. Additionally, they can be emulsified in solvent-

emulsifier mixtures before being dispersed in water (Cui and Preston 2010). Organic 

solvent-borne preservatives can also work in combination with antioxidants and metal 

chelators to enhance the biocides’ effectiveness and dispensability in water (Schultz and 

Nicholas 2002). However, the relatively high cost of organic solvents and emulsifiers limits 

their use, so most of the relevant existing industrial facilities still support the water-based 

formulations. Additionally, certain organic solvent-borne preservatives are unable to 

provide long-term protection, as they are easily degraded by sunlight or microorganisms 

(Zhu et al. 2017). Therefore, they are not intended for use where the treated commodity 

comes into contact with the soil (Cookson 2011). 

 Environmentally friendly wood preservatives that are naturally formed, such as 

wood extractives, plant extracts, or biomass, have also been reported (Morard et al. 2007; 

Oramahi et al. 2014; González-Laredo et al. 2015; Salem et al. 2016). For instance, 

Nakayama et al. (2001) reported that resin materials extracted from the guayule plant 

(Parthenium argentatum) have both insect and microbial resistant properties. Another 

study conducted by Kartal et al. (2004a) demonstrated fungicidal and termiticidal 

properties of filtrates from biomass slurry fuel produced from Sugi (Cryptomeria japonica) 

and Acacia (Acacia mangium) wood. The authors stated that phenolic compounds in 

filtrates could provide resistance against fungi. These natural wood preservatives are 

biodegradable via microorganisms and therefore, it is preferable when it comes to their 

disposal. However, their availability and economic feasibility have not promoted their 

extensive use and hence, more efforts are required to commercialize this type of 

preservative in future. 

In the following section, some of the common treatments used to incorporate wood 

preservatives into wood are outlined. 

 

Wood preservative treatments 

 There are many methods to treat wood with wood preservatives. The treatment 

process can be achieved using chemicals and/or specific equipment, with each method 

having its own strengths and weaknesses.  

 A pressure treatment uses a combination of vacuum and pressure to force chemical 

preservatives into the cellular structure of the wood (Salamah and Dahlan 2008; Tripathi 

and Poonia 2015). By using this treatment, uniform preservative retention and deep 

penetration are achieved, along with long-term performance and a substantial increase in 

service lifetime of the wood product. Moreover, preservative retention levels can be 

controlled by regulating the concentration of the treating solution (Rabbi et al. 2015). 

 Generally four types of pressure processes are used: full cell, modified full cell, 

empty cell, and double vacuum process (Selamat and Said 1989; Nasheri et al. 1999; Islam 

et al. 2008; Winfield et al. 2009).  

Table 1 compares the different pressure processes commonly in use. Generally, the 

moisture in the wood is first reduced and the wood is then transferred to a horizontal 

cylindrical pressure treatment tank. A vacuum or initial pressure is applied before the 

cylinder is flooded with respective preservative solutions.  
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Further pressure is then applied to force the solution to diffuse deep into the porous 

structures of the wood until the required level of preservative retention is achieved. A 

vacuum is drawn in the final process to clean off any excess chemicals left on the wood’s 

surface. In addition to this conventional pressure treatment, some other modified pressure 

processes, such as the axial impregnation method and the double-vacuum processes, have 

also been developed (Mihajlovski and Bahchecandziev 2013; Damay et al. 2015). 

 

Table 1. Comparison of Main Features of Pressure Treatments 

Features of Different Pressure Treatments 

a) Full-cell (Bethell) Process 

 Both the cell walls and the lumen of wood are filled with chemical. 

 High retention, but not necessarily deeper penetration, than that of other processes. 

 Generally used where a large amount of preservative is needed for certain applications, 
such as treatment of utility poles, farm fences, bridge timbers, and pier timbers.  

 

b) Modified Full-cell Process (Low-weight Schedules) 

 Uses lower levels of preliminary vacuum and often uses an extended final vacuum.  

 Residual air in wood expands during the final vacuum to drive out part of the injected 
preservative solution. 

 Most common method for treating timber with high moisture content or refractory species 
with water borne preservatives 

 Suitable for timber that is difficult to treat when seasoned 
 

c) Empty-cell Process 

 Deep penetration is obtained with a relatively low net retention of preservative and thus, 
save the cost of treatment 

 The preservative is only retained within the cell walls.  

