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This research focuses on the statistical evaluation of the feedstock attributes of the 
biomass supply chain and the estimation of attribute costs as a function of the 
feedstock variability. Challenges of using cellulosic feedstocks include the 
variability of feedstock quality (e.g., ash content and moisture content), which 
impacts the final cost of the manufactured product. Statistical Process Control 
(SPC), Taguchi Loss Function, and components of variance techniques were 
illustrated for quantifying cumulative variance in the biomass supply chain. Costs 
in the presence of cumulative variance were estimated for switchgrass (Panicum 
virgatum L.) and loblolly pine residues (Pinus taeda L.). Findings of the study 
indicated that additional costs from ash content variability in switchgrass increased 
the net cost by $19.15 per dry tonne. Additional costs from densification due to 
particle size variation increased net cost by $11.59 per dry tonne. Moisture content 
variation increased costs by $14.86 per dry tonne. This would represent a 50 to 
100% increase in costs due to variation based on a $60 to $70 per dry tonne 
manufactured product cost. This study illustrates that total costs may be 
considerably underestimated if the influence of variance for key factors in the 
supply chain and associated costs are not estimated.  
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INTRODUCTION 
 

Biomass is well documented as an important feedstock for a multitude of manufactured 

products that have valuable attributes for the end users, and it is also beneficial to society as a 

sustainable and renewable supply source (Singha and Thakur 2008, 2009; Thakur and Singha 

2011; Thakur et al. 2012).  A significant issue with biomass feedstocks is the high variability in 

the quality attributes associated with the feedstocks (Kenney et al. 2013b).  Variability in input 

feedstocks for any manufactured product increase costs of the final product (Taguchi et al. 2004; 

Deming 1986, 1993).  This study advances the research of estimating the variability and associated 

costs for biomass feedstocks in the context of statistical process control (SPC) and the Taguchi 

Loss Function (TLF) with the application of ‘components of variance’ for the logistical stages of 

the biomass supply chain.   
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Biomass supply consists of a multicomponent supply network that faces challenges of 

providing low cost feedstock with small variation (Langholtz et al. 2016). In a general context, 

this network is a construct of five stages: feedstock production, feedstock logistics, biomass 

processing, biomass product distribution, and the biomass final product (Parish et al. 2012).  The 

logistic stages include all necessary procedures to transport feedstock from harvest site to a 

production facility’s gate (Sooduck and Farrey 2010). For example, Rentizelas et al. (2009) 

describes this system for a power station as six steps: harvesting and collection, in-field and forest 

handling, storage, loading and unloading, transportation, and processing. A challenge of supplying 

loblolly pine (Pinus taeda L.) and switchgrass (Panicum virigatum L.) is the high cost of 

transportation and handling (Lu et al. 2015).  

A key problem for biofuels is the large variance associated with feedstock quality and the 

ability of the manufacturing system to process this variability to produce a low-cost output that 

meets customer specifications. For biofuel and associated products, this ‘large variance’ feedstock 

problem directly influences the processing operational targets for solvents, batch time, and 

temperature, which all negatively impact yield and the final costs of manufactured product. High 

costs influence competitiveness in the marketplace. 

 The research study attempts to model the ‘advanced uniform-format’ feedstock supply 

chain system as described by Hess et al. (2009) by estimating the variances and costs from variance 

for individual systems’ components (Platzer 2016). Estimating costs from the influence of variance 

is the contribution of this research, which has not been documented for biomass feedstocks.   

The ‘supply chain concept’ aims to generate standardized commodity feedstocks through 

the integration of an intermediate preprocessing stage, located immediately after feedstock harvest 

and collection, defined hereafter as the ‘bio-depot’ (Fig. 1). The bio-depot is a concept focused on 

a centralized processing system that receives woody biomass from multiple supply lines such as 

loblolly pine residuals and switchgrass. The biomass sources are then blended and converted into 

feedstocks with more uniformity in ash content, moisture content, and particle size to improve 

conformance to specifications for a biorefinery (Jacobson et al. 2014).  Quantifying the cumulative 

variance of the feedstocks in the supply chain and identifying those components that have the 

largest variance and associated high costs will facilitate reduction in variance and lower costs.  As 

Taguchi et al. (2004) noted in the ‘Taguchi Loss Function’ (TLF), costs increase at a non-linear 

rate as a function of the variance. The TLF is a well-accepted method for estimating costs in the 

automotive industry and other significant sectors.   

