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Manufacturing microbial cellulase in plants is an attractive strategy for the 
cost-effective production of cellulosic ethanol, especially the expression of 
thermostable cellulase, which causes no negative effects on plant growth 
and development. The beta-1,4-endogenous cellulase from Pyrococcus 
horikoshii (EGPh) is considered one of the most promising glycosyl 
hydrolase in the biofuel and textile industry for its hyperthermostability and 
its capability to hydrolyze crystalline celluloses, which has been 
researched extensively during recent years. In this study, the coding 
sequence of EGPh was expressed in Arabidopsis thaliana under the 
control of a CaMV35S promoter after codon optimization, with the addition 
of a eukaryotic Kozak sequence. The expression of EGPh caused no 
deleterious effects to the growth and development of transgenic A. 
thaliana. The heterologous EGPh showed relatively high activities, up to 
111.69 and 13.35 U.mg-1 total soluble protein against soluble cellulose 
carboxymethyl cellulose (CMC) and insoluble microcrystalline cellulose 
(Avicel), respectively. The subcellular localization analysis showed that 
the EGPh protein was targeted to the plasma membrane and cell wall. 
Based on these results, it is proposed that EGPh is an ideal candidate for 
the commercial production of hyperthermostable endoglucanase using 
plants as biofactories.  
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INTRODUCTION 
 

Lignocellulose is the most abundant material on the earth. The annual yield of 

lignocellulose is estimated to be 150 to 170 × 109 tons, accounting for 70% of the global 

biomass production (Duchesne and Larson 1989; Poorter and Villar 1997; Pauly and 

Keegstra 2008). Therefore, the production of renewable liquid biofuels, such as ethanol, 

butanol, or other fermentative products from lignocellulose, has the advantages of a rich 

raw material, not competing with land use and food supply, as the first generation of 

biomass has done in the past. According to a report by the U.S. Department of Energy 

(DOE) and the U.S. Department of Agriculture (USDA), the production of lignocellulosic 

ethanol will reach 30% of liquid fuel by 2050 (Chen and Peng 2014). However, with 

current technologies, the cost for bioconversion of lignocellulose to ethanol remains high. 

The major barriers are the high cost of the transportation of feedstocks, the thermo-

chemical pretreatment to make the cellulose more accessible to the cellulolytic enzymes, 
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as well as a huge requirement of microbial-derived cellulases during the hydrolysis of 

cellulose (Devaiah et al. 2013; Singh et al. 2015). In such processes, cellulases account for 

20% of the total cost of cellulosic ethanol (Phitsuwan et al. 2012). Therefore, cost-effective 

production methods of cellulolytic enzymes must be explored.  

Plants were proposed as excellent bioreactors for manufacturing a large amount of 

cellulases at a low cost. It was reported that the cost of enzymes produced from plants was 

3- to 70-fold lower than those from other production systems (Menkhaus et al. 2004). 

Moreover, plant biofactories can offer several other advantages including eukaryotic post-

transcriptional modification, easy to control scale of production, and easy collection and 

storage (Twyman et al. 2003; Sharma and Sharma 2009). Expressing cellulase in 

lignocellulosic feedstock has become especially favorable, which provides the potential for 

the feedstock to play a dual role as both the biomass substrate and the enzyme provider. In 

recent years, a lot of progress has been made in this field. Three main enzymes for 

lignocellulose degradation, cellulases, hemicellulases, and lignin enzymes are successfully 

expressed in maize (Devaiah et al. 2013), Arabidopsis (Zeigler et al. 2000), rice (Chou et 

al. 2011), and tobacco (Gray et al. 2008). However, the expression of mesophilic cellulases 

causes deleterious effects on plant growth via cell-wall degradation at normal temperature, 

showing reduced growth, stunted growth, or reduced fertility (Gray et al. 2011; Klose et 

al. 2013). One strategy to prevent these harmful effects is the expression of thermostable 

cellulases with an optimal temperature over 60 °C, which is not active during plant growth 

(Jiang and Li 2009) and then the enzyme activity might be activated at a high temperature 

during post-harvesting treatments. Moreover, thermostable cellulases would benefit the 

industrial process of biomass degradation by eliminating bacterial contamination, and 

increasing the reaction rate and substrate solubility when the enzymatic hydrolysis was 

performed at high temperatures (Haki and Rakshit 2003; Kishishita et al. 2015). 

