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FLUID FLOW THROUGH PAPER
AND SHEET STRUCTURE

H. K. CORTE and E. H. LLOYD, Wiggins Teape Research
and Development Ltd., Beaconsfield, Bucks.

Synopsis—A theory is presented to describe the relationship between the
structure of a sheet of paper and the flow of fluids through it. Based on the multi-
planar concept of paper, it defines a pore through the sheet in terms of structural
and hydrodynamic variables. The effective pore size distribution thus depends on
the type of flow, as well as on the structure of the sheet. It is in all cases approxi-
mately lognormal, with a standard deviation proportional to the mean.

The theory is applied to the problem of the maximum pore size and to laminar
flow, for which the connection with the Kozeny-Carman equation is established.

The theory correctly predicts relationships between physical and structural
variables and fibre/sheet properties. Numerical agreement with experiments is
still limited by the lack of an appropriate definition of a layer in the multi-planar
model.

Introduction

THE PHENOMENON of fluid flow through porous materials has for a
long time received considerable scientific and technological attention. It has
produced a very substantial body of literature as one can see from the biblio-
graphy of Scheidegger’s book,®’ published in 1957, which lists some 1 100
publications. The literature on fluid flow through paper, not counting test
methods, amounts to little more than two dozen articles, most of which have
been published since 1950.

Among the few articles published before that date is the one by Lucas,®
who found the law of the capillary rise of liquids in paper and the one by
Skraup et al.,® who studied the capillary rise of acids in paper.

The first of these two investigations aimed at finding the physical law
controlling the process under consideration. Physical mechanisms were also
largely the subject of articles by Ruoff et al.**’ (diffusion analogy of solvent
flow in paper), Coupe & Smith® (penetration of printing ink), Kuniak®

(penetration of water into pulp sheets), Hsu®™ (penetration of varnish into
23—c.p.w. 11
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paper), Han® (aerosol filtration), Geitel® (flow through fibre plugs) and
Napier®? (oil penetration into paper).

The second of the two early articles mentioned above considers the inter-
action between the penetrating fluid and the paper. Such interactions formed
part of the subject in articles by Peek®’ (contact angle from capillary rise),
Vollmer®® and Schaschek®® (permeation of water vapour through paper)
and Pol¢in®% (liquid penetration into pulp sheets).

The fluid flow through paper is controlled, apart from interaction and
physical laws of transport, by the structure of the sheet. This aspect is con-
sidered in articles by Tollenaar,*>> White & Marceau,*® Bliesner®” and in
other publications referred to later. The structural aspect of porosity pheno-
mena in paper was also presented by Corte*® at the Cambridge symposium
in 1957 and by Brecht®® and Corte & Kallmes®® at the Oxford symposium
in 1961.

This paper offers for discussion an attempt to extend the statistical geometry
of multi-planar sheets to determine some of the structural and physical
factors that control the fluid flow through such sheets. The statistical geo-
metry of paper was outlined by Corte & Kallmes®?’ at the last symposium.
It was also shown®® how the concept of geometrical probability can be used
to interpret physical properties in structural terms. Paper was considered to
consist of a number of layers (multi-planar or MP structure), each having
the structure of a two-dimensional fibre network (2-D sheet). In this way, it
was possible for the first time to predict the results of physical experiments
in terms of fibre and sheet dimensions alone.

One of the examples chosen was the determination of the maximum pore
size of a sample of paper. The maximum pore size was found to be, in the
first approximation, a simple function of the length density of the fibres, the
substance of the paper and the area of the sample. The agreement between
theory and experiment was encouraging. Further encouragement was drawn
from the findings by Radvan and co-workers, presented at this symposium,
that paper cannot only be considered to have a layered structure, but does
in fact have such a structure. It seemed feasible, therefore, to apply probability
theory more rigorously to multi-planar sheets in order to describe their
porous structure in more detail. Since quantitative results were aimed at, it
was necessary to form a concept of a pore (a path of a fluid particle through
paper) that was mathematically tractable and at the same time represented a
fair approximation to reality.

The reality is, of course, an intricate network of interconnected voids and
spaces between fibres, which may even form a coherent phase to which the
concept of a pore in the normal sense of the word would be fundamentally
alien. For a quantitative description of fluid flow through paper, however,
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the definition of a model is unavoidable. Well-known models are Kozeny’s
model and its variations, the ‘drag theory’ model and others. In order to
define the model used in this article, paper is considered neither as an assem-
blage of fibres in a matrix of air (drag theory) nor as a two-phase system with
the solid and gas phases penetrating each other (Kozeny’s model), but as a
multi-planar network of a known number of discrete fibres of known shapes
separated by spaces that form the paths for the flow of fluid particles. In this
way, the porous structure of paper, hence the fluid flow through it can be
expressed in terms of fibre and sheet dimensions.

A particular application of the theory that we have in mind is to extract
from the evaluation of experiments involving fluid flow more information
than hitherto seemed possible about the structure of consolidated fibre net-
works, their degree and uniformity of compaction, two-sidedness, etc.
Although the theory is still incomplete at the time of writing, it outlines in its
present form the basis for such an approach.

Model and definition of a pore

THE MODEL considered here is best visualised in the form of a schematic
cross-section through a multi-planar sheet (Fig. 1): The black areas are cross-
sections of fibres, the white areas are cross-sections of spaces between them.
The size of the latter in relation to that of the fibres is exaggerated.

TE B R

Fig. 7—Model of a multi-planar sheet

The sheet consists of m layers. Only vertical flow is considered and there is
no horizontal flow between fibres in adjacent layers. The number of paths
through the sheet # is equal to the number of pores (polygons) in one layer—
that is, branching or splitting of paths is compensated by the blocking of
others. A fluid leaves the sheet through as many openings on one side as it
enters it on the other side.*

A pore is a path through the sheet consisting of a series of m openings of
equal length. Its resistance to fluid flow is the sum of the resistances of the m
openings. The openings are polygons whose sides are the free fibre lengths?*

* Deviations from these definitions will be discussed in a later article: they cause the
final expressions to be modified by terms of successive approximation, but do not affect
the main argument
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in one layer. The size of a polygon is defined by the radius r of a circle of
equal area (see below). If the rate of fluid flow through an opening is propor-
tional to the power k of its radius, its resistance to flow is proportional to r =¥

The resistance to flow of a series of m openings is proportional to >7r;~*.
The effective radius of a pore p is therefore defined as—

P = (ij—k)w 0

where r has the distribution of polygon radii in one layer.