 

 
Fig. 1. Advanced uniform-format feedstock supply chain with intermediate preprocessing stage (Metzner 
2018) 
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EXPERIMENTAL 
 
Key Biomass Feedstock Attributes 
Ash content 

 Ash content is inorganic matter that consists of a wide range of elements (James et al. 

2012) and negatively influences the production of bio-based products by loss of yield, e.g., 

cellulosic biomass to biofuel conversion (DOE 2014). Ash in biomass feedstock originates from 

either the natural physiology of the plant or through contamination with soil or rocks (Lacey et al. 

2016). Natural ash in plants is either associated with structural ash in cell walls or vascular in cell 

extracts (Kenney et al. 2013b). Supply management and harvesting methods have a direct 

influence on the quality of biomass (Obernberger et al. 1997). Ash content varies across biomass 

types, for example, woody biomass compared to herbaceous plants, or roundwood compared to 

woody residues (Tao et al. 2012). The ash content in woody biomass such as loblolly pine residues, 

depending on the origin, ranges from 0.5 to three percent of dry weight.  However, ash content can 

be as high as ten percent, if the limbs, branches, leaves or needles, and bark are taken into account 

(Sjoding et al. 2013).  This is a key challenge for implementing the bio-depot concept. 

 

Particle size 

Particle size influences the ‘flowability’ and bulk density of cellulosic feedstocks. This 

crucially affects the efficiency of the biomass supply chain and the attainable biofuel yield from 

the conversion process (Bitra et al. 2009; Miao et al. 2011). Particle size of the raw material is a 

key metric due to its effect on overall feedstock quality (Paulitsch and Barbu 2015). Comminution, 

which means particle size reduction, is vital to increase both ‘flowability’ and bulk density of 

cellulosic raw material that effects costs (Hess et al. 2009; Miao et al. 2011). The location of the 

comminution process in the supply chain is important in early stages (Meunier-Goddik et al. 1999). 

Particle size and distribution depends on the milling equipment, which are typically either hammer 

mills or knife ring flakers. Particles produced from hammer mills tend to be finer than particles 

produced from knife ring flakers (Kenney et al. 2013). Specifications of particle size reduction are 

typically set by the end-users (Igathinathane et al. 2008). 

 
Moisture content 

Biomass moisture content is an important cost driver for biofuel production. Excessive 

moisture variation negatively affects storing, transporting, handling, and feeding. Biomass 

handling and feeding becomes tedious with increased levels of moisture content, due to an increase 

of the cohesive strength of the material, increasing the likelihood of plugging of feeders (Dai et al. 

2012). Emery and Mosier (2012) showed that, with increasing moisture content, dry matter loss 

increased for aerobic stored biomass. Furthermore, high moisture content levels in biomass lowers 

transportation efficiency and increase costs, especially in the case of truck transport (Eggink et al. 

2018). Biomass moisture content affects not only biofuel conversion performance, it also affects 

grinding energy and execution (Tumuluru et al. 2014), which also indirectly impacts the 

conversion performance (Williams et al. 2016), i.e., deviations from target that results in low, or 

high moistures influence the conversion process given that the conversion process is set to operate 

at the target. The specification limits for the moisture content for woody residues (Keefe et al. 

2014) and herbaceous biomass depend on the final conversion technology. Moisture content of 

roundwood after logging is estimated at 50% (Lu et al. 2015), whereas for Switchgrass moisture 

content ranges from 15% to 30%, depending on the season (Mitchell and Schmer 2012). 
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Simulation of key feedstock attributes 

Nonparametric bootstrap simulations (N = 10,000) were made from an actual data set for 

the ash content in Switchgrass (n = 137).  Nonparametric bootstrap simulations are a statistical 

method of resampling from the original data to build a simulated probability density function for 

a large N that may be unique in its functional form. See Efron and Tibshirani (1993) and Davison 

and Hinkley (1997) for detailed descriptions of the bootstrap methodology.  The other data sets for 

particle size, and moisture content (n = 100) were obtained from the literature and mimics 

receiving biomass from multiple suppliers (Antony 1997; Tumuluru et al. 2011; Rector et al. 2013; 

Jacobson et al. 2014; Thompson et al. 2014; Williams et al. 2016). The average and variances 

from the nonparametric bootstrap simulations were used to estimate costs using the TLF. An 

outcome of the research was the development of a Microsoft Excel template for practitioners 

(www.spc4lean.com), which included nonparametric bootstrap simulations, TLF, and statistical 

process control (SPC) capabilities for the three feedstock attributes studied. 

