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Noticeable improvements were achieved in the method for quality 
evaluation of formed paperboard containers. The method now allows for 
in situ evaluation of unavoidable wrinkle structures along the sealing rim 
of formed containers. An image of the sealing rim was provided. In this 
image, the contour of the sample was detected. The contour line was then 
offset to the inside of the sample, so that the new line was on the sealing 
rim, regardless of the original contour geometry. Along this offset contour 
line, the wrinkle structure was evaluated by using a previously described 
cross-correlation-based method. The repeatability and accuracy of the 
method were validated by comparing the detection results with the results 
from thorough human examiners. Furthermore, an approach to find the 
optimum settings for the wrinkle detection program is described and an 
outlook on implications for industrial adaptation of this method is given. 
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INTRODUCTION 
 

Through the recent works of Hauptmann and Majschak (2011), Hauptmann et al. 

(2014), Hauptmann et al. (2016), Hauptmann (2017), and Vishtal (2015), the geometric 

boundaries of press forming and deep-drawing of paperboard have been advanced from 

simple round cups and oval trays to complex packaging containers with concave sections 

and multiple geometric features. Some examples from these shapes are shown in Fig. 1. 

 

 
(a)   (b)          (c)      (d)           (e) 

 
Fig. 1. (a) Concave sections (Hauptmann et al. (2014)), (b) sharp edge radius and different radii 
(Hauptmann et al. (2016)), (c) concave/convex transition (Hauptmann and Majschak (2011)),  
(d) complex geometry (Hauptmann (2017)), and (e) with sealing rim 

 

For an industrial application of the technology, robust process and quality control 

is important. A forming, filling, and sealing machine for paperboard packaging needs to 

reach an output of ca. 60 parts per minute to be economically sensible. Machine downtimes 
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and quality rejects are to be minimized. A robust and inline quality evaluation is the 

prerequisite for such an application. 

For quality evaluation and assessment of the forming process, the wrinkles in the 

sealing rim of the paperboard container are examined. Broad wrinkles are optically 

displeasing and can prevent leakproof sealing of the container (Leminen et al. 2015). This 

also reduces the quality output of a forming machine. 

Previously, the detection and evaluation of wrinkle structures in the wall section or 

on the sealing rim have depended on the specific geometry and measuring setup. Müller et 

al. (2017) used laser topography that relies on scanning the container along a 

predetermined contour. The setup of Wallmeier et al. (2015) prohibited wrinkle detection 

on non-round geometries, and Leminen et al. (2016) required predefined regions of interest 

(ROIs) on the sealing rim for evaluation to work. The method described by Müller et al. 

(2018) was able to evaluate round and elliptical shapes, but it was limited to the observation 

of the wall section in two distinct ROIs. 

The current study is a continuation of the previous work and attempted to 

comprehensively advance the basic method detailed by Müller et al. (2018). Industry 

requirements for a fast inline evaluation of different geometries were addressed. The goal 

of evaluation one sample per second was reached and meets the industry requirement that 

every sample can be scanned at a machine output of 60 pieces per minute. The advanced 

method and setup allowed for an expeditious and accurate quality evaluation of the sealing 

rim of formed paperboard containers. The entire sealing rim was evaluated in one step. The 

method was not limited to a single geometry, but was applied to a broad range of sealing 

rim geometries.  

 

 

EXPERIMENTAL 
 

Method and Setup for Image Generation 
The evaluation chamber (Fig. 2) was comprised of a semitransparent, opaque pane, 

on which the sample was placed. The pane acted as a diffusor and was backlit by an LED-

matrix. Above the opaque pane, a camera was placed, so that the entire size of the sealing 

rim of the sample could be photographed in one image. 

Experiments with alternative lighting methods showed that only backlighting was 

robust against distortions (i.e., waviness and warping) in the sealing rim and could show 

the wrinkle structures with enough contrast to be discerned from the material structure 

itself. Tanninen et al. (2017) described a setup with backlit press forming samples as well. 

Figure 3a shows an image of a sample obtained with darkfield lighting. In darkfield 

lighting, the light-source is positioned at a shallow angle towards the illumination plane. 

