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Recently the accessibility of sago biomass has drawn considerable 
interest in research regarding the production of renewable energy. In this 
study, sago-derived biochar was evaluated and characterized as a solid 
fuel. Sago biochar was produced in an electric fluidized bed reactor at 
temperatures between 300 °C to 600 °C, with nitrogen flow rates of 50 
mL/min to 100 mL/min for 10 to 30 min of process. The optimum condition 
to ensure the maximum biochar yield (47%) were obtained at 400 °C, 20 
min of process and of 75 mL/min of nitrogen flow. The physicochemical 
properties of the final product were determined through thermogravimetric 
analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-
Teller (BET), and elemental analysis techniques. The higher heating value 
(HHV) of the material was remarkably improved by almost 13% via 
pyrolysis.  The experimental results showed that sago biomass can be 
considered a suitable source of solid fuel, especially in the industrial and 
domestic sectors in Sarawak, Malaysia. 
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INTRODUCTION 
 

Large-scale use of fossil fuels poses a major threat to the environment and results 

in global warming controversies. Environmental pollution rooted in the use of traditional 

fuels for energy purposes is worrying. Hence, scientists in the environmental field are 

developing solutions for climate change such as engagement of technologies to reduce the 

emission of carbon dioxide as the main contributor to global warming at industrial sources. 

Price uncertainty and the depletion of petroleum natural resources are problematic and a 

vital part of concerns about future energy use (Höök and Tang 2013). Therefore, it is 

important to seek alternatives to fossil fuels. One of the best solutions is the use of biofuels 

because of the reduced emission of carbon dioxide gas to the environment (Kung and 

Chang 2015; Thomazini et al. 2015).  At this current stage, biomass constitutes 10% to 15% 

of global energy (Lam and Chase 2012). Utilizing biomass waste as a fuel provides a 

productive means to ensure economic and environmental benefits, in addition to removing 

waste from the environment. 

Biomass can be converted into fuel via thermo-chemical processes, such as 

pyrolysis, carbonization, gasification, direct combustion, liquefaction, and gasification 

(Anderson et al. 2013; Khezri et al. 2016). Pyrolysis due to its wide range of applications, 

effectiveness, and its versatility compared with other processes, has received lots of 

attention (Xiang et al. 2016). Furthermore, pyrolysis process is involved with liquid, 

gaseous, and solid by-products (Hussin et al. 2015). A biochar with high calorific value 
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can be considered a suitable fuel source (Bartocci et al. 2016; Shalini et al. 2017). 

Generating biochar from biomass that are composed of agricultural and forestry waste has 

benefits in addition to its high content of renewable energy. This includes ease of handling, 

storage, transportation, packaging and introduces less environmental damages related to 

the unremarkable sulfur content (Rambli et al. 2018). Therefore, power plants that use coal 

as fuel can gain several advantages if replace it with biochar (Wang et al. 2018). Biochars 

that are high in carbon and nitrogen enable more solutions to soil fertility problems and 

also assist in removal of inorganic compounds from water (Ani and Zailani 1997; Liu et 

al. 2013). 

Biochars are produced from various kinds of feedstocks. The most common 

feedstocks found in the literature include maize cobs, wood bark, wheat straw, rice husk, 

bamboo, corn, rubber bark, palm coconut shells, and micro-algae (Qian et al. 2013; Hussin 

et al. 2015). This study focused on the use of feedstocks in biochar production, as well as 

the process, kinetics, and operating parameters involved in biomass pyrolysis.  

 

 

EXPERIMENTAL 
 

Materials, Characterization, and Pyrolysis 
Feedstock selection and preparation 

The selected feedstock for this study was sago (Metroxylon Spp.), which was from 

Oya district, Mukah division in Sarawak, Malaysia. An increase of RM 30 million of export 

earnings from sago in Sarawak was seen between 2010 to 2016 (Melling et al. 2013; 

Rambli et al. 2018). Because sago biomass is abundant in hydrocarbon compounds, this 

research evaluated its potential for utilization as a solid fuel. 

