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STRUCTURE AND PROPERTIES OF
HETEROPHASE SOLIDS

H. K. CORTE, Wiggins Teape Research and Development Ltd.,
Beaconsfield, Bucks.

Synopsis—A classification of the wide variety of solids according to physical,
structural and chemical characteristics shows the category of heterophase solids
to be the largest group of natural and artificial substances. Most manufacturing
and manufactured materials fall in this category.

The structure of such materials can be described by the shape, size, concentra-
tion, orientation and topology of the constituent phases. Statistical methods—in
particular, geometric probability—sometimes supplemented by certain physical
or topological restrictions, provide adequate tools for the description of naturally
grown or artificially mixed systems.

Mechanical modulus properties as well as thermal and electrical properties can
be treated in a fairly general manner, based either on field distortion of one phase
by the presence of another phase or by means of phase models that give upper and
lower limits for the property.

The problem of strength properties can be seen in terms of fracture mechanisms
or as a statistical one, in which case extreme value theory provides a suitable
method.

Introduction

THE SOLID state of matter presents itself in a much larger number and
variety of phenomena than are encountered in the gaseous and liquid states.
The reason for this is the high degree of compaction or density of packing
compared with those of gases and liquids. One result of different packing
densities is the extent to which individual properties of atoms or molecules
(or other building units) influence the macroscopic properties of the sub-
stance that they build up. Certain properties of gases at low pressures are
practically independent of the nature of their constituent particles. Physical
properties of solids, on the other hand, are largely determined by those of the
constituent particles and, in particular, by the interaction between them.

A general consequence of increasing interaction is the formation of
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surfaces, hence the ability to form isolated aggregates or bodies over a wide
range of sizes, which can in turn join to form higher aggregates and so forth.
Gases lack completely this ability and fill the available space uniformly.
Liquids possess it to a certain degree. They form surfaces and separated,
identifiable aggregates (for example, in emulsions or mists), but it is the solid
state that derives its broad range of phenomena and material properties to a
large extent from the ability to form bodies of almost any size and complexity.

The number of possibilities is very large indeed for a macroscopic piece
of solid material to be composed of smaller units, each in turn consisting of
microscopic and submicroscopic aggregates of various, but specific orders of
magnitude. Paper is as good an example as any, the scale of its constituent
units descending from fibres to cell wall layers, then via fibrils to microfibrils
and, finally, to cellulose molecule chains. A similar scale can be found in
most solids. Since most chemical species, natural or man-made, exist in the
solid state, a large number of all the possible structural designs is in fact
realised. This is why we observe such a variety of phenomena and properties
in solids.

It is also the reason for the lack of a comprehensive theory and indeed
phenomenology of the solid state comparable to the well-developed kinetic
gas theory. There have been attempts to formulate theories of phenomena in
highly ordered crystal lattices. A recent publication is the book by Sachs,®
whose approach is essentially based on symmetry properties of lattices and
electron configurations of the constituent atoms. An earlier publication by
Eucken® approaches the problem from several angles—thermodynamics,
electronics, theory of lattice order—and covers a wide range of phenomeno-
logical material, although it also is restricted to crystal lattices of perfect or
reduced order. The same is true for most of the literature on general solid
state physics.

For detailed information on phenomena in and properties of aggregates,
one has to turn to the literature on specific materials of technological interest
such as metals, ceramics and plastics.

There is also the glassy state of matter believed to be caused by a slow rate
of crystallisation because of high viscosity (compared with the rate of cooling)
at temperatures when the solid phase is coexistent with the liquid phase.®
The result is a material with only short-range order as in liquids, but with the
rigidity and strength of solids.

The general conclusion is that there seems to be at present no way of
formulating basic concepts from which the behaviour of solids in their various
forms and appearances can be derived and understood. Yet one can classify
and select one class of particular interest for further discussion and this will
now be attempted.
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Classification

DEPENDING on the viewing angle, there are several ways of classifying
solids. The following three aspects are each sufficiently general to allow clear
demarcation and, at the same time, sufficiently different to define geometric
loci for classes with characteristically different properties.

1. The physical aspect considers the atomic or molecular constituents and
classifies solids according to the bonding forces between them, which are—

(@) The ionic bond between different atomic species from opposite ends of the
periodic table. The bond is strong, non-saturable and non-directional, pro-
duced by a central force (electrostatic).