Generally, darkfield lighting is suitable to produce a high contrast on surface structures. It 

can be seen that the curvature and waviness of the sealing rim led to a strong shadowing 

effect on the sealing rim that prohibited sensible wrinkle detection. The image in Fig. 3b 

was acquired under a dome light, which granted a diffused and even light source from a 

half-sphere dome above the sample. Still, the sample was not lit homogenously along the 

edge of the sample and the contrast was not sufficient. Figure 3c shows the resulting image 

of a backlit sample. The wrinkle structures in the sealing rim can be seen with a high 

contrast, which was beneficial for the following wrinkle detection. 
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Fig. 2. Setup for image acquisition 

 

 

 
(a)    (b)    (c) 

 

Fig. 3. (a) Darkfield lighting, (b) dome-light, and (c) backlighting 

 

The algorithm for wrinkle detection in the sealing rim was programmed in Python 

(Version 2.7.10.0, P, Beaverton, OR, USA), utilizing the OpenCV computer vision library 

(Version 2.4.11, opencv.org). The images for the wrinkle evaluation were loaded from a 

user-specified folder. The folder can contain an arbitrary number of images from many 

samples. Wrinkle evaluation was then performed in two steps: image preprocessing and 

wrinkle detection. 

 

Image preprocessing 

The original image was converted to an 8-bit grayscale image. This ensured faster 

processing times, as no information was needed for wrinkle detection because it was 

encoded in the RGB-channels. The edges of the image were cropped so that the sample 

was the only object in the image with a clear contour (Fig. 4a). 

The image was then opened to remove noise and disturbances. The erosion 

operation was followed by a dilation operation as described by Haralick et al. (1987). The 

image was scanned for contours with the OpenCV function findContours, which utilized a 
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contour detection method described by Suzuki and Abe (1985). The findContours function 

used a gray value-threshold to detect contours and listed all of the contours found in the 

image, ordered by size in pixels. The threshold was initially set to a gray value of 80, which 

was adjusted incrementally for stable contour detection. Of the contours, only the contour 

with the greatest length was kept and the rest were discarded. Contour detection could be 

assisted with a heuristic function regarding the expected contour length range. The length 

of the detected contour was measured and compared using the heuristic function. If the 

contour was within the range, it was used for further wrinkle detection. If the contour was 

outside the admissible range, the threshold value was increased and contour detection was 

started anew until an admissible contour was noted (Fig. 4b). This loop ensured that only 

the contour of the sample was detected and that contour detection was robust against the 

illumination variation between individual images. 

 

 
 

Fig. 4. (a) Original image, (b) contour detection failed, and (c) preprocessed image with contour 
(red line) 

 

Every pixel that was not enclosed by the contour was set to black (gray value = 0). 

Those pixels were outside of the sample and not of interest for detection of wrinkle 

structures. This image mask was then merged with the original, cropped image, which 

resulted in the final preprocessed image (Fig. 4c). 

 

Wrinkle detection 

The Cartesian coordinates (X, Y) of the contour line were transformed to polar 

coordinates (φ, ρ) and sorted by ascending angle φ. The coordinate transformation ensured 

that a continuous contour vector with unique φ-values was generated. To decrease the 

computing time, only every tenth (φ, ρ) coordinate pair was kept. The radial component ρ 

was decreased by a factor of 0.95 so that the contour line was on the sealing rim instead of 

on the outer edge of the sample. Finally, the coordinates were transformed back to 

Cartesian coordinates (X, Y) so that the program could identify each coordinate pair with 

a pixel (px, py) in the image. However, through the transformation and ordering of the 

coordinate pairs, now the (X, Y) coordinates were ordered so that an incremental sweep of 

the coordinate pairs in the contour vector was mapped to a continual sweep of the actual 

contour in the image. 

As proposed by Müller et al. (2018), a template of an ideal wrinkle with changing 

grayscale values (GV(x)) was built symmetrically to the middle of the image on the X-axis 

(x0), according to Eq. 1, with the sharpness (sn) scaled to the size of the template itself. 

Figure 5 shows a visualization of the resulting template. 

𝐺𝑉(𝑥)  =  𝑒−4log (2)(𝑥 − 𝑥0)2/𝑠n
2
             (1) 

(a) (b
)

(c) 
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Fig. 5. Template of an ideal wrinkle (Müller et al. 2018) 

 

The template was moved along the offset contour line. For each step, the cross-

correlation of the template and the section of the image on which the template was currently 

overlaid was calculated and saved for later, along with the current coordinates and the 

rotation of the template with regards to the center point of the contour line. The template 

was then moved to the next step, rotated by the current φ, and the process was repeated as 

is indicated in Fig. 6. To save computing time, the size of the iteration step could be 

adjusted, but was at least half the size of the template so that the same wrinkle structure 

was not detected multiple times. 
 