The raw sago was chopped, sundried for a day, ground into a fine powder form and 

sieved to obtain the particle size of 40 µm.  

 

Characterization of the sago biomass and biochar 

Thermogravimetric analysis (TGA) (N 1000, SCINCO, Seoul, Korea) was applied 

for proximate analysis. Approximately 10 mg of fine biomass powder were exposed to the 

following conditions: a heating rate of 20 °C/min from room temperature to 800 °C and a 

nitrogen flow rate of 30 mL/min. Furthermore, the weight loss history was normalized and 

the rate was then computed. The standard methods used included (ASTM E871-82, 2013) 

to determine the moisture content, (ASTM D1102-84, 2013) to determine the ash content, 

and (ASTM E872-82, 2013) to determine the volatile matter content. The difference 

calculation was then applied to determine the amount of fixed carbon. 

The ultimate analysis was performed using a CHNS-O elemental analyzer (EA-

1108, Fisons, Massachusetts, USA) following the (ASTM D-5291-16, 2016) method to 

determine the carbon, hydrogen, nitrogen, and sulfur contents in the biomass and biochar. 

The oxygen content was determined by computing the difference (the sum of those contents 

subtracted from 100%). A bomb calorimeter (Parr Instrument 6100, Illinois, USA) was 

used to identify the calorific values of the sago and optimized biochar according to (ASTM 

D240-17, 2017).  

A scanning electron microscope (SEM) (S-3400-N, HITACHI, Iowa, United 

States) with a potential of 1 kV to 25 kV was used to study the surface of both the sago and 

optimized biochar and determine their morphologies. The Brunauer, Emmett and Teller 

(BET) technique was used to investigate the porosity and surface area of sample biochar 
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in order to determine the adsorption capacity and mechanical structure. BET Surface Area 

Analyzers (NOVA 4200e, Quantachrome Insturments, Florida, United States) was used to 

measure the surface area of biochar through the nitrogen gas sorption analysis at 77K. Prior 

to analysis, samples were vacuum degassed at 300 °C for 4 to 16 h (conditions typical for 

carbons). Particle density was measured by helium pycnometer (Pentapycnometer, 

Quantachrome Instruments) using degassed samples from BET analysis and long purge 

times (10 minutes) to prevent errors due to volatile content outgassing. 

 

Experimental procedure: Method of pyrolysis 

The objective of this evaluation is to determine the effect of the process parameters 

on the production of sago-based biochar through pyrolysis and by using a one-factor-at-a-

time (OFAT) method. Using an electric heating fluidized bed reactor, 20 g of biomass 

sample underwent pyrolysis at different temperatures between 300°C to 600 °C for the 

retention times of 10 min to 30 min, constant heating rate of 50 ºC/min and with different 

nitrogen flow rates of 50 mL/min to 100 mL/min. The experiments were accomplished in 

total 13 runs. A schematic diagram of the pyrolysis equipment is shown in Fig. 1. The 

entire pyrolysis facilities consisted of an electric heating fluidized bed reactor, condenser 

unit, gas clean-up units, and gas sampling unit. The reactor was constructed from heat-

resistant 316 stainless steel with internal diameter of 54 mm and height of 370 mm. Two 

individually controlled electric furnaces covered the reactor and were used to increase the 

temperature and prevent heat loss to the atmosphere during operation. To avoid excessive 

heat loss to the atmosphere and maintain the reactor temperature, a thick layer of grass 

wool fully covered the top and bottom of the reactor. Two thermocouples (K-type, Jiangsu 

Plaza, Jiangsu, China) were installed in the middle (pyrolysis zone) and top (freeboard) of 

the reactor to monitor the temperature during experimental operation. Before beginning the 

experiment, air was supplied by an external compressor and was introduced to the reactor 

from the base of the bed through a nozzle to remove any trapped gas from the reactor. 