 Uses initial air under pressure instead of vacuum.  

 Expansive force of compressed air drives out part of the preservative injected into lumen 
at the end of the treatment process.  
 

d) Double Vacuum Process (Low-pressure Process) 

 Wood is first subjected to a short and relatively weak initial vacuum, after which the 
treatment vessel is flooded with a preservative solution and reduced to normal pressure.  

 Preservative intake is therefore greatly reduced, compared to other vacuum pressure 
processes.  

 Commonly used with light organic solvent preservatives  

 Used particularly for the impregnation of dry timbers that must retain dimensional 
accuracy, such as windows and door frames.  

 

 Non-pressure processes include brushing, spraying, dipping, and many variations 

of soaking (Maclean 1946; Killmann and Fink 1996; Hyvönen et al. 2005; Ma et al. 2013; 

Khairunnisha et al. 2017). Non-pressure processes are conducted under atmospheric 

pressure, without the use of artificial pressure. The differences between several non-

pressure processes is shown in Table 2. Various non-pressure processes differ widely in 

their penetration and retention levels and in the degree of protection provided by each. 

Most of the non-pressure treatments, particularly those involving surface applications, 

generally do not produce a good level of protection in comparison with pressure treatments. 

Nevertheless, these various non-pressure processes do serve a useful purpose when more 

thorough treatments are impractical, or when little protection is required.  
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Table 2. Comparison of Main Features Among Non-Pressure Treatments 

Non-pressure Treatments 

 
a) Surface Application  

 Preservative is applied with a brush, or by dipping or spraying.  

 Used for preserving small individual items such as window sashes, frames, and other 
millwork that does not contact the ground and is exposed to moisture for only brief 
periods. 
 

 
b) Gedrian's Bath (Hot and Cold Bath)  

 Wood is immersed in a bath of preservative, heated (60 to 110 °C) for a few hours, and 
then allowed to cool (30 to 40 °C) while the wood is still submerged in the liquid.  

 During the heating period the air in the cells expands and much of it is expelled as 
bubbles.  

 When the woods are changed to the cold bath (the preservative can also be changed), a 
partial vacuum is created within the lumen of the cells, causing the preservative to be 
drawn into the wood.  
 

 
c) Sap Displacement Method 

 Only applies to round timbers in green condition. 

 Uses hydrostatic pressure due to gravity to force preservative from the butt end of the 
round timber.  

 A cap is fitted to the butt end of a freshly sawn pole or round timber. One end of a flexible 
tube is connected to the cap and the other end to a tank containing the preservative 
located at a higher place. 

 

 
d) Diffusion Method 

 Diffusible water-borne preservatives are used (e.g. sodium arsenate, copper sulphate, 
and zinc chloride). 

 Preservatives diffuse into wood from the treating solution.  

 Deep penetration of the preservative is achieved without the need for expensive 
equipment, but this method requires a long storage time and the treated wood is 
susceptible to leaching. 

 The double-diffusion process can overcome this leaching issue. In this process, wood is 
sequentially soaked in two aqueous chemical solutions. Leaching is ultimately prevented 
by a precipitate that forms upon the reaction with the wood matrix that is highly resistant 
to leaching and toxic to fungi and termites (Pavia 2006). 
 

 

 Although many wood preservatives have been developed, only a few of them have 

been implemented in current commercial treatments. This is because most of the 

established wood treatment plants use water-based preservative treatments for practical 

reasons. Hydrophobic biocides, for example, are less preferable to industries due to their 

relatively high cost, which is caused by the use of an emulsifier or organic solvent. In 

contrast, hydrophilic biocide also faces the excessive leaching problem. For these reasons, 

researchers are currently proposing the utilization of nanotechnology to overcome the 

shortcomings in the present methods of wood preservation. 
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NANOTECHNOLOGY IN WOOD PRESERVATION 
 

 Nanotechnology has become a popular topic recently. Figure 4 shows the number 

of publications based on the Scopus search engine, where the keywords used were nano 

and wood. Based on the graph, it can be observed that there has been an increasing trend 

in the number of publications on wood-related nanotechnology. The number of 

publications increased more than 15-fold from year 2007 to 2017 (from 6 to 93). This 

shows that this field is getting more attention from researchers and industry. 

 

 
Fig 4. Number of wood-related nanotechnology publications based on Scopus from the year 2007 
to 2017 

  

 Nanotechnology shows great potential to be introduced into wood preservation to 

overcome problems associated with the existing methods of wood preservation. 