 

 
 

Fig. 6. Sweeping of the template along the offset contour line 

 

At each point, the template cross-correlation and overlapping image section were 

calculated and written in a new column alongside the respective coordinate vector. After 

the cross-correlations for the entire contour were recorded, the array with the correlation 

values was compared with a correlation threshold. Any values that were smaller than the 
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threshold were then set to zero and no wrinkles were marked as detected at this coordinate 

pair. The Euclidian distance between the coordinates of neighboring non-zero values was 

calculated and compared with a minimum distance. The minimum distance ensured that 

the same structure was not detected multiple times. Should there have been more than one 

non-zero correlation value within the minimum distance, then only the largest value was 

kept and all other values within the minimum distance were set to zero. This guaranteed 

that only the best fit was kept. 

The remaining non-zero values in the correlation array were counted. This yielded 

the amount of detected wrinkle structures. Furthermore, the standard deviation of the 

Euclidian distances between neighboring points that had a non-zero correlation value was 

calculated. As described by Hauptmann (2013), the standard deviation of the wrinkle 

distances can be used as a characteristic for the uniformity of the wrinkle distribution. 

The wrinkle structures were marked in the original image, which was saved 

separately (Fig. 7). The wrinkle data for this image was written to a database where it could 

be compared with the material and forming parameters of the original sample. 

 

 
 
Fig. 7. Preprocessing, contour detection, and detected wrinkles 

 

Invariance of the sample geometry and limitations 

Because the contour detection and subsequent wrinkle detection were not explicitly 

developed for samples with a round geometry, it was possible to evaluate non-round 

geometries without changing the algorithm. Examples of square and oblong shapes are 

displayed in Fig. 8. 

The ability to detect wrinkles on a broad range of sealing rim geometries enabled a 

flexible usage of the described detection method without the need for separate 

measurement setups. Additionally, the detected contour could be compared to an ideal 

contour so that variance in the geometry during the forming process could be evaluated. 

The described method was limited to wrinkles in the sealing rim or a flange of the 

sample. Wrinkles in the wall section could not be detected. For detection of wrinkles in the 

wall section, alternative methods have been previously reported by Wallmeier et al. (2015), 

Müller et al. (2017), and Müller et al. (2018). 
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The applicability was limited by concave sections in the sample. As was previously 

discussed, the XY-coordinates of the contour needed to be sorted unambiguously by the 

respective φ angle from the center of the contour to establish a continuous contour. This 

was not possible for very concave sections, in which more than one pair of XY-coordinates 

could appear at the same φ angle (Fig. 9). 

 

 
 

Fig. 8. (a) Wrinkle detection on square-like sealing rim geometry, and (b) wrinkle detection on 
oblong geometry 

 

Furthermore, it has to be noted that while the angular steps in the algorithm were 

constant, the relevant steps on the actual contour were not constant. This was especially 

true for the samples that displayed great changes in their curvature along the contour of the 

rim (Fig. 9).  

Hauptmann et al. (2014) discovered that the main challenge in forming concave 

geometries was the limited stretchability of paperboard and that wrinkles formed in 

different orientations in the concave sections. Those findings suggested that a different 

approach for wrinkle detection in concave sections might be necessary. 

 

 
 

Fig. 9. Limitations of the geometry invariance in concave geometry sections 

 

The described method required only a single image of the sealing rim and was able 

to detect the wrinkles on the sealing in less than a second using a standard laptop computer. 

An optional infeed system for the imaging chamber (Fig. 10) enabled automatic 

sample processing. This is an important step for industrial applications, where samples 

need to be evaluated in situ. Prospectively, the inline evaluation can be used to optimize 

the sealing parameters according to the wrinkle distribution present. 

 

(a) (b) 
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Fig. 10. Autonomous module for automatic sample imaging and wrinkle detection 
 

 

RESULTS AND DISCUSSION 
 

The main parameters for the detection algorithm were the correlation threshold and 

size of the wrinkle template. To establish the optimum settings for these parameters, an 

empirical study was conducted. The wrinkles on 54 samples of different wrinkle quality 

levels were counted manually by two independent examiners. Then, the automatically 

determined, average wrinkle quantity for all of the samples was compared for different 

setting of the correlation thresholds. The correlation threshold setting that achieved the 

same number of average wrinkles as the human examiners (�̅� = 38 wrinkles) was 

subsequently used for the automatic detection. Figure 11 shows that a correlation threshold 

of 0.75 was suitable. 

With the determined threshold, the influence of changes in the morphology of the 

wrinkle template was evaluated stepwise. Figure 12 shows the results of the investigation 

of the influence of different template sizes. Again, the results were compared with the 

results from the average manual wrinkle count (�̅� = 38 wrinkles) to acquire the optimum 

settings for the template size.  