Nitrogen was used as the pyrolysis agent and its flow rate varied from 50 mL/min to 100 

mL/min. The experimental temperature varied from 300 °C to 600 °C and the retention 

time varied from 10 min to 30 min. For each experiment, the produced gas was cooled 

down through a condenser and cleaned via filtration. It was then collected in a 10 litre gas 

sampling bag (one sample) during operation, which was later sent for gas chromatography 

(GC) analysis. When the operation was completed, the equipment was left to cool down 

for approximately 60 min, and the bio-oil and sago biochar products were collected 

separately and sent for analysis. 

 

 

RESULTS AND DISCUSSION 
 

Feedstock Characterization 
The sago-based biochar was characterized, and the results were compared with the 

raw biomass to study the effect of pyrolysis on the chemical properties of the material. A 

suitable fuel that has high burning tendencies and energy density is marked by low moisture 

and ash contents, in addition to having high fixed carbon values (Cha et al. 2016). The 

regarded features can be identified through proximate analysis. 
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Fig. 1. Schematic diagram of the laboratory facilities for biomass pyrolysis 

 

The thermal degradation characteristics of sago biomass and sago biochar are 

presented in Fig. 2a and 2b. with the help of thermogravimetry (TG) and differential 

thermogravimetry curves (DTG).  
 

  
 

Fig. 2. Residual mass ratio and DTG of a) sago biomass and b) sago biochar on dry basis. 
Condition: nitrogen atmosphere (30 mL/min), heating rate (10 K/min). 

 

Both materials showed a small DTG peaks around 76.8 °C (350 K), which are 

indicative to the moisture content, followed by big peaks around 326.8 °C (600 K), which 

are indicative to the decomposition of cellulose and hemicellulose. Beyond 426.8 °C (700 

K) in sago biomass and 526.8 °C (800 K) for biochar DTG curves indicate the 

decomposition of lignin (Mohammed et al. 2011). However, according to the TG curve in 

Fig. 2 the degradation of biochar contents including the moisture, volatiles, fixed carbon 

and ash as response to gradual heating seems less intensive in values comparing to the sago 

biomass. 
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The results from characterization of sago biomass and biochar in this study are 

presented in Table 1. The results of proximate analysis are presented on dry basis criteria, 

whereas the ultimate analysis results (CHO) are presented in dry and ash free basis (dafb) 

measures accordingly. It should also be noted that the amount of nitrogen content in 

biomass are disregarded from the report for its considerably lower contents than other 

elements hence the presence of it may overestimate the oxygen content to a very small 

extent. 

According to the results, the relatively high fixed carbon and HHV as well as low 

volatile matter and ash content of sago biomass indicates a suitable biomass to be used as 

a solid fuel. For better understanding, the properties of sago biomass and biochar have been 

followed by the properties of other common biomass obtained from previous studies such 

as palm oil-based biomass, waste pomegranate peel, rice husk, wood bark, cocopeat, and 

palm kernel shell (Hassan et al. 2013; Lee et al. 2013a; Mopoung and Udeye 2017; Sohni 

et al. 2018). According to the results, the properties of sago-based materials in terms of 

fixed carbon, volatile matter and ash content are fairly comparable to other common 

biomass, which are considerably favorable nowadays to use in different industrial 

applications. A significant decrease was observed in the amount of volatile substances from 

74.6% to 61.5% when the sago biomass turned into biochar because of the effect of biomass 

thermal degradation (Qian et al. 2015). The volatile matter related to other types of biomass 

in Table 1 ranged from 16.1% to 80.1%. It was observed that the fixed carbon of sago 

biomass has the lowest content of 7.9%, while waste palm oil mill sludge has relatively 

higher content of 30.5% among others. An increase in the fixed carbon content from 7.9% 

to 10.4% and reduce of moisture content on the surface of the sago were seen as the result 

of slow pyrolysis of sago biomass into biochar. The ash content of the sago biomass, 

however, was increased to 24.2% due to the removal of organic substances from the 

biomass. The high ash content in the biochar could be explained by the unwashed sago 

biomass that has been used in the pyrolysis. The ash content of biochar can be reduced 

through a variety of techniques such as water washing and briquetting to reduce the 

presence of fly ash while use in direct combustion (Liu et al. 2015; Qi et al. 2017). 

