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To enhance effective wood utilization, knowledge of the anatomical features that 
impact its service behavior is indispensable. The anatomical features of 
branchwood and stemwood of Betula costata Trautv. from natural secondary 
forests in central (Muzhaling mountain) and northeast (Maoershan mountain) 
China were studied to provide adequate information to enhance their efficient 
utilization, especially branchwood, whose use could widen the raw material base 
of the timber industry. Microtomed sections were employed to determine the tissue 
dimensions and proportions. Analyses of variance were used to test the anatomical 
feature differences between the two different sites, between the stemwood and 
branchwood, and between the heartwood and sapwood. The results showed that 
B. costata wood is diffuse-porous with more but narrower vessels located in the 
branch than in the stem. The branchwood also had a significantly higher fiber 
proportion than the stemwood. The sapwood exhibited significantly longer fibers 
than the heartwood. B. costata from Maoershan had significantly longer fibers, 
lower fiber proportions, larger fiber lumen diameter, and higher vessel density than 
that from Muzhaling. The results suggested that B. costata branchwood from 
Maoershan is suitable for papermaking and glued plates, while stemwood can be 
used for light construction purposes.  
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INTRODUCTION  

 

The global forest industry produces a large amount of branchwood, which 

represents an important secondary wood resource (Gurau et al. 2009). However, most 

branches are left as fuel or even waste when commercial harvesting operations concentrate 

their interest on large and straight stems. Branchwood utilization in wood industries is 

limited by its small size and unknown wood properties. Special focus has recently been 

placed on branchwood to meet the increasing industrial demands and environmental 

pressures because of the decline in stemwood resources (Leitch and Miller 2017; Dadzie 

et al. 2018). Branchwood can be engineered into a number of products, such as lumber 

(Okai and Boateng 2007), kraft pulp (Boyle and Ek 1972), and scrimber (Yu et al. 2015).  

The prerequisite for efficient utilization of branchwood is to have a full 

understanding of its structure and properties, especially its anatomical features that are 

often responsible for the physical and mechanical properties (Adeniyi et al. 2013; Zhao et 

al. 2018). However, the arrangement, distribution, and size of wood elements are not the 

same for branches and stems. Many researchers believe that branches have smaller wood 

elements than stems (Zhao 2015; Longui et al. 2017), which might be one of the major 
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limits of branchwood application. However, the different anatomical features exhibited by 

wood have made it useful in different fields of application. Long fibers are extremely 

beneficial for improving the fracture toughness of paper (Larsson et al. 2018), while short 

fibers result in good mechanical properties in wood plastic composites, as they are easier 

to disperse in high-density polyethylene matrices (Wan Mohamed et al. 2018). Wood types 

with thin-walled fibers and large pores have a low density and strength and are therefore 

preferred for light construction purposes, whereas wood specimens with thick-walled 

fibers have a high density and strength, which are useful in heavy construction work 

(Adeniyi et al. 2013). Wood types with large rays offer a fine texture when quarter-sawn, 

but can be split easily when nailed at the ends. Wood with multiseriate rays has better 

transverse penetration. Furthermore, the high proportion of ray tissue can decrease the 

radial shrinkage (Xue et al. 2018) and increase the radial strength of the wood (Burgert 

and Eckstein 2001). In some ways, the processing performance of branchwood might be 

even better than that of stemwood. For example, Entandrophragma cylindricum is more 

durable than its stemwood counterpart (Dadzie et al. 2016).  