Nanomaterials have several advantages, such as the capacity to treat a large effective 

surface area, high dispersion stability, and presence of a reservoir effect that is capable of 

providing long-term protection (Clausen 2012; Mattos et al. 2017). Currently, the 

application of nanotechnology in wood treatment is achieved via three approaches, namely 

the direct impregnation of nanosized biocide into wood, the controlled release of biocides 

embedded in a nanocarrier, and wood modification. Such applications can be achieved by 

using a variety of nanomaterials such as nanosized metal, polymeric nanocarriers, 

nanotubules, and other nanomaterials. 

 

Nanosized Metals 
 In recent years, micronized copper systems have seen commercial success in the 

USA since launching commercially in 2006, with more than 75% of the residential lumber 

produced being treated with these systems (Civardi et al. 2016). Copper compounds, such 

as copper(II) carbonate, can be micronized through mechanical grinding using a 

commercial grinding mill (Zhang and Leach 2013). Suitable nanosized material can also 

be obtained through chemical means with a co-biocide to enhance its efficacy. Nanosized 

metal can be synthesized using different biological and chemical approaches as shown in 

Table 3 (Reddy et al. 2011; Golinska et al. 2014; Habibi and Karimi 2014; Malviya and 

Chattopadhyay 2015; Thandavan et al. 2015; Wang et al. 2015; Geetha Devi and Sakthi 

Velu 2016; Hong et al. 2016; Jeevanandam et al. 2016; Poletti Papi et al. 2017; 
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Rajeshkumar and Bharath 2017; Gupta and Srivastava 2018). As is well known, the 

synthesis methods of metal nanoparticles play a very significant role in determining the 

physicochemical characteristics of nanosized metals (e.g., size, dispersity, morphology, 

surface energy, and crystal structure, etc.) (Stankic et al. 2016). 

 

Table 3. Example of Preparation Methods for Metal Nanoparticles 

Preparation Methods of Metal Nanoparticles 

Solution-based synthesis Vapor-based synthesis Biological synthesis 

Sonochemical Chemical vapor deposition Fungi 
Co-precipitation Combustion  Plants 

Solvothermal Template/surface-mediated  
Sol-gel   

Microwave-assisted solvothermal   
Microemulsion   
Laser ablation    

 

 There are currently two commercially available nano-micronized copper systems, 

namely micronized copper quaternary (MCQ), where dimethyldidecylammonium 

carbonate/bicarbonate is used as a co-biocide, and micronized copper azole (MCA), where 

tebuconazole or a combination of tebuconazole-propiconazole is used as a co-biocide 

(Freeman and Mclntyre 2008; Civardi et al. 2015). While traditional alkaline copper 

preservatives are solubilized in aqueous ethanolamine solution, nano-micronized copper 

compounds are dispersed in water and then the suspension is used to treat the wood with 

conventional pressure treatment (Kartal et al. 2014; Xue et al. 2014). Furthermore, the 

fixation mechanisms of conventional copper systems rely on chemical reactions, such as 

chelate formation and ion exchange, to form insoluble complexes in treated wood (Temiz 

et al. 2014). However, based on the observation of Matsunaga et al. (2009), the fixation of 

nano-micronized copper occurs primarily through deposition in pit chambers and on 

tertiary cell wall layers. 

 Differences in size may influence the extent to which the nano-micronized copper 

particles can penetrate the microstructure of wood and enhance biocidal action on fungus 

and termites (Jin et al. 2008). Civardi et al. (2015) described the fungicidal mechanisms of 

copper-based nanoparticles in their study. In some cases, Cu-tolerant wood-destroying 

fungi may not be able to recognize copper nanoparticles. Once nanoparticles enter fungal 

cell walls through endocytosis or diffusion through the membrane, they form a reactive 

oxygen species, or have disruptive effects on mitochondria, proteins, and deoxyribonucleic 

acid (DNA) within the fungus cell. The nanoparticles may also undergo dissolution, and 

thereby interfere with homeostatic processes within the fungal cell.  