Thermostable cellulases from Acidothermus cellulolyticus and Thermomonospora fusca 

have been expressed in various plant species with no harmful effects and showed simplified 

processing and reduced exogenous enzyme loading in cellulosic ethanol production 

(Ziegler et al. 2000; Ransom et al. 2007; Chou et al. 2011) 

The hyperthermophilic beta-1,4-endogenous cellulase (EC 3.2.1.4) (EGPh; 

glycosyl hydrolase family 5) was identified from Pyrococcus horikoshii, which is the first 

hyperthermostable endoglucanase to which celluloses are the best substrates, including 

Avicel, carboxymethyl cellulose (CMC), and -glucose oligomers (Ando et al. 2002). With 

strong hydrolysis activity toward crystalline celluloses, the optimum reaction temperature 

at 95 °C, and its ability to hydrolyze cellulose completely to glucose at high temperature 

in combination with the hyperthermophilic -glucosidase (EC 3.2.1.21) from Pyrococcus 

furiosus, this enzyme was considered an ideal candidate for the industrial hydrolysis of 

cellulose (Kashima et al. 2005; Kim and Ishikawa 2010a). Therefore, it has been 

extensively researched in recent years. Its crystal structure was determined in a previous 

study (Kim and Ishikawa 2010b). Then, the relationship between its function and crystal 

structure was studied (Yang et al. 2012; Kim and Ishikawa 2013). This endocellulase was 

successfully produced with over 100 mg/L by fungus Talaromyces cellulolyticus, which 

was the first step for the industrial scale production of EGPh (Biswas et al. 2006).  

The objective of this research was to test the effects of expressing EGPh in biomass 

crops on reducing cellulase loading during the pretreatment process to reduce the 

bioconversion cost of lignocellulose to ethanol. To achieve a high expression level, the 

codon optimization was conducted, and the Kozak sequence was added immediately 

preceding the AUG codon. The enzyme activity, the subcellular localization of the 
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recombinant EGPh, and the phenotype of the transgenic plants were analyzed to evaluate 

the application prospect of heterologous EGPh in industry. 

 
 
EXPERIMENTAL 
 

Materials 
Arabidopsis thaliana wild-type Columbia (Col-0) and Agrobacterium tumefaciens 

EHA105 were preserved in the authors’ lab (Zhenjiang China). The plant expression vector 

pBI121 was given by the Nanjing Forestry University (Nanjing, China). The Taq DNA 

polymerase, T4 DNA ligase, and the DNA extraction kit were purchased from Takara 

Biotechnology Co., Ltd. (Dalian, China). 

 

Methods 
Codon optimization and gene synthesis 

The coding sequence of the hyperthermostable -1,4- endonuclease EGPh gene 

(Gene ID: PH1171) of P. horikoshii was optimized based on Sorghum bicolor codon usage 

via the OptimumGeneTM algorithms codon optimization technology (GenScript Co., Ltd., 

Nanjing, China). The Kozak sequence ACCACC was added immediately preceding the 

initiator codon ATG of the optimized sequence. The XbaI and SmaI restriction sites were 

added at the 5’ and 3’ ends, respectively. The whole sequence was synthesized via 

GenScript Co., Ltd. (Nanjing, China) and cloned into the pUC57 plasmid.  

 

Construction of expression vectors and transformation into A. thaliana 

After verification by sequencing, the plasmids pUC57-EGPh were digested with 

XbaI and SmaI. Then, the EGPh coding sequence was cloned into pBI121-GFP binary 

vectors under the control of the cauliflower mosaic virus 35S promoter (CaMV35S). 

Subsequently, the pPBI121-EGPh-GFP plasmid was transferred into the competent cells 

of A. tumefaciens EHA105 using the freeze-thaw method (Hoekema et al. 1983). Then, the 

transformation of A. thaliana was performed by the floral-dip method (Bechtold and 

Pelletier 1998). 