 

Statistical Process Control 
Statistical process control (SPC) procedures are well established for quantifying the natural 

(common-cause) and special-cause (event) variations of the process and are used by a vast number 

of industries for facilitating variation reduction (Shewhart 1931). SPC is a well-established method 

for improving industrial processes, and there is a plethora of literature documenting SPC 

applications in automotive, aerospace, electronics, and other industries (not cited in this paper for 

the sake of brevity). SPC is not well documented in the public domain literature for biomass 

applications; Silva et al. (2014) illustrates the use of SPC for evaluation of effluent treatment in an 

agro industrial plant; Gomes et al. (2018) documents the use of SPC for improving bioreactor 

products. There is no literature reported in the public domain for applications of SPC for 

improvement of the biomass supply chain.  Given the lack of reported literature on SPC 

applications for biomass, a review of key concepts is presented.    

The well-recognized Deming (1986, 1993) successfully implemented SPC for many global 

industries (most notably in Japan) as a statistical-based method for improving processes by 

enhancing a company’s focus on variation reduction to lower costs while at the same time 

improving processes and product quality. SPC is fundamental to initiating root-cause analyses and 

documenting variation improvements (Grant et al. 1994). Large variability in the biomass-using 

industries is unavoidable, but it can be reduced and controlled (Young and Winistorfer 1999; 

Young et al. 2007). In this study, the control chart accentuated changes in the data and highlighted 

the stability of the process simulation. 

Taguchi Loss Function (TLF) 
Young et al. (2014) documents the use of the TLF for accurately costing variation in 

formaldehyde (CH2O) emissions from wood composites applications.  A review of the public 

domain literature did not identify any studies documenting the use of the TLF for biomass 

applications or biomass supply logistics.  The TLF quantifies the economic loss or cost due to 

variation in the process or product. In this study, the economic loss was a function of the variation 

in feedstock quality attributes deviating from the operational target.  
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a) 

 
b)          

 

 
c) 
 

Fig. 2. Illustrations of Taguchi’s quality loss functions a) symmetric nominal-the-best, b) asymmetric 
nominal-the-best, and c) smaller-the-better (Metzner 2018) 
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Taguchi et al. (2004) emphasized that economic loss is reduced if a company minimizes 

variation around the target. Taguchi et al. (2004) developed a two-sided loss function ‘nominal-

the-best’ (i.e., target centered within specifications) which estimates economic loss for a quality 

attribute that has both lower and upper specifications, e.g., moisture content (Fig. 2a). For some 

production settings or quality characteristics, the two-sided loss function may be asymmetric (Fig. 

2b), i.e., target is set closer to either upper or lower specification limit, e.g., particle size.  Taguchi 

et al. (2004) also developed a one-sided loss function where ‘smaller-is-better’ with only one 

lower or upper specification (e.g., the desired value of the quality characteristic should be as small 

as possible, ideally zero, as would be the case for ash content) (Fig. 2c). Taguchi provided 

equations for each type of loss function. Taguchi et al. (2004) argued that operational targets are 

established as a function of the variation in the process, i.e., operational targets are equal to the 

sample average which is three standard deviations within the specification limits, also known as 

the ‘Natural Tolerance’ (NT).  Operational targets can only be reduced (or increased) for one-

sided specification limits if the variance of the process is first reduced.  Most operations run the 

smallest possible target, but they must also avoid producing product outside of specification, and 

they are therefore constrained from lowering the target due to the variation of the quality attribute. 

Taguchi’s ‘nominal-the-best’ loss function for one unit is defined as follows, 
 

 𝐿 = 𝑘(𝑦0 − 𝑚)2         (1) 
 

where L is the economic loss, k is the cost constant, 𝑘 =  
𝐴0

(𝑆𝐿−𝑚)2, 𝑦0 is the value of the quality 

characteristic at the upper or lower specification limit, m is the operational target value of the 

quality characteristic (e.g., moisture content, particle size, etc.), SL is the lower (or upper) 

specification limit, and 𝐴0 is the cost at attaining the specification limit. Taguchi’s symmetric 

‘nominal-the-best’ loss function for more than one unit of production, accounts for the variance of 

the feedstock characteristics, and is defined as follows, 
 

 𝐿 = 𝑘[𝜎2 +  (�̅�0 − 𝑚)2]        (2) 
 

where 𝜎2  is the quality characteristics’ variance, and �̅�0  is the average value of the quality 

characteristic.  