 Moreover, in a study done by Mclntyre and Freeman (2008), nano-micronized 

copper quaternary formulation significantly outperformed (achieving a better rating) amine 

copper quaternary formulations in a five-year field stake test in Finland. This outcome was 

further verified by a study by Akhtari and Nicholas (2013). The authors found that nano-

micronized copper formulation can greatly reduce the weight loss of wood due to termite 

attack from 46.8% to 0.2%, which is more effective than amine copper formulations 

(1.0%). Wood treated with micronized copper is less corrosive to metal fasteners and is 

lighter in color (Kofoed and Ruddick 2010). Additionally, nano-micronized copper 

systems have proven qualities, such as reduced leaching and reduced selective adsorption 

of active ingredient, and work effectively in field tests (Freeman and Mclntyre 2013).  
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 Other than copper-based compounds, nano-metals, such as zinc, zinc borate, zinc 

oxide, titanium dioxide, and silver, have also been utilized on wood (Bak et al. 2012; 

Mantanis et al. 2014; Taghiyari et al. 2014; Lykidis et al. 2015; Harandi et al. 2016; Nair 

et al. 2017). Both the mechanical properties and biological efficacy of wood treated with 

these nanometals have been well-studied and reported in the literature (Akhtari et al. 2012; 

Akhtari and Arefkhani 2013; Lykidis et al. 2013). For example, Akhtari and Ganjipour 

(2013) investigated and compared the effects of nanosilver, nanocopper, and nanozinc 

oxide on the resistance of Paulownia (Paulownia fortunei) wood against white rot fungus 

(Coriolus versicolor). Wood specimens were impregnated with a 400-ppm aqueous 

suspension of nanoparticles with particle sizes ranging from 10 to 80 nm. A chemical 

retention of 0.14 kg/m3 was achieved for all formulations. The results showed that 

nanosilver, nanocopper, and nanozinc oxide significantly increased the decay resistance of 

Paulownia against C. versicolor by reducing the weight loss of wood from 28% to 2%.  

 In addition, the effects of nanosilver on white-rot (Trametes versicolor) and brown-

rot (Lenzitesacuta) fungi of several tropical wood species were studied by Moya et al. 

(2017). The treated wood showed high resistance to T. versicolor and moderate resistance 

to L. acuta. These studies demonstrated that the nanometals can provide sufficient 

biological resistance to the treated woods. Other than providing biological efficacy to 

treated wood, a study conducted by Lotfizadeh et al. (2012) revealed a higher drying rate 

both above and below the fibre saturation point in nanometal impregnated boards. It may 

then be indicated that nanometal may have the potential to improve drying conditions and 

decrease drying stresses in convective kilns. 

 

Polymeric Nanocarriers 
 Polymeric nanocarriers also present the industry with interesting properties in 

improving the impregnation of wood preservatives. For instance, a polymeric nanocarrier 

loaded with a hydrophobic active ingredient has excellent colloid dispersity in water (Li 

and Huh 2014). Furthermore, polymeric nanocarriers are also able to protect the 

hydrophilic active ingredient from excessive leaching (Peteu et al. 2010).  

 

 
 

Fig. 5. Types of polymeric nanocarriers for active ingredient delivery. (a) Polymeric nanoparticles: 
where active ingredients are conjugated to or are encapsulated in polymers. (b) Polymeric 
micelles: amphiphilic block copolymers that form to nanosized core/shell structure in aqueous 
solutions. The hydrophobic core functions as a reservoir for hydrophobic drugs, whereas the 
hydrophilic shell region stabilizes the hydrophobic core and renders the polymer water-soluble. 
(c) Dendrimers: synthetic polymeric macromolecules of nanometer dimensions, which are 
composed of hyperbranched polymers that emerge radially from the central core. (d) 
Polymersome: composed of hydrophilic–hydrophobic block copolymers, arranged in a lipophilic 
bilayer vesicular system, and with a hydrophilic inner core 
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 Figure 5 shows several types of polymeric nanocarrier that can be used for active 

ingredient delivery (Mora-Huertas et al. 2010; Lee and Feijen 2012; Moreno-Vega et al. 

2012; Noriega-Luna et al. 2014; Zhang et al. 2014). Although polymeric nanocarriers have 

been widely applied in the pharmaceutical sector in controlled drug delivery systems, they 

have received far less attention from researchers in the wood preservation sector as 

compared to the attention given to nanometal preservatives. 