 

Isolation and phenotype analysis of transgenic A. thaliana      

Transgenic T1 plants were selected on half-strength Murashige and Skoog medium 

with 50 mg/L Kanamycin. The Kan-resistant plants were transferred into soil and their 

morphology was observed throughout the development. The transformation of pPBI121-

EGPh-GFP into transgenic A. thaliana was confirmed by polymerase chain reaction 

(PCR). The total genomic DNA was isolated from the leaves of the transgenic plants using 

a Takara DNAiso reagent kit (Code No: 9770Q, TaKaRa, Dalian, China).  

 

Cellulase activity assay 

The total soluble proteins (TSP) were extracted from the leaf tissues of transgenic 

and wild type A. thaliana using the modified method (Thomas et al. 2001; Mei et al. 2009). 

Briefly, 600 mg of fresh leaf tissue was ground into powder with liquid nitrogen. Then, 1.8 

mL grinding buffer (50 mmol L−1 of sodium acetate, 10 mmol L−1 of 

ethylenediaminetetraacetic acid, and a pH of 5.0) were added and mixed thoroughly,         

and then the mixture was centrifuged at 20,000 g at 4 °C for 20 min. The supernatant was 

precipitated using 70% saturated ammonium sulfate, and centrifuged at 20,000 g at 4 °C 
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for 10 min. The subsequent pellet was re-suspended with a 30 L grinding buffer. The 

extracts were quantified following the Bradford method using a standard curve generated 

from bovine serum albumin. The activities of heterologous EGPh to convert cellulose into 

glucose was assessed by measuring the reaction of TSP extracted from the leaves of 

transgenic and wild type A. thaliana with the soluble sodium carboxymethyl cellulose 

(CMC) (Sigma) or the insoluble microcrystalline cellulose Avicel (Analtech) as substrates. 

Briefly, 2 L TSP, 100 L 1% (wt/mL) CMC, or 1% Avicel was added in 98 L of 100 

mm acetate buffer (pH 5.6). The mixture was incubated with agitation at 80 °C for 10 min 

and cooled down in ice water (Hiromi et al. 1963). The total reducing sugar was determined 

using the modified Somogi-Nelson method (Lever et al. 1973). The reaction was 

terminated by adding 200 μL of 0.5 M NaOH. After the addition of 800 μL 4-hydroxy-

benzoic acid hydrazide (PAHBAH) and being boiled for 10 min and then cooled down in 

ice water, the released reducing sugar was spectrophotometrically quantified at 420 nm and 

compared with the glucose standard curves. One unit of cellulase activity was defined as 

the amount of enzyme that catalyzed the releasing of 1 μmol reducing sugar per minute. 

 

Subcellular localization analysis 

The subcellular localization of EGPh was predicted based on the identification of 

signal peptide sequences by ProtComp v.9.0 (Softberry, Inc., NY, USA) by Psort 

(Computational Biology Research Center, Tokyo, Japan). To determine the subcellular 

localization of the recombinant EGPh, the transient expression of EGPh-GFP in onion 

epidermal cells was analyzed. The constructs pPBI121-EGPh-GFP and pPBI121-GFP 

were transformed into onion (Allium cepa) epidermal cells mediated by A. tumefaciens 

EHA105 as described by Sun et al. (2007). Transformed cells were put in 10% sucrose for 

plasmolyzing. Green fluorescent protein was visualized using the inverted epifluorescence 

microscope (AxioVert.A1; Carl-Zeiss, Oberkochen, Germany). The images were captured 

on an Axio Cam IC Zeiss Camera (Oberkochen, Germany) using ZEN lite 2012 software 

(AxioVert.A1; Carl-Zeiss, Oberkochen, Germany). 