The initial hydrogen and oxygen contents in the sago biomass were found to be 

6.7% and 55.7%, respectively. However, these values decreased immensely to 5.1% and 

41.1%, respectively, as the biomass converted into biochar. The same results were reported 

in earlier biomass pyrolysis studies for different types of feedstock (Hawkins et al. 2007; 

Colantoni et al. 2016).  

The higher heating value (HHV) is defined as the release of energy for a unit of an 

entirely burnt fuel. The HHV is the main feature used to evaluate any fuel meant to be used 

as an energy source (Qin et al. 2011). Therefore it was used to indicate the suitability of 

bio-based fuels in this study. According to (Shalini et al. 2017), the HHV of biomass 

increases in response to the reduction of oxygen and hydrogen contents as the result of 

pyrolysis. The HHV value of sago biomass was found to be 22.16 MJ/kg while the value 

of 25.4 MJ/kg was observed for the biochar. 

 

Scanning Electron Microscope (SEM) 
Scanning electron microscopy was used to determine the images of the sago 

biomass (Fig. 3a) and biochar (Fig. 3b) cells at a magnification of 300x. A further coarse 

irregular shape of biochar particles was observed as compared to the biomass. This can 

consequently create some issues with the mechanical properties and handling of biochar 

(Kumar and Singh 2014). To overcome such issues, the biochar density needs to be 
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improved via briquetting and pelleting (Qian et al. 2015; Qi et al. 2017; Bartocci et al. 

2018). In contrast, the high porosity of the biochar has some beneficial features in some 

applications, such as its use as absorber and supercapacitor. The briquette strength related 

to the capillary binding of porous particles, as well as the rough mechanical connection of 

the surface particles are subject to the porosity of the structures. 

Table 1. Characterization of the Air-dried Biomass Samples and Optimized SDB 

Sources 
M 

(%) 
VMa 
(%) 

Asha 
(%) 

FCa 
(%) 

Ca 
(%) 

Ha 
(%) 

Oa 
(%) 

HHV 
(MJ/kg) 

Reference 

Sago 
Biomass 

13.88 74.58 3.64 7.9 37.6 6.67 55.73 22.16 This study 

Sago 
Biochar 

3.97 61.51 24.15 10.37 53.53 5.06 41.12 25.44 This study 

Palm Oil 
Mill Sludge 

8.64 16.11 44.78 30.47 32.3 2.29 65.41 14.49 
Iberahim 

et al. 
(2018) 

WPP 8.92 62.54 3.17 25.37 44.5 5.28 37.8 14.61 
Chin and 
Siddiqui 
(2000) 

Rice Husk 4.36 66.65 18.82 10.17 30.73 6.58 42.89 13.84 
Sohni et 
al. (2018) 

Wood Bark 8.8 80.1 0.4 10.7 50.52 5.81 43.44 16.46 
Lee et al. 
(2013a) 

Cocopeat 21 49.1 4.6 25.3 61.57 4.37 33.04 16.54 
Lee et al. 
(2013a) 

PKS 11.9 66.8 3.4 17.9 55.82 5.62 37.74 15.89 
Lee et al. 
(2013a) 

a: dry basis; b: dry, ash free basis (dafb); M: moisture; VM: volatile matter; FC: fixed carbon, 
PKS: palm kernel shell; WPP: waste pomegranate peel 

 

 
 

Fig. 3. SEM images of the (a) sago biomass and (b) sago biochar produced at the optimum 
conditions 

 

Moreover, in Fig. 3a, sago biomass was found to have longitudinal pores that were 

approximately 100 µm in diameter. These larger pores were from the raw biomass vascular 

structure. However, the pores volume were increased on the surface of biochar (Fig. 3b), 

which can be due to degradation of organic materials (lignin, hemicellulose and cellulose) 

and formation of bundles or channel structures during pyrolysis (Zhao et al. 2017). 