Betula costata Trautv., which originated in eastern Siberia, has become intensively 

distributed throughout China and the coastal areas of Russia, and is also found in North 

Korea, Mongolia, and Japan (Kochergina et al. 1987; Chen et al. 2000). B. costata 

stemwood is hard and uniform in structure, which is ideal for drying and processing. This 

suggests that it has potential to be used as a timber source (Yang et al. 2013). B. costata 

wood is also widely used for the manufacture of pulp, paper, and other fiber-based 

products. Regrettably, this species is rarely cultivated, and most B. costata stemwood is 

from natural virgin forests or secondary forests (Ni 1985). B. costata forest is one of the 

typical community types in the secondary succession of broad-leaved Korean pine forest 

in China, especially in Northeast China, where it comprises about 20% of the forest 

composition (Chen et al. 2000). With the increasing demand for B. costata wood, the 

dwindling use of the trees for timber resources has become a problem that can hardly be 

ignored. 25 to 32 % of the total wood volume belongs to branches, which are usually 

thrown away (Dadzie et al. 2016). Therefore, exploring the utilization of B. costata 

branchwood appears to be one immediate alternative and resource supplement.  

Considering the above reasons, the aims of this study were to determine the wood 

anatomical features of B. costata, compare the anatomical features from two different sites 

in China, and investigate variations in the anatomical features of branchwood and 

stemwood, and heartwood and sapwood.  

 

 

EXPERIMENTAL 

 

Materials  

Six mature trees were used in this study. Three of each were sampled from two 

different locations, Muzhaling Mountain in Henan Province, central China (111°24’–

°32’E, 33°35’–40’N, 1750-melevation) and the Maoershan Forest Ecosystem Research 

Station in Heilongjiang Province, northeastern China (127°30’–34’E, 45°20’–25’N, 

300melevation), which are both within the natural geographical distribution of B. costata 

(Chen et al. 2000). The Muzhaling site has an average slope of 10° to15°. The soil is a 

brown, neutral, sandy clay. The climate is a continental monsoon type with a mean annual 

precipitation of 700 mm, evaporation of 1600 mm, and air temperature of 14 °C, and 236-

d frost-free period (Chen et al. 2016). The Maoershan site has an average slope of 20° to 
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25°. The soil is dark brown with abundant organic matter and a high fertility. The climate 

is a continental monsoon type with a mean annual precipitation of 700 mm, evaporation 

of 884 mm, air temperature of 2.8 °C, and 130-d frost-free period (Zhao 2015).   

These sample trees ranged from 17 m to 24 m in height and 18.4 cm to 23.1 cm in 

diameter at breast height (1.3 m). From the middle canopy each sample tree, one branch 

was chosen to conform to the specifications as a standard branch, which was based on the 

average length and diameter (20 cm above the basal collar) of all branches. Branches often 

bend at the branch collar, where reaction wood is prone to occur (Groover 2016; Kidombo 

and Dean 2018). Thus, the diameter of the branch was measured about 20 cm above the 

basal collar. The standard branch diameters ranged from 8 cm to 12 cm. The selected trees 

and branches were somewhat smaller than average, but a considerable amount of mature 

wood was included in them. Five-centimeter-thick disc samples were taken from the 

branch and the stem at breast height. The disc from the branch was sampled about 20 cm 

above the basal collar in order to avoid any abnormality. It is easy to separate B. costata 

heartwood from sapwood with the naked eye because of color difference (Luo et al. 2012). 

A 1.5-cm wide strip (from pith to bark) was sawed from each disc. The strip was chosen 

from the upper part of the branch transverse section. The strip was then separated equally 

into two small strips, which were then used in wood sectioning and the macerating process. 

 

Methods  

Anatomical features measurement  

The small strips used for wood sectioning were softened by soaking them in a 

solution of 5% ethylenediamine. A15-µm-thick transverse section, tangential section, and 

radial section were made from each small strip using a Leica slicing machine (Leica 

RM2235, Leica microsystem AG, Wetzlar, Germany), stained with 1% safranin in water, 

and then placed on microscopic slides for measurement (Zhao 2015).  