The pore radius is thus defined by three parameters—

1. The mean free fibre length in one layer, which controls the polygon radius
distribution. The mean free fibre length is in turn determined by the fibre dimen-

sions and the statistical geometry of the layer as described @L
2. The number of layers. This can be expressed by the substance of the sheet W
and that of one layer G by m= W/G . . )

3. The physical mechanism that controls the flow, expressed by the exponent k.
For laminar, molecular, turbulent and capillary flow, we have k=4, 3, 2 and 3,
respectively.

The definition of the pore radius by equation (/) implies that the fluid flow
through paper can be described by applying the appropriate transport
equation to a system of » parallel cylindrical capillaries, n being the number
of polygons in a layer of substance G. It is again determined by the fibre
dimensions and the statistical geometry of the layer. Most of the remainder
of this article is given to finding the distribution of the pore radius p, ;.

Pore radius distribution

THE DISTRIBUTION of p,, ; is found in two steps—

1. A rectangular grid model is introduced to approximate to the structure of a
layer. The distribution of the polygon radius r for this model is derived. It is

found to be approximately lognormal.
2. From this are successively derived the distributions of—

m m 1/k
(Zr,—k)’ (zri-k) and pp,
1 1

As a result, the distribution of p, can be expressed in terms of m, k and the
parameter of the basic grid.

Rectangular grid model

Whereas the distribution of the circumference of v-sided polygons in a
random network of lines is known to be x2 with 2(v—2) degrees of freedom, @2
the distribution of the polygon areas in such networks is unknown. It was



Fluid flow and sheet structure 985

shown in,®® however, that the mean number of sides per polygon is 4.
Furthermore, it is stated here without proof that the distribution of the poly-
gon angle ¢ is (1 —¢/m) sin $2* and that the probability of a polygon being
a triangle is 2—=2/6 ~ 0.35.?% This means that ‘roundish’ polygons are
much more frequent than oblong ones.

It was thought therefore that the polygon area distribution could be
approximated by considering a rectangular grid of fibres that divides the
plane into rectangular cells or pores. The sides of a typical pore represent free
fibre lengths and have a negative exponential distribution with parameter
y=1/g, where g is the mean free fibre length of the layer. It should be noted
that the distribution is independent of the fibre width as discussed previ-
ously.®® Denoting by x and y the sides of a pore making a rightangle, we
have therefore—

Sx)=ye ™ and f() =ye™";
In order to find the distribution of the polygon area a=xy, we introduce—

xy =0

§=Inx; g(f)=ye e =yefe ™
n=1Iny; gln) =ye e
Putting «=£+7, we have—

+
o) = [ g0t

+ ©
= 72 ev f eV ter - "df
-

Similarly— —0 < én<©

or, with e*=g and ¢»(a)=zll-h(a)——
Hay =y [Tererrmrog )
The integral in equation (3) was evaluated graphically and the distribution
so obtained was compared with the results of a simulation on an IBM 1620

computer. We are very grateful to Dr O. Kallmes and Miss G. Bernier for
providing data obtained from 584 random polygons. The mean free fibre

TABLE 1
Class (units)
Frequency
0-0.02 0.02-0.04 0.04-0.06 0.06-0.08 0.08
and over

Simulation 0.727 0.116 0.069 0.034 0.054
_Equation (3) 0.668 0.152 0.072 0.038 0.070
Equation (4) 0.828 0.065 0.042 0.022 0.043
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length in the experiment was g=0.159 units. With this value, the results
compare as shown in Table 1. The values in the last line of the table were
calculated from an expression derived in a previous publication [equation
(26)@®)], which can be written as follows—

— a—tVan
#ar = YT L@

The grid model appears to be the better approximation. For this reason and
another that will become apparent later, it was chosen for the calculation of
the required polygon radius distribution.
The polygon radius (the radius of a circle of area equal to that of a rect-
angular polygon) is defined by—
r=Vxyr N ©)
We put z=y and make the one-to-one transformation—

O Y L . L
a or  z 0z @ z2

D_o P_,

y==z or 0z
Since x and y are independent variables, the joint distribution g(r,z) is then—
a(x,y)

g(r,z) = f(X) f(y) a(r’z)

The Jacobian has the value 277/z, hence—

g(r,z) — ,),2 e—v(x+y).?

_ 2ar

Integration over z gives the distribution of the polygon radius as—

h(r) = J:o g(r,z) dz

—y(r2
2e y(r2n/z+2)

0
= 2mry? f %e‘}’(ﬂlezi-z)dz
0

, (=1 e~ Varz (Yar2z +2/Vm?)
= 2mry - dz

0o 2

We put t = w_fE, thatis, t~1'dt =z 1 dz

@ —_—
Therefore, h(r) = 2ary? f f-le —AVara+t1) gy
[
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Now, the modified Bessel function of the second kind (also known as the
modified Hankel function) of degree v is defined by—

KV(ay) = %avJ‘ e—sz(t+t—1)t_1 dt
0
With V=O, 05:1, we have—
Ko(y) = %‘fw t~le~tvt+t=1) gy
0
h(r)

0.6-\

\

\
\|
0.4 - /\°
° \\ — h(r)= xAko(x)

= h@=FFexp-X)

S

S~
= -
0 1 2 3 4 S s =X

Fig. 2—Polygon radius distributions—seé text, equations (6) and (7)

and with 1y=yV=r?, it follows that—

2K, 2V 7r%) = f“’ f-1 e-rmEar- b gy _ D)

0 2my%r
Finally, then h(r) = 4nry’K,(2ryVm)
or h(r) = bxKy(x) . . . (6)
with b=2V7 and x = br

The function K,(x) is tabulated.®® Fig. 2 shows the distribution A(r) for
b=1 (that is, the unit on the abscissa is 2V/7/3).
If equation (4) is transformed to r= V a/, the resulting distribution is—

hr) = mye~ ™" . . . )]
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This is the broken curve in Fig. 2. It is negative exponential with a maximum
at zero radius, whereas the distribution (6) has a maximum defined by the
equation—

dKo(x)

% _ b[m,(x)HW]

[ax

2 b [Ko(x)-—xKl(x)] ~0

which is satisfied by x=0.6 (see Fig. 2).