(b) The valency bond between equal or different atoms is of widely varying
strength: it is directional and saturable.

(¢) The Van der Waals’ bond can be formed between equal or different atoms.
It is weak and caused by a non-saturable and non-directional central force
that originates from permanent or induced dipoles.

(d) The metallic bond is created by the free or almost free movement of valency
electrons of the constituent atoms. It is non-saturable and not established
by a central force. Its strength is of the order and variation of the valency
bond.

2. The structural aspect considers the size and arrangement of constituent
units relevant for typical properties of the solid. It is a more technological
classification of manufactured or manufacturing materials rather than of
physical species of matter. It differentiates between (a) homophase and
(b) heterophase materials.

The term phase is in this context used in a descriptive rather than in the
thermodynamic sense. It denotes a region of uniform properties, large enough
to be considered as a continuum and surrounded or bounded by a surface or
an interface with different properties. The phases can be either continuous or
disperse.

3. The chemical aspect considers the chemical species of which the solid
consists. There are—(a) pure and (b) composite materials or phases.

Most manufactured and natural materials are heterophase solids, pure or
composite, often with different types of bond within and between their con-
stituent phases. Unfortunately, it is impossible to break down this large
category of materials into smaller classes without introducing arbitrary
decisions. They concern the scale and the objective that we have in mind.
Two examples may illustrate this.

A fibre-reinforced metal is obviously a heterophase material. Isolated
parallel fibres, forming a disperse phase, are embedded in a matrix of metal,
forming another phase. If we compare properties of this material with those
of the unreinforced metal, the metal phase can be considered as continuous.
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If we study the properties of the material by itself, however, we would have to
take into account the polycrystalline structure of the metal phase, which
would then have to be considered as discontinuous with interfaces between
the crystallites.

Paper is another heterophase material. Highly porous air filter paper made
of cellulose can, in filtering, be considered as two-phase with both cellulose
and air forming continuous phases. In its mechanical strength, however, the
cellulose phase itself is heterophase, consisting of individual fibres that could
be called continuous structural regions. If the oil or water absorbency of such
a paper is to be studied, the fibres themselves would add to the observed
phenomena the effect of their own heterophase structure.

It is therefore useful, if the structure and properties of heterophase materials
are discussed, to bear in mind the objective of the discussion and the scale to
which it refers. Much unnecessary controversy can be avoided in this way.

Structure of heterophase materials

MosT people will probably agree with Smith® when he states that struc-
ture is among the most basic attributes of matter that one can apprehend.
‘It is structure that distinguishes between a cornfield and a cake’ and it is a
change in structure that turns a tree into sheets of paper.

The structure of a heterophase material is described by three mutually
independent quantities—the shape, the size and the concentration of the
phases. All three quantities have distributions. Often related to them are two
more quantities necessary for the description of structure—the orientation
and the topology of the phases. These five quantities characterise all phases,
whether they are disperse or continuous.*

The structure of the fibre phase in paper, for example, is described by the
shape, dimensions and concentration of the fibres and by their distributions.
The shape can give rise to orientation and the topological feature is that the
fibres are not isolated, but cross and contact each other.

Similarly, the structure of the air phase in a sintered metal is described by
the shape, dimensions and number of the channels, also by whether or not the
channels have a preferential direction (orientation) and whether or not they
are interconnected (topology).

Experimental methods to determine the phase structure are usually based
on cross-sectioning and scanning and are widely used by metallographers and
mineralogists. The volume fraction of one phase can be found very simply by
inspecting a two-dimensional cross-section. Regions occupied by the phase
appear as areas and the volume fraction of the phase is given in good approxi-
mation either by the fractional area covered by the phase regions or by the

* This system was first used by Holliday® to describe the geometry of disperse phases
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fractional length of a scanning line that passes through the phase regions.
Several cross-sections have to be scanned if the material is anisotropic—see
Underwood.®

Smith & Guttman derived a simple expression to find the surface area per
unit volume of a phase, a structural parameter of some importance for many
physical properties. It reads S/V=2N/L, where S and V are surface and
volume of the phase, N is the number of intersections with phase boundaries
made by a scanning line in the plane of a cross-section of which the length L
traverses the phase regions. The expression is independent of the shape of the
phase or phase regions.