 
 
RESULTS AND DISCUSSION 
 
Codon optimization, gene synthesis, and the construction of plant expression vector 

The codons of the EGPh gene were optimized by the OptimumGeneTM algorithms 

(Genscript, Nanjing, China) according to the codon bias in S. bicolor. The variety of 

parameters critical to the efficiency of gene expression were optimized, codon adaptation 

index (CAI ) was upgraded from 0.71 to 0.84, the guanine and cytosine (GC) content was 

optimized from 39.85 to 47.65 to prolong the half-life of the mRNA, and the percentage of 

high frequency codons (< 90%) increased to 95% after optimization. The optimized 

sequence was submitted to the GenBank Centre with accession numbers of MH830298 and 

was chemically synthesized from GenScript Co., Ltd. (Nanjing, China) (Fig. 1). The 

construction of pPBI121-EGPh-GFP was confirmed by double digestion (Fig. 2a). The 

transformation of A. tumefaciens was confirmed by PCR with primer EGPh F-1 and EGPh 

R (Table 1), in which the predicted 400 bp fragments were amplified (Fig. 2b).  

Though plants are well suited to the production of industrial enzymes for biomass 

treatment, the most important factor is to ensure competitive production cost (Xue et al. 

2003; Tremblay et al. 2010). The best way to achieve this is to boost expression (Nandi et 

al. 2005; Streatfield 2007).  
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Fig. 1. The alignment of the original EGPh and codon optimized EGPh sequences based on 
Sorghum bicolor codon bias. The letters in red indicate the replaced codons; Optimized EGPh: 
codon optimized sequence of EGPh gene and Original EGPh: original sequence of EGPh gene. 
The predicted signal peptide-like sequence for membrane-binding is underlined.  
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Fig. 2. The confirmation of pPBI121-EGPh, transgenic A. tumefaciens EHA105 and transgenic A. 
thaliana; M: DL2000 DNA marker; (a) The confirmation of pPBI121-EGPh vector; 1: pPBI121-
EGPh; 2 to 3: Double digestion of PBI121-EGPh by XbaI/SmaI; (b) The confirmation of pPBI121-
EGPh in A. tumefaciens EHA105; 1 to 6: Clones of transformed A. tumefaciens EHA105; (c) 1: 
Wild-type A. thaliana (ecotype Columbia); 2: pPBI121-EGPh vector; 3 and 4: Transgenic A. 
thaliana 
 

There are many strategies available to boost the expression of heterologous 

enzymes in plants, including the use of strong promoter, enhancer, codon optimization, 5’ 

or 3’ untranslated regions, and targeting to subcellular sites (Streatfield 2007; Desai et al. 

2010). Among them, codon bias was increasingly realized to have profound impacts on the 

expression level of heterologous proteins (Kane 1995). After codon-optimization, the 

increases in the expression level of mammalian proteins was up to 5- to 15-fold (Gustafsson 

et al. 2004). The optimized coding sequence of the human cystatin C gene increased the 

expression and secretion of its protein by approximately 3- to 5-fold in yeast (Li et al. 

2014). The protein expression of a mycotoxin zearalenone (ZEN) detoxifying gene was 

improved in P. pastoris through codon optimization (Xiang et al. 2016). Thus, to improve 

the expression level of EGPh in plants, this gene was optimized to codons favored by S. 

bicolor. 

In addition, the Kozak sequence (CCA/GCCATGG) that extends from 

approximately position -6 to position +6 (the A in AUG is considered +1) was proposed as 

the most important context required for the efficient initiation of translation (Kozak 1987). 

Point mutations in the Kozak sequence can lead to a leaky scanning of the initiator codon 

AUG and reduced translation initiation over a 20-fold range (Kozak 1991, 1997). A 10-

fold higher luciferase activity was detected in the BmN4 cells transfected with the optimal 

consensus Kozak motif (Tatematsu et al. 2014). The ‘most preferred’ Kozak sequence in 

plants was reported as a 4-fold improvement of translation of a chitinase protein (Taylor et 

al. 1987). Thus, to improve the translation efficiency, the authors added an ACCACC 

Kozak consensus motif immediately preceding the ATG codon of the optimized sequence 

of EGPh. Moreover, the CaMV35S promoter was used in this study, which is a commonly 

used promoter of dicotyledonous plants that can enhance the transcription of heterologous 

genes more than specific promoters.  