It was found experimentally that pore radius distributions of paper, what-
ever the method of determination, have a maximum at a value of r>0. This
is the first reason that the grid model is considered to be the better approxi-
mation. Another reason, closely related to the former and of some mathe-
matical convenience is that the distribution derived from the grid model can
be approximated reasonably well over a wide range by a lognormal distribu-
tion. This is shown in Fig. 3, where the cumulative of equation (6) is plotted
on a logarithmic scale against x. The cumulative distribution is obtained
from—

br br
H() = f xKo(x) dx = [—xKl(x)] = 1—brK,(br)
0 0

The points lie almost on a straight line. This means that in this range In r
has a normal distribution with mean p and standard deviation ¢. The values of
w and o are found from the mean and standard deviation of r, using the well-
known relationships—

E(r) = et+%o?
) =e ) } ®)

Var (r) = E%(r) (e" -1

According to the grid model, equation (5), we have—

E() = %-E(v?c)-m/;) - %[E(v?c)]z

o )
Since EWVX) = 'yf xhe~ " dx = y~% j u”e % du
0 0

=y %I @) = §Vnly
we have E(r) = Vajdy

Moreover, E@r?) = %E(xy) = %[E(x)]2 = #

1/1 =
Hence, Var (r) = ?(;—E)
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Inserting these values into equation (8), we obtain—

o2 Var (r) _ 16
e _1+E2(r)_112 60
e ¢
et = E(r)e %" = 16
Numerically, w= —1055Iny; o% = 0.485 . . .

The result of the first step is that, in one layer, the logarithm of the polygon
radius has approximately a normal distribution with mean and variance
given by equation (9).
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Fig. 3—Cumulative polygon radius distribution (grid model)

Multi-planar sheet

The convenient property of lognormal distributions is that powers of the
variable are also lognormally distributed. In particular, if the distribution of
In r is normal (u,0), the distribution of —k In r is normal with—

w = —ku; o, =ko . . . ({10)

Thus, r~* has a lognormal distribution.

The next distribution needed is that of >™ , r,~*. Use is made here of
another convenient property of lognormal distributions—the fact that they
have the form of gamma distributions. One can easily show that the familiar
x? distribution (which is a rescaled gamma distribution) is very well
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represented by a lognormal distribution. This means that the addition law
of gamma distributions can be applied to the distribution of %,
The distribution of a variable u of type I'(c,n) is defined by—
ur—1 e—ulc

Sflw) = W

Mean and variance are readily found to be—
E() = cn; Var (u) = ¢n

The addition law states that, if the variable u; is of type I'(c, n,) and the
variable u, of type I'(c,n,), then the variable (u, +u,) is of type I'(c, n,+#s).
Applying this to r~*, we have the result that 37, r;,~* is of gamma type
I'(c, mn), hence it has a lognormal distribution with—

m

E(i ri"‘) = mE(r~*) and Var (Z rf") = m Var (r%)

i=1 i=1

Mean and variance of the distribution of In (3~ r,~¥), denoted by p, and
o, are found as before, using the appropriate form of equations (8) and (8a).
Instead of equations (8), we have—

mE(r—k) = m et t%012 — ehgt+%0,2

un
m Var (l"_k) = me2 +”12(6”12 — 1) = @24z +”22(e”22 — 1)

Whence, in analogy to equation (8a)—

g2 _ Var (r %) 1 o2 S ( 1
€ —1+m—l+a(e —1)—EC +(1 m)
(11a)

-%
e = mE(r-%)e=%%" = m e“l’”/Z"lz[l e"12+(1—l)]
m m) |2

Finally, the distribution of p,, is found from that of (3, r,~*) by using
again the power law of lognormal distributions. Writing the defining equa-

tion (1) in the form—
1 e . . . (a)
Pmi = (— E r k)

or In ppy = -—]lc(anr,""—lnm) 1)
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we see, that In p,, , is normally distributed with parameters (u3, o3), where—

1
r3 = —E(#z—ln m)
(12
1
and 3 = 702
In analogy to equations (8), the mean and standard deviation are found to
be—
E(pps) = ot 405"
- (3)
Standard deviation (pp ) = E(pmi)y/e%% —1

If ug and o3 are successively expressed by ug and o, from equations (12), u,
and o; from equations (//a), p and o from equations (/0) and the latter
eliminated by equations (8a), equation (/3) becomes—

16 k2 (k+1)/2k2
AN (';r—z) +m—1

m

.. 16\1/m . Y
Standard deviation (ppx) = E(pm.i)- [(?> .em—1)/mk _1]

To the degree of approximation accepted in this discussion, the following
more convenient expressions are sufficiently accurate—

1 ., [e?® 4 m—1]%+1u2k?
En) = L e m=1]

m
Standard deviation (pp ) = E(pp.)Ve%2 ¥ —1 (15)
where e%2® = l(e‘/Z"2 ~D+1
m

The final result is that the pore radii in multi-planar sheets are approxi-
mately lognormally distributed with mean and standard deviation given by
equations (/4) or (I5). The distribution has the following form—

fp) = L1

L2 .a—(1/2052)(1n p—py)2? ) ) 16
V2 p S o (16)
where pg and o3 (the parameters of the normal distribution of In p) are given
by—

1 A% 1., 16 1. [1 (16\¥ m—1
H3 = _E{_klnm-*-ik 11'171_—2—5111 [E(P) +——m ]}

{u7)
Ll [1(1_6)k2+m———— l]
%= 2% [m\2 m
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These equations state the relationship between the pore radius distribution
on the one hand and the parameters y, m and k on the other as discussed in
connection with the definition of a pore, equation (1).

It was first noticed experimentally®® that pore radius distributions of
paper are lognormal with a maximum frequency at p>0 and not at p=0.
This has since been widely confirmed, recently by Bliesner.*? Corte*® also
found that, comparing a variety of paper grades over a wide range of porosi-
ties, the standard deviation of the distribution is proportional to the mean.
This also was confirmed by Bliesner.?