The phase dimensions can be obtained by examining cross-sections, only
if assumptions are made about the shape of the phase regions. Fullman® has
derived for a number of geometrical shapes expressions to calculate three-
dimensional structural quantities by scanning cross-sections. Uniform and
varying sizes were considered. For rods of uniform size, to quote one example,
he finds the following expressions for their radius r and length / —

r = N;/zN, and [=2N,/N,

where N; and N, are the number of phase regions per unit length and area
covered by the phase of a random line or plane, respectively; Ny is the
number of phase regions per unit phase volume.

All scanning methods are based on the application of geometric proba-
bility. Applied to paper, they provide expressions for determining a number
of structural features of a sheet such as the number of fibres in the sheet, their
length density and orientation, the mean free fibre length and others, some of
which are given elsewhere.® The underlying concept of randomness is thus
seen to be a universal key to structural approaches not only to paper, but to
heterophase materials in general. This has some significant consequences that
will be discussed later. Before this, we consider the two main generating prin-
ciples for random structures in heterophase materials: natural growth and
artificial mixing.

Natural growth of isolated particles such as crystals in a liquid medium is
controlled by physical as well as geometric factors. The physical principle is
that of minimising the energy of the system. A characteristic feature is the
distinction between volume and surface energy. [A non-directional, non-
saturable bonding force (such as in Van der Waals’ and metallic bonds)
should always lead to the hexagonal closest packing. In fact, most substances
with these types of bond, crystallise in the cubic (face-centred) closest packing,
because the surface energy of the initial nucleus is lower in this case.®] The
shape of the particle is controlled by the directional growth rates, which in
turn are restricted by the equilibrium between the rate of energy loss (owing
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to increase in volume) and the rate of energy gain (owing to the increase in
surface).*® Local disturbances can lead to branching and subsequent in-
filling. The final size is limited by exhaustion of the surrounding medium. The
final shape is controlled by geometric factors such as steric hindrances and
relative atomic radii, but more fundamentally by topological factors, especi-
ally symmetry conditions of lattices. The prediction of the 230 possible
crystal structures, all found in nature, was one of the finest successes of group
theory.

In most practical cases, however, particles do not grow in isolation, but
impinge on each other. Their final sizes and shapes are therefore addition-
ally controlled by the presence of other particles. Impingement shapes and
structures are a fairly recent subject of study.®

In short, such structures are largely determined by the original spacing of
nuclei and their relative growth rates. As shown by Meijering,*?’ the distri-
bution of shapes of polyhedra grown by random nucleation is similar to that
obtained by subdividing space by random planes. The average number of
faces per polyhedron was found to be 15.54 and the average number of sides
per face (polygon) was 5.23. The distribution of particle lengths has the shape
of an unsymmetric modified error function. Coxeter®? used elementary
topology to describe the structure of a “statistical honeycomb’. His result was
that space-filling structures consist of polyhedra with an average of 13.56
faces, each having an average of 5.115 sides or vertices. These values agree
well with experimental results obtained by Matzke,*® who compressed lead
shot until all interstices were eliminated and examined the shapes thus pro-
duced. It may be mentioned that Bernal** carried out similar experiments and
used Meijering’s arguments in an article on the structure of liquids.

In most real cases of growing heterophase, in particular, polycrystalline
structures, however, physical and topological requirements interfere with the
laws of geometric probability and impose stochastic restrictions upon the
growing system—(/) the condition of minimising the surface energy, which
restricts the initial local geometry; (2) the condition of filling space, which
controls the long-range geometry and later growth.

In a two-dimensional system, minimum surface energy is achieved if three
phase boundaries meet at one point at 120°. An n-sided polygon contributes
therefore n/3 corners and the total number of corners is C=% > nP,, where
P, is the number of polygons with n sides. The total number of edges is, of
course, E=%>nP, If these values are inserted in Euler’s equation,
C—E+P=1 (where P= > P,=number of polygons), the result is > (6 —n)P,
=6, if edge effects are neglected. The number of polygons with 3, 4, n sides
are thus related to each other as a result of the physical and topological
restrictions mentioned. (For every 7-sided polygon that grows, for example,
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a 5-sided polygon must also develop in the system.) The average number of
sides is 6.