The small strips for the maceration process were divided into small chips from 

heartwood and sapwood respectively, using a razor blade. Each chip was placed in an 

individual test tube and macerated with a 1:1 10% chromic acid:10% nitric acid solution 

(Jeffrey 1917). The test tubes were then placed in a water bath at 60 °C for several hours 

to hasten the maceration process. The macerated material was rinsed and placed on 

microscopic slides for measurement. Digital images of the microscopic slides were taken 

using a digital microscope (Mshot-MD50, Micro-shot Technology Limited, Guangzhou, 

China). Proportions of the wood elements (fiber, vessel, and ray), the tangential and radial 

diameters of the vessel in the transverse section, and the fiber size were measured with an 

image computer analysis system (TDY-5.2, Beijing Tian Di Yu Technology Co. Ltd., 

Beijing, China), as was previously described by Yu et al. (2009). At least 60 measurements 

were performed for each sample per parameter.  

 

Statistical analysis  

Differences between the two sites (Muzhaling and Maoershan), between the 

branchwood and stemwood, and between the heartwood and sapwood were evaluated by 

analyses of variance (ANOVA), followed by separation of the means by the least 

significant difference. An ANOVA test and multiple comparisons were performed using 

SPSS Statistics software (Version 24.0, International Business Machines Corporation, 

Armonk, New York, United States) with the significance assessed at a p less than 0.05.  
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RESULTS AND DISCUSSION  
 

Wood Anatomy of B. costata 
The analysis of the anatomical features of the B. costata wood showed that the 

vessels were either arranged as radial multiples or were solitary (Fig. 1). As reported by 

previous studies (Guo et al. 1996), solitary vessels were more frequent than radial 

multiples in the stemwood (Fig. 1a). However, radial multiples were more frequent than 

solitary vessels in the branchwood (Fig. 1b). The vessels had strictly alternate intervessel 

pitting and scalariform perforation plates in all of the stemwood and branchwood samples 

(Fig. 1c). No tyloses were found in the vessels, which suggested that B. costata wood was 

not very resistant to preservative treatments (DeMicco et al. 2016). The longitudinal 

parenchyma cells were not abundant in the stemwood, and they were even more scarce in 

the branchwood. The types of rays were multiseriate (2 to 4 seriates) with an accretion of 

9 cells to 40 cells and uniseriate with an accretion of 4 cells to 15 cells (Fig. 1d). The gums 

were often contained in the ray cells. The rays were mostly homogeneous, with 

procumbent ray parenchyma cells and numerous cross-field pitting.  

 

 
 

Fig. 1. Xylem sections displaying anatomical features in the stem and branch of B. costata 

Trautv. a:transverse section of the stemwood; b: transverse section of the branchwood; c: 

intervessel pitting and scalariform perforation plates in tangential section; d: types of rays in 

tangential section; F: fibre; V: vessel element; R: ray; M: multiple vessels; S: solitary vessel; P: 

intervessel pitting; Vessel elements come in series scalariform perforation plates (marked by 

arrows); scale bar is 100 μm. 
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Tissue Proportions  

The results of the present study confirmed that the differences in the wood element 

proportions between the two different sites were not statistically significant, except for the 

fiber proportion. Lengthening of the frost-free period increases the growing season 

available for growth and the amount of xylem production (Sergio et al. 2014). The frost-

free period in Muzhaling is longer than that in Maoershan (see Materials section), which 

may be one of reasons that the fiber proportion of B.costata from Muzaling significantly 

higher than that of Maoershan. The differences between the stemwood and branchwood 

were significant at the 5% level, except for the ray proportion (Table 1). 

 

Table 1. ANOVA for the Anatomical Features in the Stemwood and Branchwood 

from B. costata 

Anatomical Features  Sites  Stemwood and 

Branchwood 
Sapwood and 

Heartwood 
Fiber Proportion (%)  4.83*  5.24*  0.47  

Vessel Proportion (%)  0.01  7.30*  3.61  
Ray Proportion (%)  2.80  0.01  0.46  
Fiber Length (μm)  11.64**  2.31  17.25**  
Fiber Width (µm)  1.84  0.14  1.89  

Fiber lumen Diameter (µm)  7.09**  0.37  1.10  
Wall/Lumen  6.38*  1.89  0.07  

Length/Width  10.16**  2.22  25.32**  
Vessel Density (mm–2)  9.28*  8.38*  0.35  

Vessel Tangential Diameter (µm)  1.36  83.76**  0.17  
Vessel Radial Diameter (µm)  2.91  76.09**  0.06  

*Significant at p<0.05, **Significant at p<0.01. 