1/k 044

m ——
gri*k —— — EXPECTATION OF EFFECTIVE RADIUS
T — — STANDARD DEVIATION OF EFFECTIVE
o ) RADIUS
k=2

03

0.2.

01
0.5 0 20 30 40— 50

Fig. 4—Mean and standard deviation of pore radius distributions
(unit =mean free fibre length)

Both results are given by the theory. The proportionality between standard
deviation and mean follows from equation (15). The coefficient of variation is

seen to be Ve%*—1. From equation (/ 7), it follows for laminar flow (k=4)
that the value is (1.622m~Y*€—1)¥2, The coefficient of variation is thus
independent of y and depends only little on m—that is, it is almost unaffected
by fibre and sheet properties (for m=1, 10, 25, 100, the values are 0.79, 0.63,
0.57, 0.47, respectively). The importance of this result is that more porous
papers have not only larger, but also less uniform pores than denser papers.
This fact, confirmed by general experience, is now recognised as a conse-
quence of the basically random structure of the paper web as it is deposited
on the machine wire and consolidated in the press and drying sections. Paper
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with large and uniform pores (as required for certain types of filter paper)
cannot be made without interfering with the random structure. This property
is readily achieved in the manufacture of a woven textile fabric or a metal
wire mesh, which is the opposite of a random process.

A particular result of the theory is the effect of &, the type of fluid flow on
the pore size distribution. Fig. 4 shows the mean and standard deviation as
functions of m for four values of k, representing laminar, molecular, turbulent
and capillary flow. Fig. 5 shows the resulting pore radius distributions for
(m=750). In both graphs, the value y=1 was used—that is, the unit of the
ordinate of Fig. 4 and of the abscissa of Fig. 5 is the mean free fibre length
of a layer. :

40

30
t: 20
z k=5
o)
g
€10

\\\
0O 01 0-2 03 0-4 05 06 07

STANDARDISED PORE RADIUS

Fig. 5—Pore radius distributions (unit=free fibre length)

One notices that the same paper appears more open to capillary penetra-
tion of a liquid into it (k=0.5) than to laminar flow of the same liquid
through it (k=4). Besides, it appears more uniform to turbulent flow (k=2)
than to laminar flow. No experimental check of this behaviour was available
at the time of writing.

Maximum pore size

WE DERIVE the expression for the radius of the largest pore, in order to
compare it with the result presented in 1961.2% The largest pore as deter-
mined by the ‘first bubble’ experiment was defined as follows. In each pore,
consisting of m polygons in series, one of the polygons is the smallest (called
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bottleneck). There are n bottlenecks and the experiment gives the largest of
them.
As stated earlier, the cumulative polygon radius distribution is—

H@E) = 1-br-K,(br); b=2yV7w . . (18

The probability that s is the smallest radius in a sample of m polygons is the
probability that all m radii are larger than s—

P(Sp, > 5) = [1—H(s)]"
The cumulative distribution of bottleneck radii is therefore—
F(s,) = 1—-[1—H(s)]" . . . (19

Of n bottleneck radii, the number of those larger than a given value r, is
n X probability (s,,>r,) or n[l — F(ro)]. For a large value of n, a convenient
definition of the ‘expected largest’ bottleneck, r, is given by making the last
expression equal to unity. Thus, r; is defined by—

[1—H(rl" =

S|

or, with equation (18), as—
2V re- KyQyVa-ry) = n=tm N 1)}

Fig. 6 shows r, in units of §=1/y as a function of m for four values of n. The
curves are very nearly hyperbolic. Fig. 6 shows also that increases of n by
factors of 10 add constant increments to r,. This means that r, is proportional
to log n. Thus, the maximum pore radius is approximately inversely propor-
tional to the number of layers (that is, the sheet substance for a given type of
fibres) and directly proportional to the logarithm of » (that is, the sample
area). The same result was found by Corte & Kallmes [equations (8) and
(11)]®® using a negative exponential polygon radius distribution. It con-
firms the impression gained from Fig. 2 that the right tail of the polygon
radius distribution is not far from negative exponential.

For a qualitative numerical estimation, we refer to an earlier publica-
tion,®Y equations (5)—(7), which, for the mean free fibre length, g=1/y, give
the expression—

An;  2nmA  wA  aww

&= 20 " P " 2mA T 3G @D

Here, n; and n, are the numbers of fibres and fibre crossings in a layer of the
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sample, A its area and A and w the mean length and length density of the
fibres. The last member of equation (27) results from putting—

nAwj/d = G . . . . (2
which is the substance of the layer. Using equation (2), this becomes—
g = mwm/2W . . . . @3

If the relationship between ry/g and m in Fig. 6 were hyperbolic of the type
rom/g = constant = C, we would have—

roW =a2xCxw . . . . (29
o
1.0 n=1 O3
4
N=10¢
0-8
n=105o
0.6
04 :
02 :
5 10 15 m—20

Fig. 6—Maximum effective radius as a function of thickness ()
for various sample sizes (#) (unit =mean free fibre length)

and the right side of this equation would correspond to the quantity K in the
Corte & Kallmes equation (12).2% In fact, C is not quite constant. For
103 < n < 10%, which is the range for samples of 10 cm? area, C varies between
4 and 6.5. Therefore, since w is of the order 2 x 10~¢ g/cm, ro W has values in
the range 0.12-0.20, if the substance is given in g/m2. The result agrees
reasonably well with those reported in 1961.%%
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Laminar flow

ACCORDING to the model, the volume rate V of laminar fluid flow through
a sheet is given by Poiseuille’s equation for n pores of length / and radius
distribution f{(p), equation (16)—

V=22 87 nE(p") N 2!

where p is the pressure and 7 the viscosity of the fluid. The fourth moment of
the pore radius distribution E(p*) is given by—

E(p%) = edg +8052

By substituting successively equations (12), ({1a), (10) and (8a), this becomes

= ) ) 25

07g.......(26)

If in equation (25), the thickness of one layer (/) is replaced by L/m, where
L=thickness of the sheet, equations (25) and (26) combine to give—

8 L -n-0.7g* . . . @
Experimental checks were made by using air permeability data. The follow-
ing units were used—V¥ in cm?®/min, area=10 cm?, p=100 mm water gauge,
n=1.75x 10~* poise. With these values, equation (27) reads—

V =092x10°xn/Lxg* . . . (27a)

Both n and g depend numerically on the definition of a layer. The problem
of a satisfactory definition of a layer has not yet been solved. Therefore,
whereas trends of relationships between structure and flow are correctly
predicted numerical agreement between theory and observation is at present
only qualitative. This is particularly so in the case of equation (27a) because
of the greatly magnified effect on the flow rate caused by even small varia-
tions of g.