 

The phenotype of transgenic A. thaliana  

The transgenic A. thaliana was confirmed by PCR with primer EGPh R and EGPh 

F-2 (Fig. 2c, Table 1), in which the predicted 1400 bp fragments were amplified. The 

35S::EGPh transgenic A. thaliana were healthy and developed normally compared with 

the wild type, which indicated that the expression of the exogenous gene EGPh had no 

negative effect on the growth and development of A. thaliana (Fig. 3). 

 

  

M 1 2 3 M 1 2 3 4 5 6 M 1 2 3 4 

a b c 
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Table 1. Primers Used in This Research 

Primer Name Sequence 

EGPh R AAG GAT GAT GAG GAT AGC G 

EGPh F-1 CGA AGG GAT TTC CAG ACA 

EGPh F-2 TCT AGA CCA CCA TGG AAC AC 

 

 
 

Fig. 3. The phenotype of transgenic A. thaliana; Col-0: wild type A. thaliana (ecotype Columbia) 
35S::EGPh: transgenic A. thaliana 
  

Thus far, the hyperthermostable cellulases have been highly expressed in 

Arabidopsis, rice, tobacco, potato, barley, corn, and other plants, with no deleterious effects 

to the growth and development and no obvious change in plant phenotypes (Ziegler et al. 

2000; Ziegelhoffer et al. 2001; Devaiah et al. 2013). In this research, the 35S::EGPh 

transgenic A. thaliana were healthy and developed normally compared with the wild type, 

which indicated that the expression of the exogenous gene EGPh had no negative effect on 

the growth and development of A. thaliana. This may have been due to the limited activity 

of thermophilic cellulase at room temperatures in plants or the lack of direct access of 

thermophilic cellulase to the cellulose in the plant wall, which is present as a compact 

mixture together with lignin and hemicellulose (Sticklen 2006). However, this result was 

inconsistent with the expression of EGPh gene in tobacco chloroplast, in which transgenic 

plants demonstrated pale-green color and a slower growth rate than the wild-type plants 

(Nakahira 2013). Therefore, changes in the components and construction of the cell wall 

of transgenic A. thaliana were analyzed next to illustrate the effects of heterologous EGPh 

on plant cell wall recalcitrance.  
 

The activity of heterologous EGPh in A. thaliana 

The TSP were extracted from the leaf tissues of transgenic and wild type A. 

thaliana. With these three strategies applied (condon optimization, Kozak sequence, 

CaMV35S promoter), the activities of EGPh in transgenic A. thaliana were up to 

111.69±6.53 U mg-1 and 13.35±0.24 U mg-1TSP against CMC and Avicel (Fig. 4), higher 

Col-0 35S::EGPh 
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than EGPh expressed in tobacco chloroplast (20.5U mg-1TSP against CMC) (Nakahira 

2013) and almost comparable with cellulase produced by microbial production system (220 

U mg-1TSP against CMC) (Bao et al. 2011; Ul Haq et al. 2015).  

 
 

Fig. 4. The endocellulase activity of EGPh in transgenic A. thaliana; Col-0: wild-type A. thaliana 
(ecotype Columbia) 35S::EGPh: transgenic A. thaliana; CMC: The soluble sodium CMC was 
used as substrate; Avicel: The insoluble microcrystalline cellulose Avicel was used as substrate 
 

As a highly promising application prospect both in the biofuel and textile industry 

for its hyperthermostability and capability of hydrolyzing crystalline cellulose, EGPh has 

been extensively studied in recent years. The high activities of EGPh in transgenic A. 

thaliana implied that it is an ideal candidate for the economic production of cellulases in 

biomass crops. The results also demonstrated that codon optimization, Kozak sequences, 

and a CaMV35S promoter do help in the active, high-level expression of P. horikoshii 

EGPh in A. thaliana and must be factors considered in the expression of heterologous 

enzymes in plants. However, although the activities of recombinant EGPh in transgenic A. 

thaliana are relatively high, it is still remarkably lower compared to the amount required 

for complete biomass degradation. To further increase the accumulation of EGPh, other 

regulation strategies need to be applied. For instance, enhancer and untranslated regions 

play important roles in improving the accumulation of heterologous cellulase in plants 

(Ziegler et al. 2000). Expressing only the catalytic domains was reported to greatly increase 

the amounts of heterologous enzymes (Ziegelhoffer et al. 2001).  