 

The fiber proportion in the B. costata wood was less than 40%, except in the 

sapwood of branch from the Muzhaling site (Table 2). These results indicated higher fiber 

yields for pulp from B. costata branchwood from Muzhaling. In general, if the fiber 

proportion of wood is higher, then the wood can be used as a raw material for papermaking 

(Stokke and Manwiller 1994). Thus, it was determined that it is one of advantageous factor 

for B.costata branchwood from Muzhaling to be used as a high-quality raw material for 

papermaking.  

 

Table 2. Multiple Comparison of the Tissue Proportions in the Stemwood and  

Branchwood from B. Costata (%)  
 

Site  Position  
Fiber 

Proportion  
Vessel 

Proportion  
Ray Proportion  

Muzhaling  Heartwood in branch  35.5±0.8ab 23.2±4.7ab 41.6±5.5a 
Sapwood in branch  43.7±5.9a 19.0±2.9ab 37.3±3.0a 
Heartwood in stem  27.1±10.2b 32.2±8.1a 40.8±18.2a 

Sapwood in stem  27.1±0.0b 21.2±7.8ab 51.8±7.8a 
Maoershan  Heartwood in branch  24.7±3.9b 19.8±7.4ab 55.5±11.2a 

Sapwood in branch  29.9±3.7b 17.8±1.4b 52.2±2.4a 
Heartwood in stem  25.8±6.7b 32.1±4.0a 42.1±10.7a 

Sapwood in stem  22.7±2.2b 25.3±4.8ab 52.0±7.0a 
Means±standard deviation with different letters within a column were significant at p<0.05 
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For B. costata wood from Maoershan and stemwood from Muzhaling, the lower 

fiber proportion implied that there was a higher vessel elements amount and rays 

proportion, which meant these woods, may had a lower density and strength and therefore 

be used for light construction purposes (Adeniyi et al. 2013).  

There were differences in the tissue proportions between the sapwood and 

heartwood (Table 2). Transformation from sapwood to heartwood is a biological process 

within trees and has been related to individual tree biometric features, growth rates, site 

conditions, and genetic control (Pinto et al. 2004). The chemical components in the wood 

cell walls and extractives change during heartwood formation. The differences between 

heartwood and sapwood are important to both the solid-wood and pulp industries because 

the transformation from sapwood to heartwood changes the wood properties (Woeste 

2002; Morais and Pereira 2007). Heartwood is valuable because of its color, scent, decay 

resistance, and other important properties. Because of poor resistance to fungal and insect 

attack, sapwood is classified as a defect region in wood in some factories (DeBell and 

Lachenbruch 2009). However, the differences in anatomical features between the 

heartwood and sapwood found in this study were not statistically significant at the 5% 

level (Table 1), which suggested that it is likely that sapwood can be engineered into a 

number of wood products.  

 

Fibers  

Statistically significant differences were found for the fiber length and lumen 

diameter, but not for the fiber width and double cell wall thickness between the selected 

sites. Betula costata from Maoershan had average significantly larger fiber sizes and 

smaller lumen than from Muzhaling (Table 3), which might be related to soil of growth 

sites. B.costata tends to grow well in fertile soil (Lee et al. 2004). The soil is abundant 

organic matter and high fertility in Maoershan but sandy clay in Muzhaling, which implies 

that large fibers are easier to be produced in B. costata from Maoershan than those from 

Muzhaling. The fiber sizes have an important effect on the final wood products. The 

average fiber length of B. costata was from 919 mm to 1628 mm, which met the 

intermediate standard for fibers (910 mm to1600 mm) stipulated by the International 