As an illustration we compare values for g calculated from equations (27)
and (27a). From equation (13),*® we quote the expression for n—

_GA(G 1 —com
n = T(WW_/\) c . . . (28)

where w is the mean fibre width. A layer is here defined by its substance G,
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giving the same result for . A typical experimental result is the air perme-
ability of 8.4x10* cm®/min for a sheet made from unbeaten softwood
sulphate pulp, of substance 30 g/m?2. The other data were w=1.8 x 10~° g/cm,
©w=39%x10"3 cm, A=0.283 cm, L=0.0075 cm, A=10 cm?. Different values
of G give the following values for g, calculated from equations (274) and
@n—

G = | 1 ' 6 | 10 I 15 ' 25
FEquation
27a 3.78-10-2 1.65-10-3 1.38-10"2 1.68-10-3 2.23-10°3
21 2.82-102 4.71-10°3 2.83-10-3 1.88-10-3 1.13-10-3

According to the table, a layer would have a substance of about 15 g/m2.
Similar values were found for sheets made from different unbeaten or slightly
beaten softwood or hardwood pulps. In the case of moderately or highly
beaten pulps the G values were even higher.

Such high values for the substance of a layer can be interpreted as indicat-
ing only that the structure of a layer is denser and the mean free fibre length
smaller than given by equation (27). This is probably due to the preferential
penetration of fibres from adjacent layers into the wider openings of a given
layer (‘splitting”) and the ‘blocking’ of preferentially smaller openings as
mentioned earlier in connection with Fig. 1.

For the present discussion of general relationships between structural and
physical variables, it is sufficient to define a layer as a slice of the sheet having
a fractional open area p(o) of the same value as the fractional void volume e
of the sheet. This makes a comparison with the Kozeny-Carman equation
possible. The void volume is given®?’ by—

€ = p(O — e—Gw/W
whence G="2mn (1) . . . (29
w €

If we simplify equation (28) by considering fibres long enough to make

l<<—g, we obtain—
A wTw
_ G2A.

= €
TW?

(29a)

Thus, equation (27) becomes—

128 4L ~ GZ
24—c.p.Ww. I
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or, with equation (29), it is—

_0.7=* pA_ .,

V—mxn—Lx (30)

€ X w2

InZ (1/€)

Here, an empirical factor B<1is introduced on the right side of equation (21).
Kozeny-Carman’s equation can be written as follows®5 ~27—

pA e

V=T 55 50=e¢

€2

where S is the surface per unit volume of fibres. From a comparison of
equations (30) and (31), it follows that—

€2 0.77* , 1 .

50—~ 18 (o5 62
In our model, the specific surface S is given by—
e M
S=i=>xz -+ - - - ®

where M is the mean numerical ratio of a polygon’s circumference to its area
in a layer. If g is again expressed by equations (27) and (29) and corrected by
the factor B, one obtains—

€ . 21n (1/€)

S=1—EXM Brw

Introducing this in equation (32) gives—
M = 0913/B? . . . . (39

The correct value of M for the grid model of a layer is given by—

M= 2E(x+y) - 45(3%)

Xy

— ® 1 -rX —_
= 4'y£ > © Y dx = o0
thus showing the limitations of this model at the boundaries. The value of M
must, of course, remain finite, which means that the extremely small polygons
for which M becomes large do not contribute to the flow. A more realistic
value is the one of a square of side length g for which M =4. This would give
B=~0.48. The correct derivation of B by an adequate definition of a layer is
thus the problem that remains to be solved to complete the theory.
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Conclusion

THE MULTI-PLANAR grid model leads to pore size distributions in accord-
ance with general experience. The particular result that the effective pore size
distribution depends on the mechanism of its determination is characteristic
for the definition of a pore, which is partly structural, partly physical.
Different types of fluid flow are described by using the appropriate moments
of the pore radius distribution. Application of the theory to laminar flow
gives formal agreement with the Kozeny-Carman equation.

The length density and/or width are the fibre properties of outstanding
importance for fluid flow phenomena—a plausible result. Fibre length, on
the other hand, is relatively unimportant so long as the fibres are not too
short.

The concept of a layer, at present a somewhat arbitrary structural unit, has
still to be defined more precisely in order to make numerical predictions from
the theory possible.

ADDENDUM

Synopsis—Experimental results are presented to illustrate the effect of sheet density
flocculation, fibre orientation and two-sidedness on the mean and standard deviation of
the pore size distributions of handsheets made from different pulps. The effect of these
variables, except fibre orientation, on the penetration of liquids was also investigated.
The general agreement between the observed phenomena and the theoretical expectation
lends further support to the validity of the chosen theoretical approach.

Introduction

AT the end of the introduction of our paper, it was pointed out that experiments
involving fluid flow through paper should reveal structural features of the sheet
that result from differing conditions of consolidation. Depending on these condi-
tions, suspensions of the same kind of pulp fibres can be consolidated to give
sheets of — -

(a) Different densities (by applying different pressure).

(b) Different degrees of flocculation (by starting from suspensions with different con-
centrations).

() Different degrees of fibre orientation (by moving the wire at an angle to the direc-
tion of drainage).

(d) Different degrees of two-sidedness (by varying the suction and the conditions
mentioned above).

The theory at present, based on the model illustrated in Fig. 1, refers to random,
densely packed sheets. In order to interpret the results of fluid flow experiments in
terms of the structural characteristics mentioned, it would need to be generalised.
Before doing this, it is instructive to pose two questions—

1. Are the results of fluid flow experiments sensitive to differences in structure ?
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2. If so, will generalisations of the present theory, based on modified models, be likely
to indicate the trends of these effects?

This addendum describes experiments designed to answer the two questions.
The four structural effects mentioned above are discussed in turn.