In three dimensions, the corresponding restriction is expressed by
> (6—n)P,=6(B+ 1) where B is the number of polyhedra or phase regions in
the system. The condition of minimum surface requires that four edges meet in
a vertex at 109.5° (the tetrahedron angle whose cosine is —%). It can easily be
shown™® that this leads to polyhedra with on average 13.39 faces and 5.104
sides per face, in good agreement with Coxeter’s result quoted above,*?
which was later improved to give an even better agreement.*® The non-
integer numbers indicate that heterophase structures do not naturally grow
into a regular pattern.* Shapes and sizes of the phases have distributions with
means defined by geometric and physical conditions, the latter controlling in
particular the initial stages of growth.

Many heterophase materials, old and new, are made by consolidating an
artificial mixture of substances, the mixing having been done in a state of
higher mobility of the phases. Examples are the vulcanisation of a mixture of
rubber and carbon black, the setting of concrete, the manufacture of paper.

The absence of restricting physical phase boundary conditions permits an
even wider variation of phase relations and structures than found in natural
heterophase materials. Mixing is primarily a separating process and the main
effect that physical (and chemical) forces have is to prevent complete separa-
tion of the constituent phases. Uniform dispersion in this type of material is
therefore an ideal never completely achieved by mechanical mixing, although
addition of chemicals can considerably improve the dispersion.

In the case of an ideal dispersion of the phases, the geometric structure of
these materials would be controlled only by statistical laws and the given size
and shape of the constituents with results like the following—

1. Equal spheres fill 75 per cent of the space, if close-packed (hexagonal or
cubic), but only 60-63 per cent if randomly packed. Unequal spheres in random
arrangement can fill up to 85-90 per cent of the space. In general, random packing
results in lower bulk density than does regular packing. If paper could be made
by distributing the fibres randomly in three dimensions instead of depositing them
in layers, the result would probably be a much bulkier product, just as ceramics
and metals can be made with a wide range of porosities by sintering an originally
random array of isolated particles.

* The only ‘regular’ body of similar dimensions that can be stacked to fill space is
the truncated octahedron, suggested first by W. Thompson (Lord Kelvin) in 1887.4¢>
It has 14 faces, of which six are squares and eight regular hexagons. The mean number of
sides per face is 51, but these bodies do seem not to occur in naturally grown poly-
crystalline systems, in which the most frequent number of sides per polygon is always
found to be five.
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2. Two-dimensional networks of randomly mixed fibres form polygons with
an average number of sides of four, whereas randomly growing phases such as
polycrystallites or foams, controlled by physical as well as by statistical laws, form
on average six-sided polygons, as mentioned earlier.

A very characteristic feature of premixed and consolidated heterophase
materials is interaction between the phases in the mixing and in the consoli-
dation process, usually accompanied by a change in volume. Such interaction
can alter the shape and properties of the constituents, hence affect the struc-
ture and properties of the whole.

A system of glass fibres embedded in a polyester or epoxy resin, for example,
goes through a temperature cycle during polymerisation. The heat expansion
of resin is approximately ten times that of the glass fibres. When cooling
from polymerising to room temperature, considerable compression forces
can lead to kinking of the glass fibres, with corresponding effects on the
properties of the finished product.®™ A similar effect in paper was observed
by Page & Tydeman.“® Here, a swelling and shrinkage cycle is the effective
mechanism.

Summarising, then, the small-scale or local structure of heterophase solids
is determined by a number of physical and geometric factors that vary from
substance to substance. Common to all of them, however, is the non-uniform
large-scale or bulk structure. Except for a few materials such as fibre-rein-
forced metals with parallel fibres, the complete description of heterophase
structures must make use of statistical methods—in particular, geometric
probability—possibly with certain physical limitations.

The most general hypothesis on which a quantitative treatment can be
based is that the system is ergodic—that is, a large number of small samples
(volumes) give the same average for a specific property, structural or physical,
as found in a larger volume. The smallest volume to exhibit all the features
of the material with a given degree of confidence is called the representative
volume element or the representative cell. As Holliday points out,*® there
will generally be different values for the size of the representative cell for
different independent parameters such as concentration and size of phases.
The choice must be such that the material can be considered, with respect to
the property in question, to consist of a large number of independent repre-
sentative cells. Applied to paper, the concept of the representative cell would
mean that the formation of a sheet (the parameter being substance) is not
expressed by the size and density distribution of thick or thin spots, but by
the size and shape of an area whose substance lies within given limits of the
average.