The asymmetric ‘nominal-the-best’ loss function is adjusted to account for the variance 

and average for the data above and below the target independently, thus is defined for the upper 

side as follows, 
 

 𝐿𝑈𝑆𝐿 = 𝑘𝑈𝑆𝐿 [𝜎𝑈𝑆𝐿
2 +  (�̅�0,𝑈𝑆𝐿 − 𝑚)

2
]      (3) 

 

where 𝜎𝑈𝑆𝐿
2  is the quality characteristics’ variance, �̅�0,𝑈𝑆𝐿  is the average value of the quality 

characteristic for the data below the target, and 𝑘𝑈𝑆𝐿 =  
𝐴0,𝑈𝑆𝐿

(𝑈𝑆𝐿−𝑚)2
 .  The lower side is defined as, 

 

𝐿𝐿𝑆𝐿 = 𝑘𝐿𝑆𝐿 [𝜎𝐿𝑆𝐿
2 +  (�̅�0,𝐿𝑆𝐿 − 𝑚)

2
]       (4) 

 

where 𝜎𝐿𝑆𝐿
2  is the quality characteristics’ variance, �̅�0,𝐿𝑆𝐿  is the average value of the quality 

characteristic for the data below the target, and 𝑘𝐿𝑆𝐿 =  
𝐴0,𝐿𝑆𝐿

(𝐿𝑆𝐿−𝑚)2
 .  Taguchi’s ‘smaller-the-better’ 

loss function for one unit is defined as follows,  
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 𝐿 = 𝑘 ∙ 𝑦0
2,     𝑤ℎ𝑒𝑟𝑒 𝑘 =  

𝐴0

𝑦0
2,        (5) 

 

and for more than one unit is, 
 

 𝐿 = 𝑘(𝜎2 +  �̅�0
2)         (6) 

 

Theory of ‘Components of Variance’ 
Sir Francis Galton’s early writings on the study of variability of systems was the genesis 

for the ‘components of variance’ concept (Stigler 2010). Galton hypothesized that in any 

component system, variance accumulates throughout the system, so that the total variance is the 

sum of all the components variances. In this study for example, increased moisture content of 

harvested biomass can have an impact on the dry matter loss, which influences the storage 

operation. Depending on the storage type, additional moisture can be introduced by environmental 

influences, which increases the moisture content and the overall variance of the system, e.g., 

biomass supply chain (Montgomery 2012).  For a ‘series system’, the components are dependent 

and may have a positive or negative influence on each other depending on the co-variability of the 

components. For equal variances the equation is defined as, 
 

𝑉𝑎𝑟(∑ 𝑋𝑖
𝑛
𝑖=1 ) =  ∑ 𝑉𝑎𝑟(𝑋𝑖) ± 2(∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)1 ≤𝑖<𝑗 ≤𝑛

𝑛
𝑖=1 ),   (7) 

 

where 𝑉𝑎𝑟(∑ 𝑋𝑖
𝑛
𝑖=1 ) is the total system variance for all i to n, ∑ 𝑉𝑎𝑟(𝑋𝑖)

𝑛
𝑖=1  is the sum of variances 

for each the component i, and ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)1 ≤𝑖<𝑗 ≤𝑛  is the sum of the covariance between all 

components i, j to n.  For unequal variances for each component of the series the equation is defined 

as, 
 

𝑉𝑎𝑟(∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1 ) =  ∑ 𝑎𝑖

2𝑉𝑎𝑟(𝑋𝑖) ± 2(∑ 𝑎𝑖𝑎𝑗𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗))1 ≤𝑖<𝑗 ≤𝑛
𝑛
𝑖=1   (8) 

 

where variables 𝑎𝑖 and 𝑎𝑗 define the proportion or weight of the variance for each component in 

the system. Equations 7 and 8 are used in this study to estimate system variance and calculate 

economic losses using the TLF.  

 
 
RESULTS AND DISCUSSION 
 

Economic Loss for Ash Content 
The ‘smaller-the-better’ loss function was most applicable for ash content variability (Fig. 

4). Even though Jacobson et al. (2014) defined an upper specification limit (USL) of four percent, 

the Taguchi Loss Function (TLF) illustrated that economic loss increased the greater the distance 

from zero percent ash content, and it increased at an increasing rate.  Taguchi et al. (2004) argued 

that economic loss did not average itself around the mean, i.e., loss is not uniform around the mean. 

The cost of producing a final product from 4% ash content was much greater than that with 1% 

ash content, including additional cost factors such as more chemical treatment, longer dwell times, 

higher temperature, and lower yields. If the final product had to be remanufactured or abandoned 

above the USL of 4%, the costs of rescheduling a new order, delays to on-time shipment, inventory 

carrying costs, and work-in-process (WIP) costs, are much greater than producing a final product 

at the target, or below target. As illustrated in Fig. 3, simply shifting the operational target to the 

left below 3.5% was not feasible because the entire distribution would shift to the left, and this 
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implied a baseless negative ash content for feedstocks. 