1. Effect of sheet density

THE appropriate modification of the model (Fig. 1) to accommodate the effect
of sheet density on fluid flow would be a separation of the layers in the vertical
direction. Such a separation would clearly reduce the resistance to fluid flow and
shift the distribution of the effective pore radius towards higher values. This is
irrespective of the mathematical form in which this generalisation of the theory is
expressed.

In order to investigate the effect of sheet density experimentally, two sets of
handsheets were prepared: one set using a bleached softwood sulphate pulp and
one set using a bleached hardwood sulphite pulp. Both pulps were slightly beaten.
The fibre dimensions are listed in Table 2. The sulphate pulp fibres are coarser
and tend to give bulkier and more porous sheets than do the hardwood sulphite
fibres.

TABLE 2
Mean Mean Mean
Pulp fibre length, fibre width, length density,
cm cmx 108 glem x 108

Softwood 0.220 3.1 2.24
sulphate

Hardwood 0.068 1.8 0.98
sulphite

By applying different pressures and different pressing times on the British sheet-
machine, sheets with different densities were made from both pulps. The basis
weight was around 190 g/m?2. The pore size distributions were measured using the
air permeation method described by Corte.®® In this method, k=4 is used for
evaluation. All of the distributions were approximately lognormal. Table 3 shows
their means and standard deviations. The values are the averages of three deter-
minations.

The results show a very pronounced reduction in pore size with increasing
density, as one would expect. The logarithmic plot of the mean pore radius against
the density (Fig. 7) can be approximated by straight lines, indicating a relationship
of the form—

E(pp,a)=d“ . . . . . (39
where d=density and «=1.43 for the softwood pulp and 1.38 for the hardwood

pulp. This equation was used to eliminate the-effect of density variations in ex-
periments where the effects of other structural variables were studied. Since the
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TABLE 3
Basis Density, Mean Standard
Pulp weight, glem? pore deviation,
g/m? radius, cmx 10*
cm x 10*
193 0.235 22.12 14.73
Softwood 195 0.422 10.45 6.40
sulphate 195 0.583 6.56 3.88
192 0.690 4.72 2.64
190 0.294 8.48 4.48
Hardwood 191 0.564 3.74 1.91
sulphite 190 0.636 2.77 1.55
192 0.706 2.53 1.21

straight lines in Fig. 7 are nearly parallel, it follows that the ratio of the two mean
pore radii at the same density is nearly constant. The average value in the density
range 0.3—0.7 g/cm? is 1.94. The ratio of the mean length densities of the fibres is
2.28 (Table 2). The difference, if real, means, according to equations (/5) and (21),
that one layer in the softwood sheets, whatever the definition, would have to be
about 20 per cent heavier than in the hardwood sheets to be in formal agreement
with the theory. Further experimental and theoretical work will be required to
confirm such a result and to understand its meaning.
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Fig. 7—Effect of density on mean pore size

The penetration of oil into sheets of two different densities 0.526 and 0.644 g/cm?®
made from the softwood pulp was measured using a technique similar to the one
described by Napier.*? The difference here was that a limited amount of oil was
applied. This penetrated the sheets only to 80—90 per cent of their complete
saturation.
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In Fig. 8, the depth of penetration (percentage of the sheet basis weight) is
plotted against the square root of the time. According to Lucas,® a straight line
should result for unrestricted penetration. The slopes decrease at higher degrees of
penetration. This is due to a restriction to the flow, a result of the exhaustion of
the oil supply. In spite of this effect, an increase in density reduces the rate of
penetration, as one would expect.

§ I //
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/5

& 40 yxiot o

/ i
/¥

20 ——/k/o

2
vt (sec)
Fig. 8—Effect of density on oil penetration

For unrestricted capillary flow, k=1. Therefore, the ratio of the initial slopes
should equal the square root of the ratio of the mean pore radii. From equa-
tion (35), this latter value for the densities 0.526 and 0.644 is 1.16. The ratio of
the initial slopes is 1.27.

The result of this section is that an increase in sheet density retards both types
of fluid flow (k=4 and k=1).

2. Effect of flocculation

IN, ORDER to accommodate the effect of flocculation, the model (Fig. 1) would
have to be modified in that within each layer the fibre centres have a non-random
distribution. By this, we mean that a layer is composed of regions having a grid
spacing well above and others well below the average. Moreover, to ensure general
flocculation, the pattern of flocculation in any one layer is repeated (or nearly so)
through the thickness of the sheet. )

In a gross simplification, such a sheet could be thought to consist of two re-
gions—one in which the mean effective pore radius is x and one in which it is y.
- Each region covers, say, one half of the total area. Such a sheet would in principle
behave like a pair of capillaries differing only in radii. A flocculated sheet is then
represented by x > y and a random sheet by x X y or, to simplify manipulation,
x=y.
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The average flow rate through one capillary of the first pair (x> y) is given by—
const. 3(x* + y*) . . . . (36)

The flow rate through one of the capillaries of the second pair (x =y), with a cross-
sectional area equal to one half of the total cross-sectional area of the first pair, is

given by—
2 2\ k
const.(A/x -;y ) . . . . 37)

where the constants are identical for equal values of k. For capillary flow (k=1%),
the ‘average flow rate’ means the average depth of penetration at a given time. If
we now divide both expressions by the constant, substitute x2=a, y2=5b and
k =2u, then multiply them by 2%, the first equation becomes—

2= Yag*+b%) . . . . . (38
and the second equation becomes

(@a+b)* . . . . . . (39

For a=b, the two expressions are equal, regardless of the value of u. For u=1, the
two expressions are equal, regardless of the values of @ and b. Fora==band u=1,
it can be shown analytically that the first expression is always greater than the
second one for > 1 and smaller than the second one for u < 1. This means that
the flow through the first pair of capillaries is the same as through the second pair
if k=2, that it is faster than through the second pair if £ >2 and that it is slower if
k<2.

It is obvious without further elaboration that the same result will be obtained
when a set of pores covering a wide range of sizes (representing a flocculated sheet)
is compared with a set of pores covering a narrower range of sizes (representing
a more uniform or random sheet), provided both sets have the same total cross-
sectional area. One would therefore expect that flocculation accelerates laminar
and molecular flows (k=4 and 3), retards capillary penetration (k=1) and does
not affect turbulent flow (k =2).