In this study, the optimum settings were a template size of 16 px × 16 px and a 

correlation threshold of 0.75. Because the empirical adaptation of the template only 

depended on the wrinkle size, it was expected that those settings are applicable for a broad 

range of materials and geometries, as long as the size of the wrinkles is within detection 

range. 
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Fig. 11. Detected wrinkles for different correlation thresholds (n = 54)  
 

 
Fig. 12. Detected wrinkles for different template sizes (n = 54) 

 

To validate the correct detection of wrinkle structures and distinguishing of the 

wrinkles, discolorations, and other imperfections on the sample, the same images presented 

to the detection algorithm were also inspected by a human examiner. In the first test, the 

resulting images with marked wrinkle structures (Fig. 13) were checked for false positive 

and false negative detections and omitted wrinkles. 
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Fig. 13. Sample with marked wrinkles for manual validation and false positive and false negative 

detections; the sample shown has more wrinkles than the average (𝒙 = 38 wrinkles) 

 

In the second test, the human examiner was only presented the original images and 

instructed to mark and count the visible wrinkle structures. Figure 14 displays the wrinkle 

quantities detected with the algorithm and by the human examiner for the same samples. 

 

 
Fig. 14. Comparison of the automatic detection and wrinkle detection by a human examiner (n = 
40) 

Wrinkle quantity, human examiner 

W
ri

n
k
le

 q
u

a
n

ti
ty

, 
a
u

to
m

a
ti

c
 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Müller et al. (2019). “Wrinkle detection in sealing rims,” BioResources 14(2), 2536-2549.  2546 

To investigate the repeatability of the detection results, the same images were 

evaluated several times. With the same images and settings for the contour detection and 

wrinkle template, the evaluation proved to be consistently repeatable without any 

deviation. Furthermore, 10 different images of the same sample were taken and evaluated. 

Figure 15 shows a boxplot of the variation from the mean wrinkle quantity for six separate 

samples. Each was evaluated 10 times with 10 individual images of the same sample. 

 

 
Fig. 15. Boxplot of the variation in the wrinkle quantity when repeating the evaluation with 10 
different images of the same sample 

 

It is noteworthy that, while there was some variation in the wrinkle detection results 

when the program was confronted with different images of the same sample, those 

variations were comparatively small and allowed for a distinction between different 

wrinkle quantity levels. 

Optionally, the wrinkle detection could be performed with slightly altered settings 

for the template size and sharpness. A comparison of the values and coordinates from 

multiple detection runs allowed for sorting of the wrinkles into different wrinkle classes. 

In a real sample, wrinkles of different sizes form; therefore, multiple detection runs with 

different settings can be used to accurately detect wrinkles of all sizes. With multiple 

detection runs, it was necessary to avoid double detection of the same wrinkle structure by 

comparing the scored correlation values for different templates and discarding the smaller 

values once more. 

Variation in the size of the template used for wrinkle detection allowed for 

classification of the wrinkles into different classes of wrinkle sizes, as is displayed in Fig. 

16. Using a variation of the template size improved the detection accuracy because a wide 

range of wrinkle sizes were detected. 
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Fig. 16. Detection of different sized wrinkles by using different sized templates (i.e., size 8 px × 8 
px, 16 px × 16 px, and 24 px × 24 px) 

 

In the future, the distribution of wrinkles in different classes can be used to optimize 

the forming parameters, so that the desirable wrinkle class becomes predominant. 

 

 

CONCLUSIONS 
 

1. The described method improved upon the work of Müller et al. (2018) in a way that 

now allows for the evaluation of a broad range of geometries without the need to adjust 

or reprogram the wrinkle detection. The method was implemented in an autonomous 

module and is thus ready for industrial adaptation. 

2. The ability to evaluate the formed sample with a single image of the sealing rim in 

particular allows for fast wrinkle detection. The readily available wrinkle data 

prospectively enables the adjustment of further downstream process steps (i.e., sealing) 

for a specific wrinkle distribution on the sealing rim. 

3. The reliability of the improved method was high and tested thoroughly. The results of 

the method were validated by human examiners. Based on the manual examinations of 

the wrinkle distributions, a way to find sensible settings for the detection program was 

proposed and validated. 

4. The method offers a flexible and fast way to evaluate the quality of formed paperboard 

containers. 

5. The wrinkle evaluation worked repeatedly and reliably, regardless of the sample 

geometry and wrinkle sizes. 

6. The optimum parameters for the correlation threshold and template size were 

determined empirically. 

7. The results showed that the method is meeting the industrial requirements of evaluation 

speed, reliability and robustness against changing image quality. However, the 

correlation between wrinkle distribution on the sealing rim and actual sealability and 

gas tightness has not been studied in sufficient detail yet. The method described in the 

paper enables such a detailed study for future work. 
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