The ergodic hypothesis has been found very powerful in other fields of
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physical statistics. It could also prove a powerful tool in dealing with hetero-
phase materials. Until now, only very few steps seem to have been made in
this direction.

Properties of heterophase materials

IN 118 most general form, the objective of a theory of bulk behaviour of
heterophase solids is to predict the response R of a macroscopic sample to
some physical condition x;, to which its representative cells are subjected. It is
assumed that a function of the form R= Gx; exists, where G denotes an opera-
tor that, for static phenomena, is a function of the material properties of the
representative cells and their stochastic relationship. If, for example, the x;
are elastic deformations of the elementary cells, G would contain the elastic
moduli of the cells, their distribution and correlations; R would then be the
bulk stress necessary to produce this pattern of deformations, determined by
a system of linear equations with random coefficients. According to an exten-
sive review by Hashin,®® the problem has not yet been treated in this form,
except for attempts by Brown®» and Prager®® to express the dielectric
constant of heterophase systems.

Usually, the approach is based on continuum physics and simplifying
models or assumptions such as stochastic independence are introduced to
incorporate the statistical nature of the problem. Furthermore, most of the
work done deals with mechanical properties.

One of the first systems that seem to have been investigated is that of a
continuous phase (matrix) containing a disperse phase of individual, inde-
pendent particles. A bulk property T of the system is related to the property
of the matrix T, and the volume fraction ¢ of the disperse phase by the
expression®® T'=Ty(1+ac), where a is a constant. Einstein®® was the first
to derive this expression for the viscosity of suspensions of spherical particles
in a Newtonian liquid, for which he found a=2.5. The theory has since been
adapted to a number of different shapes and other properties of the disperse
phase.

A similar expression was derived by Smallwood®® for the increase in
Young’s modulus of rubber produced by a dispersed solid. The constant was
again 2.5. The above equation holds only for small particle concentrations.
The effect of carbon black in concentrations up to 30 per cent by volume on
Young’s modulus of rubber can be described, according to Guth,5 by
expanding the equation to higher terms of ¢ —

E = Ey(1+2.5c+14.1¢%.

Most types of carbon black tend to form chains and higher aggregates. It is
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possible to take this into account by adjusting the constants and by introduc-
ing shape factors for the aggregates. Clearly, the original rigorous theory of
field distortions by the presence of dispersed particles thus gradually develops,
with increasing complexity of the system, into a method of interpolating
experimental results, a characteristic tribute to the limitations of existing
theoretical tools. A comprehensive review is given by Rutgers.?®> Amstein &
Reiner®” reported the interesting observation that Einstein’s law for dilute
suspensions describes the behaviour of concrete mixes with up to 60 per cent
fractional volume of sand, a result not yet understood.

Hill®® applied variational methods to investigate the elastic behaviour of
fibre-reinforced materials of regular geometry. A different model is one in
which the material is considered, at a certain distance from a dispersed
particle, to be homogeneous with different elastic properties. This method
was applied to fibre-reinforced materials. 2%

In all the previous cases, the disperse phase was treated as a disturbance of
the field in the homogeneous, continuous phase. If both (or more) phases are
comparable in the part they play in the elastic behaviour of the material, one
of two models is often used as a suitable starting point for a phenomeno-
logical description: the phases are considered to be arranged either in parallel
or in series.

In the first case, an applied stress produces a constant strain in each phase.
Young’s modulus is given by E=3 ¢,E;, where ¢; is the volume fraction of
the ith phase with Young’s modulus E;.

In the second case, the stress is the same in all phases and the strains are
different. Young’s modulus is given by—

1 (o)
E=2F,
For a two-phase system, this reduces to—
— E1E2 —
E = E102+E261’ ci1t+cg = 1.

The phase with the lower modulus has a greater effect on the modulus of the
system in the series model than in the parallel model.