Only laminar and capillary flows were investigated. Handsheets of 100 g/m?
basis weight were made from the two pulps used for the experiments in the previous
section. Decreasing degrees of flocculation were produced by decreasing the con-
centration of the pulp suspension over a range of 1—0.01 per cent. Almost random
sheets were made by couching together five layers of 20 g/m2, each of which was
made from a suspension of 0.002 per cent concentration. The degree of floccula-
tion was assessed visually. The means and standard deviations of the pore size
distributions were determined as described previously. Since the average sheet
densities varied slightly around 0.45 g/cm?, the mean pore radii were interpolated
to this density, using equation (35). The standard deviations were corrected in
proportion: Table 4 shows the results. Since the evaluation of the pore size distri-
bution is based on the assumption of laminar flow, the mean pore radius is a direct
measure of the resistance of the sheet to laminar flow. This resistance decreases
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with increasing flocculation. The effect is not very clear for the short-fibred hard-
wood pulp sheets, but remarkably pronounced for the long-fibred softwood pulp
sheets.

Fig. 9 shows the penetration of oil into two sheets of different degrees of floccu-
lation made from the softwood pulp. The oil penetrates more rapidly into the
sheet with light flocculation than into the heavily flocculated sheet, in spite of
its higher density. The sheets were made from suspension of 0.01 per cent and
1 per cent concentration, respectively.

TABLE 4
Concentration Basis Degree of Mean Standard
Pulp of weight, flocculation pore deviation,
suspension, glm? radius, cm x 10*
per cent cemx 10*

0.0020 98 Layered 9.3 7.8

Softwood 0.0125 105 Light 11.0 6.5

sulphate 0.2 105 Medium 14.2 12.5

1 109 Heavy 17.3 18.0

Hardwood 0.0020 83 Layered 11.1 4.7

sulphite 0.0125 87 Light 9.1 5.1

1 84 Heavy 13.3 10.3

0
o
|

o
2

Penetration, per cent

30

0 1 | 1
0 2 4 6
Time (t), sec

Fig. 9—Effect of flocculation

The result of this section is that, unlike the effect of density on the resistance to
flow, that of flocculation depends on the type of flow: it accelerates laminar flow
(k =4), but retards capillary penetration (k= %).
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3. Effect of fibre orientation

IN ORDER to accommodate the effect of fibre orientation, the model (Fig. 1) would
have to be modified in that within each layer the fibre axes would have a preferred
orientation. At the Oxford symposium, it was shown that the angular distribution
of fibres can be described with sufficient accuracy by the first two terms of a
Fourier series.?® It was also shown that fibre orientation slightly increases the
mean polygon area of a 2-D sheet. This is because the number of fibre crossings—
hence, the number of polygons—is reduced by orientation. The effect was found
to be small.

We had the good fortune that Mr G. Sauret from the Centre Technique de
I’Industrie des Papiers, Cartons et Celluloses, Giéres (France) very kindly sup-
plied us with a number of sheets made on the centrifuge-type sheetmachine, de-
veloped to make anisotropic sheets and for which he published details.?® We
wish to express our sincere appreciation to Mr Sauret for his assistance.

TABLE 5
Experimental Corrected for
density 0.4
Degree of Basis Density, Mean Standard Mean Standard
orientation weight, glem? pore deviation, pore deviation,
g/m? size, cm x 10* size, cm x 10*
cmx 10* cm x 10*
Zero 78 0.679 3.46 5.7 7.6 12.5
Low 71 0.368 10.90 8.4 9.5 7.3
Medium 83 0.375 9.10 6.7 8.4 6.2
High 73 0.389 5.20 4.1 5.0 3.9
Zero 122 0.403 2.41 1.6 2.4 1.6
Low 116 0.309 8.39 6.4 5.9 4.5
Medium 114 0.314 7.35 7.3 5.5 5.5
High 136 0.326 5.75 4.7 4.3 3.5

The sheets were made from slightly beaten bleached sulphite woodpulp. Two
series were made—one of 80 g/m? and one of 120 g/m? nominal basis weight.
Each series consisted of unoriented sheets and sheets with a low, medium and high
degree of orientation. The sheets were extremely uniform in appearance and the
different degrees of orientation were very apparent. The pore size distributions
were determined as in the previous sections. Table 5 shows their means and stan-
dard deviations (averages of four determinations). The experimental mean pore
radii show no discernible trend. In order to eliminate the effect of density varia-
tions, the values were corrected to a density of 0.4 g/cm?3, assuming that equa-
tion (35) applies to this pulp also. No improvement was achieved as the table shows.
It is therefore concluded that the effect of fibre orientation on the pore size distri-
bution is too small to be detectable by these fluid flow measurements. Oil penetra-
tion experiments were therefore not carried out.
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4. Effect of two-sideness

IN ORDER to accomodate the effect of two-sidedness on fluid flow, the para-
meter y in the rectangular grid model of one layer, characterising its mean spacing
would vary with the depth of the layer. For example, y could be higher in the
central layers of the sheet than near the two surfaces—that is, the sheet could be
denser in the centre than at the surfaces. If y were the same at the surfaces, the
sheet would then be symmetrical.

An unsymmetrical or two-sided sheet could be represented by a model similar
to Fig. 1, in which the average grid spacing 1/y increases from one side of the sheet
to the other. If the relationship between depth and y is, say, linear, such a sheet
could, in a gross simplification, be thought to have conical pores. It would in
principle behave like a truncated cone. If the radius of such a cone of length #,
varies from a value 7, at one end to (r, + ck) towards the other (¢ =a constant), its
mean effective radius is given, according to equation (Z), by—

e N R o e s | I

This expression is independent of the direction of flow—that is, of the sign of c.
It reduces pp,x="r, for c=0.

The rate of laminar flow through such a truncated cone is independent of its
direction. (This is, strictly speaking, true only for incompressible fluids, but we
assume it to be approximately true for gases also, if the pressure difference is kept
small. The physical complications that arise when the fluid is compressible are
not discussed here, because they do not affect the principal argument.) The rate
of capillary penetration, however, depends obviously on the direction.