 

  

  

(b) (a) 

100 µm 
 

 

 

100 µm 
 

 

 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Rambli et al. (2019). “Sago-derived biochar,” BioResources 14(1), 1928-1940.  1934 

Brunauer-Emmett-Teller (BET) Analysis 
The textural properties of the sago biochar were determined by BET analysis at two 

different pyrolysis temperatures of 350 °C and 400 °C, and the results are presented in 

Table 2. The specific surface area of the biochar at 400 °C and 350 °C were found to be 

2.73 m2/g and 1.89 m2/g, respectively. According to the results, biochar sample prepared 

at 400 °C pyrolysis temperature possessed higher total pore volume (0.118 cm3/g) than the 

one obtained at 350 °C (0.0921 cm3/g). The surface and pore area of biochar as solid fuel 

are significant since the shape and interconnections between pores significantly influence 

the physical properties of a material, such as its density, mechanical strength, and thermal 

conductivity (Smolínski and Howaniec 2017). 

 

Table 2. BET Analysis of the Prepared Sago-Biochar at Different Pyrolysis 
Temperatures 

Properties Pyrolysis Temperature (°C) 

 350°C 400°C 

BET (m2/g) 

Micropore area (m2/g) 

Micropore volume (m3/g) 

Adsorption capacity (m3/g) 

Total pore volume (cm3/g) 

1.8927 ± 0.2883 

9.2730 ± 0.1000 

0.0087 ± 0.3100 

33.790 ± 0.2000 

0.0921 

2.7349 ± 1.2700 

4.4000 ± 0.2800 

0.1270 

18.580 

0.1179 

 

Moreover, biochar having high carbon content and surface area will have a high 

potential to be turned into activated carbon for certain applications such as filtration of gas 

and water, treatment of water and sewage, and separation of gas and solid (Spokas et al. 

2009; Park et al. 2014; Inal et al. 2015). 

 

Effect of the Process Conditions on Biochar Production 
The effects of the temperature, nitrogen flow rate, and retention time on the yield 

of sago biochar are shown in Fig. 4a, 4b, and 4c, respectively. For the first set of evaluation, 

the temperature varied over the range of 300 °C to 600 °C, while the nitrogen flow rate and 

retention time remained constant at 75 mL/min and 20 min, respectively. According to Fig. 

4a, a temperature of 400 °C yielded the highest amount of biochar (47%), and thus this was 

considered the optimum temperature. Increasing the temperature from 300 °C to 400 °C 

caused the biochar yield to increase slightly because of the removal of moisture and volatile 

compounds from the solid biomass. However, the yield started to decrease with 

temperatures above 400 °C, and it reached a minimum of 31% at 600 °C. The decrease in 

the yield with higher temperatures was explained by the carbon cracking rate increasing 

with the temperature.  

The released moisture from the biomass in the presence of sufficient heat reacted 

with the heavy carbon content of the solid material and led to the destruction of the carbon 

structure and conversion into smaller hydrocarbons, which was later captured as bio-liquid 

or via condensation of the syngas. 

Generally, increasing the nitrogen flow rate results in an increase in the yield of 

non-condensable gas; therefore, the biochar yield decreases because of the rapid removal 

of pyrolysis vapour from the reaction zone (Mohammed et al. 2015). An increase in the 
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nitrogen flow rate from 50 mL/min to 75 mL/min resulted in a slight increase in the biochar 

yield. An excess of nitrogen led to more oxygen in the pyrolysis zone, which increased the 

energy conversion. However, an increase in the nitrogen flow rate above 75 mL/min caused 

the hot pyrolysis volatiles to remove from the reactor, which cooled down the reactor and 

decreased the pyrolysis performance. 