 Encapsulation of the active ingredient into polymeric nanocarriers can be 

conducted through several techniques such as nanoprecipitation (Gu et al. 2015; Sosnik 

and Raskin 2015; Martínez Rivas et al. 2017), emulsion-diffusion (Lee et al. 2013), double 

emulsification (Nabi-Meibodi et al. 2013), emulsion-coacervation (Chirio et al. 2011), 

layer-by-layer method (Chai et al. 2017), and other techniques (Nagavarma et al. 2012; 

Kulhari et al. 2015; Khoee et al. 2018). 

Liu et al. (2001) successfully incorporated biocides (tebuconazole and 

chlorothalonil) into polyvinylpyridine (PVP) and polyvinylpyridine-co-styrene (PVP-co-

St) nanoparticles using a simple and facile impregnation method, where a median particle 

diameter between 100 and 250 nm was obtained (Liu et al. 2001, 2002a). In their studies, 

sapwood of southern yellow pine (SYP) and birch were treated with active ingredient-

containing nanoparticles via impregnating in an aqueous suspension of nanoparticles 

followed by conventional pressure treatments. The treated wood was exposed to brown rot 

(Gloeophyllum trabeum) and white rot wood decay fungus (Trametes versicolor) for 55 

days. The weight losses of wood after 55 days are given in Table 4.  

 

Table 4. Fungi Resistance of SYP and Birch Treated with Different Formulations 
of Nanoparticles 

The standard deviations are in parentheses. 
*Standard deviation is not provided in original papers 

 

Table 4 shows the fungi resistance of SYP and birch treated with different 

formulations of nanoparticles based on the study of Liu et al. (2001). The most interesting 

observation was that the active ingredient-containing nanoparticles were found to provide 

good resistance against fungal attack on treated wood, even at very low levels of active 

ingredient incorporation (0.1 to approximately 0.8 kg A.I/m3). This observation indicated 

Fungi Wood Biocide Matrix 

Weight loss (%) at Different Active 
Ingredient Suspension Loadings 

(kg/m3) 

0.0 0.1 0.4 0.8 

T. 
versicolor 

Birch 

Tebuconazole 

PVP 43.0 (0) 18.6 (0) 13.0 (0) 7.0 (1) 

PVP-co-10% St 36.0 (0) 23.0 (0) 12.8 (0) 10.4 (0) 

PVP-co-30% St 35.0 (0) 7.0 (0) 6.1 (0) 7.0 (0) 

PVP/HBP 37.0 (0) 28.0 (8) 7.0 (3) 7.0 (4) 

Chlorothalonil 

PVP 43.0 (0) 20.1 (0) 14.6 (0) 12.4 (1) 

PVP-co-10% St 35.0 (0) 21.7 (0) 14.0 (0) 10.5 (1) 

PVP-co-30% St 35.0 (0) 15.4 (0) 11.5 (0) 10.6 (0) 

PVP/HBP 37.0 (0) 21.0 (4) 14.0 (7) 10.0 (9) 

T. 
versicolor 

SYP 
Tebuconazole PVP 17.0* 7.0* 3.7* 2.1* 

Chlorothalonil PVP 18.5* 15.6* 12.7* 11.1* 

G. 
trabeum 

SYP 

Tebuconazole 
PVP 17.0 (3) 7.0 (1) 4.0 (2) 2.0 (1) 

PVP/HBP 10.0 (3) 6.1 (1) 3.1 (1) 2.8 (1) 

Chlorothalonil 
PVP 17.0 (3) 16.0 (0) 13.0 (0) 11.0 (0) 

PVP/HBP 10.0 (0) 9.0 (4) 7.0 (1) 5.0 (2) 
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that an active ingredient introduced into wood using the nanoparticles had unexpectedly 

high activity. Such unique properties have the potential to reduce cost and minimize the 

side effects of active ingredients on non-target organisms. However, the cause of this 

observation is still unknown. 

 Additionally, the same authors, Liu et al. (2001) also studied and compared the 

efficacy of different biocide-containing nanoparticles against wood decay fungi as shown 

in Table 4, where the nanomaterial matrices were made up of polyvinyl chloride (PVC), 

PVP, PVP-co-St, and blends of PVP/hyperbranched polyesters (HBPs) (Liu et al. 2002a). 