Consider a liquid of viscosity » and interface tension with the pore wall ¢ rising
vertically into the conical pore defined above. The relationship between the height
of capillary rise /# and the time # is given by—

h2(c?h? + 4r,ch+ 6r,%) = 37‘7r03t . . . (€2))

This means, as one can easily verify, that the liquid penetrates faster into a con-
verging capillary (¢ negative) than into a diverging one (c positive) of the same
dimensions. For ¢=0, equation (4/) reduces to Lucas’ familiar equation (2)—

ar
2—77t
Both equations are valid only for values of 4 well below the equilibrium height.
For the penetration of liquids into paper, this condition is always fulfilled.

For easier comparison with experiments described later, let us also consider a
laminated sheet consisting of a top half with large y and a bottom half with small
y. Such a sheet would in principle behave like two capillaries in series. Consider
such a set with radii r; and r,, corresponding to those at the ends of the conical
capillary. Let the lengths be equal and the total length be the same as the length
of the conical capillary.

h? = 42)
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The mean effective radius in the case of laminar flow is, according to equation

(D), given by—
2 1/4
p2.a = r1"2(———r14+r24) . . . X))

The flow rate is again independent of the direction.
Liquid penetration into the first capillary of radius r; is described by equation
(42) with r=r; and into the second by—

h? rt\,  orp
Eoi-Eemo L a
where 7, is the length of the first capillary. The rate of penetration dh/dt at this
ol
47]h1

at the beginning of the second capillary. If r; > r, (convergent flow), the

at the end of the first capillary to

height changes discontinuously from

ary rt

4nhy 1ot
latter rate is higher than the former—that is, the liquid is accelerated when it
reaches the second capillary. If r; < r; (divergent flow), the reverse is true and the
liquid is additionally retarded.

TABLE 6
Composition of Basis Mean Standard
sheet and weight, pore deviation,
direction of g/m? radius, cm x 10*
Sflow cm x 10*
Softwood 98 10.22 9.3
Hardwood 96 6.05 6.1
Soft—Hard 202 6.11 4.6
Hard—Soft 206 6.32 4.2
Soft—Hard—Soft 297 6.97 5.0

In order to check these simplified considerations experimentally, laminated
handsheets were made by couching together sheets of approximately 100 g/m?
basis weight made from the pulps used for the other series of experiments. The
pore size distributions, determined as in the previous experiments, had means and
standard deviations as listed in Table 6. The figures are the averages of three
determinations and corrected to a density of 0.45, using equation (35).

It will be noticed that the mean pore sizes of the composite sheets are largely
determined by their denser layers as one would expect from equation (43). The
direction of flow has no appreciable influence on the effective pore sizes.

In order to illustrate equations (4) and (44), theoretical penetration curves are
plotted in Fig. 10a. The following numerical values were used—

Converging cone: r, = 10x 10 *cm;¢c = —2.5x10°2
Converging step change: r; = 10x10"¢4cm; r, = 5x10 % cm
Diverging cone: r, = 5x10"%*cm; ¢ = 2.5x 1072

Diverging step change: r; = 5x10"%*cm;r2 = 10x 10" cm
Total: 4; = 0.01 cm; 5 = 1.3 poise, o = 2.8 dyn/cm.
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One can see the different direction of the sudden change in flow rate when the
liquid reaches the second capillary: acceleration if the flow is convergent (upper
curve), retardation if it is divergent (lower curve). One can also see that these
curves resemble closely those for the convergent and divergent cones.

A study was made of the penetration of oil into sheets similar to those of Table 6:
Fig. 10b shows the results. The curves are averages of three measurements. The
direction of flow affects the penetration in much the same way as the capillary
model predicts, although the absolute penetration rates are much smaller than in
the models.
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Fig. 10—Effect of two-sidedness on oil penetration

The result of this section is that, in two-sided sheets, laminar flow does not
depend on the direction; the mean effective pore size is largely determined by the
denser layers of the sheet; capillary penetration is faster when the liquid moves
from the more open to the more closed side of the sheet than vice versa.

5. Coefficients of variation

THE coefficients of variation did not reveal anything unexpected. They are be-
tween 0.6 and 1, with higher values for flocculated sheets. They were remarkably
constant in the experiments on the effect of density (section 1).

Conclusion

THE experimental results presented here must be considered as preliminary.
More pulps will have to be tested under a wide range of conditions before quanti-
tative conclusions can be drawn and fluid flow experiments be used to study sheet
structure. The fact that a variety of predictions is confirmed by experiments, how-
ever, is encouraging enough to answer the two questions posed at the beginning
as follows—

1. Fluid flow measurements are sensitive to differences in density, flocculation and

two-sidedness, but not in fibre orientation.
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2. The present theory seems capable of such generalisations as to include these struc-

tural characteristics, which in turn are largely determined by the conditions of the
consolidation of the web.
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Transcription of Discussion

Discussion

My P. E. Wrist—Your thesis is that the mean size of the pores varies with
the uniformity of the sheet and therefore with the degree of flocculation. As
the degree of flocculation worsened, you will find a larger average pore size.
A corollary of this is that there must be fewer fibres per unit area at each level
through the sheet, since the average pore size can increase only if there is a
decrease in the total number of pores at each level. For a sheet of given sub-
stance, therefore, the non-uniform sheet must consist of more levels or layers
than the uniform sheet. In other words, the non-uniform sheet will have the
greater caliper. Is this deduction observed in practice ?

Dr H. K. Corte—The caliper does not really matter in this connection.
What I said was that the average size or the effects of increasing flocculation
on the average pore size depend on the method by which you determine the
pore size. It is found to be larger for flocculated sheets than for uniform
sheets of the same density when the flow mechanism used to determine it is
as in a laminar flow. It is smaller, however, when the flow is capillary. It is
independent of the degree of flocculation when the flow is turbulent.

Dr C. K. Meadley—It seems to me that the only thing remaining to provide
a final rigorous treatment is the non-arbitrary definition of a layer. Have you
any further thoughts for future work to rationalise this concept?

Dr Corte—] mentioned at the beginning that the horizontal flow was
neglected and its inclusion caused us some trouble and this is in fact connected
with the definition of a layer. So far, we have not found a non-arbitrary
definition and it seems to me that we will have to introduce some physical
definition, just as we had to define the size of the pore physically, but this
has not yet been achieved.