 

Compartmentalization of heterologous EGPh in plants  

The authors predicted the potential subcellular localization of the EGPh using 

ProtComp v.9.0 and WoLF PSORT. The ProtComp v.9.0 predicted that EGPh may be an 

extracellular (secreted) protein with a low score of 2.4. The WoLF PSORT predicted that 

it might localize in the plasma membrane. The subcellular localization of the EGPh protein 

was then analyzed in transient expression assays on the epidermal cells of onion. The 

EGPh-GFP protein was expressed on the plasma membrane and cell wall (Figs. 5g through 

5o), while the GFP protein was observed in cytosol (Figs. 5a through 5f).  
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Fig. 5. The subcellular localization of EGPh-GFP fusion protein pPBI121-EGPh-GFP and pPBI121-
EGPh-GFP and pPBI121-GFP vectors were introduced into onion epidermal cells. Time course 
images were obtained by an inverted epifluorescence microscope after agroinfiltration. The onion 
cells were plasmolyzed in 10% (g/v) sucrose. Dark-field, bright-field, and merged images are 
shown; c, f, i, l, o were merged images of a+b, d+e, g+h, j+k, m+n, respectively; Green fluorescent 
protein of control GFP before (a through c)  and after plasmolysis (d through f) , which appeared in 
cytosol; Green fluorescent protein of EGPh-GFP before (g through i), after plasmolysis (j through 
f) and under higher magnification (m through o), which appeared on the plasma membrane and 
cell wall; The scale bars equal 20 μm. 
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Compartmentalization plays an important role on the expression level and activity 

of recombinant cellulases. It was reported that the activity and accumulation of 

heterologous cellulase were highest in apoplasts and chloroplasts (Dai et al. 2005; Jung et 

al. 2013). The endoglucanase Cel5A from Thermotoga maritima was expressed in tobacco 

targeted to different subcellular compartments, which showed no enzyme accumulation 

when it was targeted to cytosol but produced the highest endoglucanase activity when 

targeted to chloroplast (Mahadevan et al. 2011). However, it was not evident which 

subcellular compartments were best for any particular protein (Hood and Requesens 2014). 

The endoglucanase E1 from A. cellulolyticus showed a low expression in plant cytosol 

(Ziegelhoffer et al. 1999). However, when the enzyme was localized to endoplasmic 

reticulum, cell wall, or vacuole, the yield was up to 16% of TSP (Hood et al. 2007). The 

EGPh was predicted as a secreted and membrane-binding enzyme in P. horikoshii for its 

membrane-binding signal peptide-like sequence at the C terminal (Fig. 1) (Kashima et al. 

2005). Thus, this study analyzed the subcellular localization of EGPh in plants. The 

subcellular location of EGPh in onion epidermal cells showed a similar result, with the 

cellulase located on the cell wall and membrane. However, other plant signal peptides 

should be added to the EGPh to assess the effects caused by differential targeting sites, like 

ER, chloroplast, apoplast, vacuole, and mitochondria to gain higher accumulation and 

activity of EGPh. 

 
 
CONCLUSIONS 
 

The coding sequence of the hyperthermostable endocellulase EGPh gene from P. 

horikoshii was expressed in Arabidopsis thaliana under the control of a CaMV35S 

promoter after codon optimization. The results showed that: 

1. Condon optimization and Kozak sequence are effective strategies for high-level 

expression of EGPh in plants.  

2. The expression of EGPh showed no deleterious effects to the growth and development 

of transgenic A. thaliana. 

3. The heterologous EGPh showed relatively high activities to hydrolyze Avicel and 

CMC. 

4. Lastly, EGPh is a promising candidate for the commercial production of cellulase in 

biomass crops. 
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