The parallel model was found to apply very well, to quote one example, to
fibreglass-reinforced resins, when the fibres were fairly long and parallel to
the direction of applied stress. The physical mechanism in this case is transfer
of shear stresses across the fibre/resin interface. If the fibres are not parallel,
stresses normal to the fibre/resin interface cause local ruptures and Young’s
modulus drops almost discontinuously to a lower value, which depends on
fibre orientation and fibre length.*” The effect of fibre orientation on
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‘reinforcement efficiency’ was treated by Krenchel,®*® who derived an effi-
ciency factor—

n= [ cos* 4 a

where f(¢) is the distribution of the angle ¢ between the fibres and the direc-
tion of applied stress. For parallel fibres, »=1. For fibres randomly oriented
in the plane, n=3%.

The factor % also depends on the fibre length / as n=(/—2x)/l. Here, x is
the length of fibre near the ends that becomes ineffective for stress transfer,
owing to the failure of glass-resin adhesion caused by the high stress concen-
tration at the fibre ends. This was investigated by Outwater.®® The length x
is constant for a given fibre diameter, which means that there is a critical
length for a particular type of fibre, below which the fibres become virtually
ineffective. The existence of a minimum ‘transfer length’ was also observed
in fibre-reinforced metals.

In most systems, the elastic behaviour falls between those given by the
parallel and series model. The two models then represent the upper (parallel
model) and lower (series model) limits of bulk moduli. The derivation of
bounds (upper and lower limits) of bulk properties is one of the primary
objectives of most theories of heterophase materials, using different mathe-
matical tools and geometric models. Hashin®® arrives by statistical methods
at the following expression for the lower limit of the bulk modulus of a two-
phase system of arbitrary geometry—

_ _ 3(E;—E)
E=E+ [(Ez E1)02/1+_—~3E1+4G1 cl]

(G=shear modulus), instead of the expression for the simple series model
quoted previously. The upper limit is obtained by interchanging the indices
1 and 2. The limits are much closer than for the simpler models as one can
easily verify by using arbitrary numerical values for E; (=G;) and c¢; in both
sets of equations. Experimental verification is presented by Hashin & Shtrik-
man.®® Analogous expressions for dielectric properties were derived by the
same authors.®® These and similar model approaches are equally applicable
to other bulk properties such as thermal and electrical conductivity.

Often, there is a phase inversion with increasing volume fraction of one
phase: the formerly disperse phase becomes continuous and the formerly
continuous phase becomes disperse. (An example of this is cream with water
as continuous phase and fat as disperse phase, which changes into butter, in
which fat is the continuous and water the disperse phase.) In such cases, the
bulk property often obeys the parallel model in compositions for which the



34 Heterophase solids

phase with the higher value is the continuous phase and follows the series
model at the other end. This is demonstrated by the thermal conductivity of
magnesium oxide/magnesium silicate (MgO-Mg,SiO,) systems as a function
of the composition.®®:3%) It is highest for the pure oxide, decreases with in-
creasing silicate contents according to the parallel model and approaches the
lower value for pure silicate according to the series model.

A problem of particular importance is that of fracture. It can be approached
in two ways: from a physical point of view (mechanism of fracture) and from
a phenomenological-statistical point of view (ultimate bulk strength).

The most interesting feature of heterophase materials in this respect is
obviously the nature of the interfaces between the phases. It is reasonable
[Bikerman®®)] to consider an interface as a separate phase (interphase) with
a gradual transition of the bulk properties of one phase to those of the
adjacent phase.

Most theories of fracture assume perfect adhesion—that is, absence of
impurities such as air and water, which constitute flaws in the interphase.
Theories of the strength of crystallised solids usually give values that are
orders of magnitude higher than the observed ones,® because of local
imperfections of the lattice. In heterophase materials in which the stresses
concentrate at or near the interfaces, it is sometimes possible (with due pre-
cautions) to produce interfaces largely free from impurities. The assumption
of perfect adhesion is then somewhat more realistic. The strength of carefully
produced fibreglass-reinforced metals, for example, is known to be determined
by minute cracks on the surface of the glass fibres rather than by imperfect
adhesion between glass and metal.

If perfect adhesion is a reasonable assumption, it is unlikely for two reasons
as Holliday points out®-34.3%) that failure at the interface occurs.