Different biocides, such as 4,5-dichloro-2-n-octyl-4-isothiazolone (RH-287) and 

chlorpyrifos, were included in these robustness studies. The method was generally robust 

where nanoparticles could be prepared from several different polymers, copolymers, and 

polymer blends. However, it was found that decreasing the hydrophilicity of polymers 

decreased the active ingredient release rate, and concurrently increased the size of the 

nanoparticles. In contrast, the delivery efficiency of nanoparticles on wood decreased with 

increasing suspension loading and matrix hydrophobicity. The delivery efficiency of birch 

was also lower than that of SYP, because birch has smaller pit pores than SYP. Large-sized 

nanoparticles blocked the pit pores of wood and thus, prevented the further introduction of 

nanoparticles into the wood. Undelivered nanoparticles were found to have undergone 

aggregation. Greater aggregation occurred in the more hydrophobic formulations than in 

the hydrophilic formulations.  

 In another work by Liu et al. (2002b), a surfactant-free method was used to 

synthesize active ingredient-containing polymeric nanoparticles. In this work, the authors 

used a self-stabilization method (eliminated the surfactant component) by preparing a 

nanoparticle matrix via a free radical initiator. In this method, the initiator fragments serve 

to ionically stabilize the nanoparticles. They also incorporated additional polar or 

potentially ionic moieties, such as acrylic acid or methacrylic acid via a copolymerization 

method to further stabilize the nanoparticles. The team found that surfactant-free 

formulations afforded nanoparticles with significantly smaller median particle diameters 

and more stable aqueous suspensions (6 months) than their surfactant-stabilized 

counterparts (few weeks). Although surfactant-free suspensions had significantly broader 

particle size distributions, the surfactant-free nanoparticles were still delivered more 

efficiently into the wood than the surfactant-stabilized formulations. The surfactant-free 

nanoparticles appeared to afford more resistance to decay than the surfactant-stabilized 

formulations. The SYP lost < 5% of its mass after 55 days of exposure to G. trabeum when 

the active ingredient content in the wood was only 0.4 kg/m3, while an active ingredient 

content of 0.8 kg/m3 in birch wood was sufficient to bring its mass loss to < 5% after 55 

days of exposure to T. versicolor. This observation was ascribed to faster active ingredient 

release from the surfactant-free nanoparticles than those stabilized with the surfactant, 

which would allow the active ingredient to reach threshold levels more rapidly.  

 

Other potential nanocarriers 

 Nanotubules can be a promising material for use as a carrier for biocides, due to 

their hollow structure and high contact surface area. However, it appears that no research 

has been done on the combination of other nanocarriers with biocide in wood preservation. 

 Carbon nanotubes (CNTs) are one of the best known nanotubules. The CNTs are 

the third allotropic form of carbon-fullerenes that are rolled into cylindrical tubes 

(Kushwaha et al. 2013). They offer several advantages that include high carrying capacity, 

high biocompatibility, and high surface area to volume ratio (Rastogi et al. 2014; 
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Tavakolifard et al. 2015). Currently, the chemical and physical properties of CNTs, such 

as water dispensability, cytotoxicity, and active ingredient loading, can be improved 

through functionalization (Heister et al. 2012). Surface functionalization of CNTs may be 

covalent or non-covalent. The backbone or sidewall of CNTs can be covalently modified 

with hydrophilic functional groups (Cheng et al. 2011; Azqhandi et al. 2017). Meanwhile, 

non-covalent functionalization exploits favorable interactions between the hydrophobic 

domain of an amphiphilic molecule and the CNTs surface. Shao et al. (2015) worked on a 

novel single-walled carbon nanotube-based delivery system for an antitumor agent, 

Paclitaxel. This nanocarrier exhibited excellent intracellular drug delivery properties in 

cancer cells. 

 Another potential carrier is halloysite. Halloysite is a naturally occurring 

aluminosilicate clay nanotubular material. Aside from its low cost, it is routinely utilized 

in the sustained release of chemical agents in pharmaceutical areas due to its non-toxicity. 

(Rabisková 2012; Lvov et al. 2016). The release rate of active agents can be controlled by 

adjusting inner lumen of halloysite and clogging the tube ends with end-stoppers such as 

calcium phosphate (Cavallaro et al. 2017). Scarfato et al. (2016) developed a halloysite 

nanotube-based carrier with a commercial biocide, namely Biotin T, for the protection of 

construction materials. The mortar containing the biocide-loaded nanotubes showed 

reduced water capillary absorption and prolonged resistance to microbiological growth 

after being exposed to natural contamination in outdoor conditions for two years. The 

authors attributed these results to the treatment’s prevention of leaching and environmental 

degradation, a phenomenon resulting from the entrapment of the active agents within the 

halloysite nanotubes.  