 
 

Fig. 4. Effect of process parameters on the biochar yield (%): (a) effect of temperature (nitrogen 
flow=75 mL/min, process time=20 min.; (b) effect of nitrogen flow (temperature=400 °C, process 
time=20 min. and (c) effect of process time (nitrogen flow=75 mL/min, temperature=400 °C 

 

Similar results were reported in previous experimental studies that used high 

nitrogen flow rates in pyrolysis of different biomass, which all contributed to the lower 

biochar yields (Mohammed et al. 2015, 2016). For the reason stated, the biochar yield 

decreased to a minimum of 27% at a nitrogen flow rate of 100 mL/min (Fig. 4b). 

According to Fig. 4c, as pyrolysis retention time increased, it resulted in an increase 

in the biochar yield until it reached a maximum of 47% in 20 min. Any retention time 

longer than 20 min was associated with a decrease in the biochar yield as a result of the 

slow conversion of biomass carbon into smaller hydrocarbons during pyrolysis. 

Disintegration of compounds in the pyrolysis process at high temperatures may have been 

the main cause of the decrease in the product yield in longer process times (Mašek et al. 

2013; Xie et al. 2015; Rambli et al. 2018). The chemical structure and yield of the biofuels 

that were produced from the biomass was highly impacted by the retention time. In general, 

all of the factors (temperature, nitrogen flow rate, and retention time) had relatively high 

influences on the product yield. 

The optimum condition obtained from the OFAT evaluation in this study are 

reported in Table 3 and were compared with those for other biomass sources found in the 
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literature. The maximum biochar yield from sago (47%) was produced at 400 C, 20 min, 

and a nitrogen flow rate of 75 mL/min. The optimized biochar values of the different 

biomass samples ranged from 32.2% to 54.9% (Chin and Siddiqui 2000; Lee et al. 2013b; 

Iberahim et al. 2018; Sohni et al. 2018). 

 

Table 3. Comparison of the Process Conditions for the Biochar Yields from 
Pyrolysis of Different Biomasses  

Biomass 

Process Parameter 
Biochar Yield 

(%, dry) 
Reference Temperature 

(°C) 
Time 
(min) 

Nitrogen 
(mL/min) 

Sago 400 20 75 47.00 This study 

Palm Oil Mill 
Sludge 

405 20 88 54.25 
Iberahim et al. 

(2018) 

Waste 
Pomegranate 

Peel 
300 20 50 54.90 

Chin and 
Siddiqui (2000) 

Food Waste 450 10 62 37.80 
Shenbagavalli 

and Mahimairaja 
(2012) 

Rice Husk 300 30 75 33.25 
Sohni et al. 

(2018) 

Cocopeat 500 60 50 40.00 
Lee et al. 
(2013b) 

Palm Kernel Shell 500 10 100 32.20 
Lee et al. 
(2013b) 

 

 

CONCLUSIONS 
 

1. This study evaluated the potential of SDB as a solid fuel. 

2. The conversion of biomass to biochar was performed by pyrolysis in an electric 

fluidized bed reactor with a total feeding of 20 g of biomass. Nitrogen was used as the 

pyrolysis agent. 

3. A sensitivity analysis was performed using a OFAT method to study the effect of the 

temperature (300 °C to 600 °C), nitrogen flow rate (50 mL/min to 100 mL/min), and 

retention time (10 min to 30 min) on the biochar yield. 

4. Characterization analysis (ultimate and proximate analysis, calorific value 

determination, SEM and BET) was implemented on both the biomass and biochar 

samples, and their properties were compared to assess the quality of the final product 

as a suitable energy source. 

5. According to the results, pyrolysis of sago biomass resulted in an increase in the HHV 

and carbon content and a decrease in volatile substances and oxygen contents as 

converted into biochar. Furthermore, the thermal conversion caused an increase in the 

number, volume, and area of surface pores according to the results of SEM and BET 

analysis. 
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6. The temperature was shown to have the highest impact on the biochar yield. The 

maximum yield of 47% was obtained at 400 °C, 75 mL/min, and 20 min of temperature, 

nitrogen flow and process time respectively. 

7. This study showed that the value of sago biomass as a sustainable and environmental 

friendly solid fuel can be considerably increased when undergoes pyrolysis and 

converted into biochar. 
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