Firstly, if failure begins between two atoms A and B belonging to different
phases, it can continue either between two atoms A or two atoms B or between
another pair AB. Since both A and B are backed by their bulk phases, it is
much more likely for a crack to proceed between atoms of the same kind
than along a path that lies in its whole length between A and B. In other
words, fracture occurs within one phase rather than in the interface.

Secondly, between two phases attraction forces of the Van der Waals’ type
that are caused by induced or permanent dipoles are equal to the geometric
mean of the forces within each phase. Thus, the adhesion must be stronger
than the cohesion in the weaker of the two phases.

The fracture of fibre-reinforced materials can be understood to consist of
discontinuous fibre fractures (in the case of glass fibres, for example, induced
by surface damage) until the fibres have reached the transfer length (see
above) at which point the matrix (continuous phase) breaks. The interface in
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these materials consists usually of atomic groups coupling the fibres to the
matrix. In glass-resin materials, these groups are provided by such keying
agents as organo-metallic or organo-silicon compounds, of which the metallic
or silicon atom attaches itself to the glass surface, whereas the organic group
provides the bond to the resin matrix or even takes part in the polymerisation
process.*™ The interface forms in this case a separate phase between the two
phases that it joins. -

In fibreglass-reinforced aluminium, valency bonds between aluminium and
the glass can be established, thus forming a transition phase between the two
phases.

The reinforcing effect of carbon black in rubber is caused by reactive groups
of the phenol, keto or quinone type on the surface of carbon black particles
that cross-link the rubber molecules. The surfaces of fracture zones always
show a carbon black concentration higher than the bulk average. Thus, as
Payne®® points out, the paradox exists that the very particles that produce
reinforcement are also the weak spots in the system. The explanation is that
stress concentrations are highest near the carbon black inclusions. Fracture
occurs near the particle/rubber interface and proceeds to the next particle.
This diverting of the path of fracture is the most likely mechanism of the
reinforcing effect. Obviously, good dispersion of the particles and adhesion
to the rubber matrix are essential to produce this effect. In rubber with poorly
dispersed particles, fracture occurs within the aggregates and low strength
values result.

In concrete, to quote a last example, fracture is initiated by microcracks at
the sand/cement interfaces, caused mainly by differential shrinkage. Initial
crack propagation is slow, follows Griffith’s theory®” and can lead to re-
stabilising the system when the excess potential energy is dissipated in the
formation of new surfaces. Since this process is irreversible, a point will be
reached under continued stress when the system becomes unstable and fast
crack propagation sets in, which leads to ultimate failure.®®

Thus, every system has its own particular mechanism of fracture controlled
by the type of bonding forces—that is, the atomic structure and the chemical
nature of the phases—and by the phase geometry and structure.

Independent of the detailed mechanism, the phenomenon of fracture can
be described in statistical terms. Here again, the ergodic hypothesis and the
concept of representative cells provide the necessary basis. As in the case of
describing the structure, this hypothesis in its general form is too abstract and
concrete models and assumptions have to be resorted to.

It may suffice to mention the work by Daniels,®® who investigated the
fracture of bundles of threads and by Weibull,“® who postulated a specific
distribution of local strength of heterogeneous materials, to which he applied
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extreme value statistics. A particular result, the dependence of tensile strength
on the sample size, was found to apply to paper.“® Another version of this
weak spot approach®? allows, at least in principle, the determination of the
size of the representative cell by adjusting the parameters of the statistical
model to fit experimental observations of the decrease of the tensile strength
of paper with increasing strip length. The theory of extreme values was used
by Epstein & Brooks®“?® in a study of the dielectric strength of paper capaci-
tors, also by Corte, Kallmes & Jarrot“® in an investigation of fibre bond
fractures in thin paper sheets.

Conclusion

THE cLASS of heterophase materials is so large and varied that no general
theory or even phenomenology exists nor is likely to emerge in the near
future to cover all the observed facts in one single approach. A multitude of
approaches from various directions has to be used at present, which may
gradually converge towards a central, unifying and workable concept to
understand the behaviour of these materials in their different theoretical and
practical aspects.

A vast body of empirical knowledge and a variety of theoretical tools are
available. Their discussion had of necessity to be brief and general. Paper was
deliberately not put in the centre of the discussion. It may have become
apparent, however, that the newly emerging and rapidly growing materials
science is resourceful enough to embrace the whole of the class of heterophase
materials, of which paper is such a fine example.
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