Furthermore, there are many other nanocarriers that can be used, such as 

montmorillonite clay (Wanyika 2014), calcium carbonate (Qian et al. 2011), titanium 

dioxide (Wang et al. 2016a), titanium alloy (Doadrio et al. 2015), and silica nanoparticles 

(Khamsehashari et al. 2018). All these nanocarriers exhibited superior performance in drug 

controlled-release formulation, albeit in the pharmaceutical sector. It is obvious that the 

application of nanotechnology in wood preservative requires more attention from 

researchers and industry, if the development of a safer, more efficient, and low-cost biocide 

delivery system is to become a reality. 

 

Wood Modification (Coating Treatments) 
 Employing nanotechnology in wood modification, especially coating treatment, 

also can result in next-generation products having hyper-performance and superior service 

ability. The coating treatment can be done through physical or chemical approach. In 

physical approach, pre-synthesized nanomaterials can be used directly or added into 

existing wood coating. The nano-based coating is then applied on wood surface by spraying 

coating, brushing or dipping (Rassam et al. 2012; Havrlik and Ryparová 2015). The applied 

nanomaterials also can be in-situ synthesized on wood surface by chemical reactions such 

as hydrothermal method and sol-gel deposition methods (Wang and Piao 2011; Liu et al. 

2015). The chemical approach offers an advantage by addressing distribution and 

interaction issues compared to physical approach (Mishra et al. 2017).   

 One of the popular coating materials in wood preservations is the development of 

hydrophobic surfaces on wood. The nanomaterials can be act as water repellents (control 

the rate of water sorption) and/or as dimensional stabilizers (control swelling from moisture 

sorption). For example, Soltani et al. (2013) treated beech wood (Fagus orientalis) with 

zinc oxide nanoparticles. Their study showed there was a reduction in water absorption and 
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volumetric swelling which suggested that nano-ZnO provided substantial water resistance 

and dimensional stability.  

 Moreover, superhydrophobic surface with a water contact angle higher than 150° 

have recently attracted attention. Nanomaterials such as silica-polymer nanocomposites 

(Chang et al. 2015), tungsten trioxide (Sun and Song 2018), titanium dioxide nanoparticles 

(Pánek et al. 2017) and zinc oxide nanorods (Wang et al. 2011) were used to achieve this 

superior ability. As water droplets cannot adhere to such superhydrophobic surface but 

easily roll off, it can take away pollutants and thus, exhibits self-cleaning effects. For 

example, a transparent self-cleaning surface for cellulose-based materials was fabricated 

by Wei et al. (2018). In their study, silicon dioxide nanoparticles were first modified with 

poly-(dimethylsiloxane) and (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The 

modified SiO2 nanoparticles were then well-distributed on the microscale rough surface of 

the cellulose-based materials by spray-coating to form a micro/nano two-tier structure. 

Consequently, the spray-coated superhydrophobic surface can resist water, dust, and 

thoroughly prevent fungal attachment to treated wood (Yao et al. 2017).   

 Furthermore, wood polymers in surface of natural wood will undergo dissociation 

and cause rapid color changes when exposed to solar radiation. In a study conducted by 

Salla and co-authors (2012), maleic anhydride graft polypropylene (MAPP) based coating 

was blended with 7.5% of zinc oxide nanoparticles. Rubberwood (Hevea brasiliensis) 

specimens were treated with the coating and then exposed to UV light to assess its 

effectiveness for protection of wood against UV degradation. MAPP contains acid 

anhydrides groups that can associated with wood constituents by reacting with hydroxyl 

groups of wood. In addition, polypropylene content in MAPP may make wood surfaces 

hydrophobic. The photostability test showed dispersion of ZnO nanoparticles in MAPP 

restricted the color changes and photodegradation of wood polymers. This UV-absorbing 

material is essential for outdoor applications to increase their effective operation life or 

durability. 

 Additionally, nano-based coatings with strong bactericidal properties such as 

titanium dioxide nanoparticles (Zuccheri et al. 2013), polymers (Du et al. 2001; Ong et al. 

2006), and zinc oxide nanoparticles (Nosáľ and Reinprecht 2017) also can provide decay 

resistance to wood products. There are also other nano-based coatings that can improve 

scratch and abrasion resistance (Kanokwijitsilp et al. 2013), and fire retardancy (Soltani et 

al. 2016) of wood.  