Society of Wood Anatomy (Smook 1992).The length/width ratio was also large, which 

indicated that B. costata wood is an excellent fiber material (Przybysz et al. 2018). Because 

of the large fiber size and small lumen, wood from B. costata trees from Maoershan could 

be more suitable for papermaking and glued plates than the trees from Muzhaling (Wang 

et al. 2009). Statistically significant differences in the fiber features were not found 

between the branchwood and stemwood from the B. costata trees, either at Maoershan or 

Muzhaling (Table 1). This indicated that branchwood might be an alternative to 

conventional stemwood from B. costata trees from Maoershan for use as a raw material in 

the wood and paper industry (Ni 1985).  

Differences were found in the fiber features between the heartwood and sapwood 

of the B.costata (Table 3). Radial variation of the fiber features is determined by the 

cambial age (Lenz et al. 2010). A general pattern for the radial variation that has been 

recognized for most tree species is that the fiber features increase with the cambial age or 

distance from the pith to bark (Longui et al. 2014; Zhao 2015; Zhao et al. 2018). Aging 

and maturation cause genetically-controlled metabolic changes, and these lead to 

transformation from sapwood to heartwood in the center of the stem and branch (Wang et 

al. 2010). 
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Table 3. Multiple Comparison of the Fiber Features in the Stemwood and 

Branchwood from B. costata 

Site  Position  
Fiber Length 

(µm)  
Fiber 

Width (µm)  

Lumen  
Diameter  

(µm)  

Double Wall 
Thickness 

Wall/ 

Lumen  
Length/ 

Width  

Muzhaling  Heartwood 

in branch  
919.2±391.7c 22.4±6.5bc 14.0±4.3cd (8.5±3.5)ab 0.6±0.3ab 38.7±12.7d 

Sapwood 

in branch  
1029.8±697.4bc 18.5±3.5c 11.7±2.9d (6.8±1.3)b 0.6±0.2abc 56.2±37.3bc 

Heartwood 

in stem  
1066.1±352.9b 23.6±4.5b 13.5±3.6d (10.3±3.7)ab 0.9±0.5a 45.4±11.1bcd 

Sapwood 

in stem  
1142.8±605.6b 25.5±7.3ab 17.9±6.4bc (7.6±4.2)ab 0.5±0.3bc 44.2±19.7cd 

Maoer-

shan  
Heartwood 

in branch  
1289.1±506.7ab 29.3±6.3a 22.2±5.8a (7.2±2.9)ab 0.4±0.2cd 44.4±16.8cd 

Sapwood 

in branch  
1506.3±675.0a 25.0±4.7ab 22.2±5.3a (4.9±1.4)b 0.2±0.1d 60.2±25.8b 

Heartwood 

in stem  
976.4±170.5bc 25.6±5.4ab 19.0±4.7ab (6.7±3.4)b 0.4±0.2cd 39.3±8.9d 

Sapwood 

in stem  
1628.2±317.0a 22.7±4.7bc 14.2±4.0cd (8.5±4.8) b 0.7±0.4ab 74.7±22.4a 

Means ± standard deviation with different letters within a column were significant at p<0.05 

 

Over the years, heartwood has been the main tree source in the wood industry 

because of its excellent characteristics. However, heartwood in the inner part and sapwood 

at the periphery of B. costata were found to be similar in fiber characteristics, which 

implied that sapwood use could widen the raw material base for the wood industry. The 

fibers of the sapwood were longer than that of the heartwood (Table 3). The average length 

and length/width of the fibers statistically differed between the heartwood and sapwood 

(Table 1). Long fibers are more flexible and conformable than short fibers (Ek et al. 2009). 

The fiber features of the sapwood and heartwood along the stems and branches of B. costata 

could provide adequate information to enhance its efficient utilization.  

 

Vessels  

Betula costata grown in Maoershan was found to have a significantly higher vessel 

density and lower vessel diameter than that from Muzhaling (Tables 1and 4), probably 

because there were large environmental differences between the sites (Hacke et al. 2017). 