 Although these nano-based coatings provide exterior protection to wood, 

maintenance frequency and their appearance need to be take into consideration. The 

coating also needs to be flexible and has strong adhesion with wood as exterior wood 

shrinks and swells with moisture changes. Both short- and long-term effects of nano-based 

coatings is important for the safety of consumers. 

 

Risk Assessment of Nanomaterials 
The application of nanotechnology in wood preservation has raised concerns over 

the potential for human exposure to nanoparticles as well as their release into the 

environment (Seaton et al. 2010; Schrand et al. 2010). Recently, ecotoxicological studies 

for nanomaterials especially metallic nanoparticles such as silver (Sambale et al. 2015), 

zinc oxide (Ng et al. 2017), titanium dioxide (Iavicoli et al. 2012), and copper (Civardi et 

al. 2015) have been published. These literatures are essential for developing standardized 

risk assessment methods for wood preservation industries. The nanomaterials are likely to 

accumulate in soils and sediments and reach a critical concentration over time when nano-
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treated wood products are disposed into the environment (Auffan et al. 2014; Wang and 

Nowack 2018).  

Furthermore, effect of these nanomaterials on human health will still remain as a 

critical question with the commercialization of nanotechnology. As such, these 

nanoparticles may be inhaled or ingested by consumers when they are in contact with the 

nano-treated wood surfaces. For instance, copper-based nanoparticles which are the most 

common nano-based formulation used in wood preservation market today are hazardous 

when being inhaled and will mainly exert their toxicity on the respiratory tract of humans 

(Hristozov et al. 2018). In addition, these nanoparticles can interact with the cell membrane 

and eventually penetrate it (Navya and Daima 2016; Contini et al. 2018). Besides, 

nanoparticles can also be transported via lymphatic and circulatory systems to different 

tissues and organs, where accumulation can result in severe injuries and damage to living 

cells (Blanco et al. 2015). For example, zinc oxide nanoparticles can interfere with the 

antioxidant defense mechanism of cells by inducing oxidative stress that lead to blood–

brain barrier dysfunction (Feng et al. 2015; Saliani et al. 2016). 

Even though a number of reports have been published lately, the actual exposure 

level of nanoparticles is difficult to be determined, leading to inconclusive findings. This 

problem has become more apparent along with other challenges such as difficulties in data 

generation as well as the quantitative determination of risks (Lee et al. 2010). Moreover, 

nano-based formulation is not adherently more dangerous than conventional formulation. 

In a study conducted by Platten III and co-workers (2016), the dermal release of copper 

and copper particles was examined from the surfaces of lumber pressure-treated with 

micronized copper. The authors found that the micronized copper azole and copper azole 

formulations released similar quantities of total copper, resulting in similar exposure levels. 

Therefore, more studies are required to provide regulators a scientific foundation for 

environmental and human health policy regarding the application of nanoparticles in wood 

products in the future. 

 

 

CONCLUSIONS  
 

Wood preservation can be achieved by treating wood with various wood 

preservatives or by forcing it to undergo thermal or chemical modification. Generally, 

wood preservatives can provide biological resistance, while wood modification can 

enhance physical properties of wood by altering the chemical structure of the lignocellulose 

component. Suitable wood preservation methods by necessity are adopted based on the 

end-product applications. 

 Nanotechnology has been observed to have a great potential for wood preservation 

applications. The use of nanosized metal preservatives allow for deeper penetration and a 

more homogenous uptake of particles in the wood. In addition, the incorporation of 

biocides in nanocarriers allows biocides to be safely stored within the interior of 

nanoparticles, where loss due to factors, such as leaching and the random degradation of 

biocides, can be avoided. Therefore, the development of more effective, safe to use, and 

environmentally friendly preservative formulations are encouraged to safeguard the 

environment in the long run. Moreover, nano-based wood coating can provide exterior 

protection such as UV resistance and hydrophobicity for wood. In short, it can be 

concluded that nanotechnology is likely to have a major impact on the wood protection 

industry, through the future design of nanomaterials with the necessary unique properties 
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to enhance the performance of wood preservatives, prolonging the wood product service 

life. However, consideration towards the environmental impact and potential health risk of 

the nanotechnology is essential and crucial to ensure this emerging market is sustainable. 
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