The average evaporation and air temperature in Maoershan were 884 mm and 2.8 °C, 

which were far below those in Muzhaling. Trees in drier and colder sites have smaller 

vessels and a higher vessel frequency than trees in wetter and hotter sites (Dayer et al. 

2017). Smaller vessels can be expected to be in less danger of catastrophic embolism and 

cavitation (Tyree and Sperry 1989) and are thus desirable under conditions with a high 

water stress. Larger vessels are more effective at conducting water to ensure hydraulic 

safety. However, vessels are particularly undesirable in wood pulp as it is easier for large 

vessels to cause picking, linting, and dusting problems during printing (Rakkolainen et al. 

2009). The presence of vessels in wood also affects fluid penetrability and wood 

compression (Petty 1981; Sun et al. 2010). The results for the B. costatawood from 

Muzhaling suggested that its larger vessel diameter improves its suitability for processing 

liquids.  
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Table 4. Multiple Comparison of the Vessel Features in the Stemwood and 

Branchwood from B. costata 

Site  Position  
Vessel Density 

(mm–2)  
Tangential Diameter 

(µm)  
Radial Diameter (µm)  

Muzhaling  Heartwood in 

branch  
78.7±7.7bc 163.7±33.0b 164.8±57.9c 

Sapwood in 

branch  
60.6±12.8bc 173.6±49.7b 158.7±47.5c 

Heartwood in 

stem  
47.4±12.1bc 252.5±55.3a 281.4±116.2ab 

Sapwood in stem  28.7±13.2c 248.4±74.8a 311.8±93.3a 
Maoershan  Heartwood in 

branch  
139.2±1.8a 139.2±43.9b 136.2±42.3c 

Sapwood in 

branch  
148.1±6.3a 145.9±32.3b 137.4±47.5c 

Heartwood in 

stem  
83.8±50.9b 262.9±67.6a 280.1±115.8ab 

Sapwood in stem  58.8±17.7bc 228.8±68.1a 235.9±73.4b 
Means±standard deviation with different letters within a column were significant at p<0.05 

 

 Insignificant variation in the vessel features between the heartwood and sapwood 

was observed, whereas the variation of stemwood and branchwood showed significant 

differences in the vessel features (Table 1). The average vessel features of the branchwood 

showed a higher vessel density and lower diameters than those of the stemwood on both 

sites (Table 4). The axial variation in the vessel lumen diameter and vessel density of the 

B. costata was consistent with the optimum water transport network of wide conduits at 

the stem base, which feed an increasing number of narrower branch conduits distally 

(McCulloh et al. 2003). The pattern of vessel tapering and density increasing from the stem 

to branch can maximize hydraulic conductivity and minimize xylem vulnerability 

(Pittermann and Olson 2018). The size of the vessels in stemwood is largely beneficial for 

processing preservatives, water-soluble dye, or other permeable liquids. Compared with 

stemwood, vessel tapering in branchwood increases the dimensional stability of lumber 

and can also reduce vessel picking problems in papermaking (Rakkolainen et al. 2009).  

 

 

CONCLUSIONS  

 

1. Anatomic differences of the B. costata wood between the two sites, between the 

branchwood and stemwood, and between the sapwood and heartwood were 

demonstrated across all monitored parameters. This can be attributed to site 

environment, wood age, as well as function of wood cells.  

2. The B. costata branchwood from Maoershan might be suitable for papermaking and 

glued plates because of its intermediate fiber length and other suitable anatomical 

features. The B. costata stemwood from Muzhaling and the B. costata wood from 

Maoershan might be used for light construction purposes. 

3. Observation was comprehensive for only anatomical features of B. costata wood. 

Since this does not constitute a comprehensive study of wood properties that 
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determining wood in utilization purposes, a more complete analysis of the chemical 

components, physical, and mechanical properties should be carried out in the future. 
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