A numerical example of estimating loss was presented using Eq. 6. A nonparametric 

bootstrap simulation of the original data displayed in Fig. 3 resulted in an �̅� = 3.35% and 𝜎2 = 

2.68%².  The average loss per unit (i.e., average loss per dry tonne) based on Taguchi’s smaller-

the-better loss function with a hypothetical cost constant k = $2.25 (%²)-1 is $34.48 per dry tonne.  

A sensitivity analysis was conducted to analyze patterns of the average loss per unit for the 

smaller-the-better quality loss function based on changes in constant k, the variance, and the mean 

(Table 1). The mean and variance were increased or decreased by 0.1, and the cost constant k by 

$0.1 (%²)-1 from the original loss per unit of $34.48 per dry tonne. The sensitivity analysis for 

scenario A (Table 1) with a reduction in cost constant k, and no change in the mean and variance 

resulted in a reduced cost of 16% from $37.55 to $31.42 per dry tonne.  

The sensitivity analysis for scenario B (Table 1) indicated that if the variance is reduced 

from 2.88% to 2.48% with no change in the cost constant k, the loss per unit is reduced by three 

percent from $34.98 to $33.98 per dry tonne. However, as illustrated in the sensitivity analysis for 

scenario C, if the operating target is by 0.4% due to a reduction in variance, cost is reduced by 

20% from $38.40 to $30.76 per dry tonne.  

A real world scenario may have an average ash content as high as 6% per dry tonne (e.g., 

Switchgrass) with 𝜎2 = 2.68%², and a cost constant k = $2.25 (%²)-1 (Kenney et al. 2013a).  For 

an industrial-scale facility using 250,000 dry tonnes per year of biomass, the cost when accounting 

for variability is approximately $89.29 per dry tonne. One dry tonne yields roughly 87 gallons of 

cellulosic ethanol (Mitchell et al. 2012). If new preprocessing technologies reduced the average 

ash content to 3% per dry tonne, a savings of $22.12 per dry tonne would occur assuming the TLF.  

 

 
 

Fig. 3. Smaller-the-better loss function for the ash content of switchgrass using k = $1.25 (%²)-1 (Metzner 
2018) 

 

 

 

0

10

20

30

40

50

60

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13

F
re

q
u
e
n
c
y

L
o
s
s
 [
$
]

Ash Content (Switchgrass) [%]

Original Samples Mean USL Loss Function



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Metzner et al. (2019). “Modeling the costs of biomass,” BioResources 14(2), 2961-2976.  2969 

Table 1. Sensitivity Analysis of the Economic Loss Per Unit for the Ash Content with the 
Smaller-the-better Loss Function (Metzner 2018) 

Sensitivity 
Analysis 

USL 
(%) 

 
k 

Mean (%) 
Variance 

(%²) 
CV 

Average Loss 
per Unit ($) 

Reduction in 
Average Loss 

A 4.0 

2.45    37.55  

2.35    36.01  

2.25 3.35 2.68 80% 34.48  

2.15    32.95  

2.05    31.42 -16.3% 

B 4.0 

  2.88 86% 34.98  

  2.78 83% 34.73  

2.25 3.35 2.68 80% 34.48  

  2.58 77% 34.23  

  2.48 74% 33.98 -2.9% 

C 4.0 

 3.55 2.88 81% 38.40  

 3.45 2.78 81% 36.42  

2.25 3.35 2.68 80% 34.48  

 3.25 2.58 79% 32.60  

 3.15 2.48 79% 30.76 -19.9% 

 
Economic Loss for Particle Size during Densification 

The ‘nominal-the-best’ asymmetric loss function for a densification operation using a 

‘cuber’ is illustrated in Fig. 4. Cubes are in the form of a square cross sections of chopped biomass 

with sizes ranging from 12.7 to 38.1 mm in the cross section, where the length of a cube is usually 

equal to or longer than the dimensions of the cross section typically from 25 to 100 mm.  Cubes 

are less dense than pellets, with a bulk density ranging from 450 to 550 kg/m3 depending upon the 

cube size (Sokhansanj and Turhollow 2014). 

 

 
 

Fig. 4. Nominal-the-best asymmetric loss function for the particle size of biomass 
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Sensitivity analyses were conducted assuming a lower specification limit (LSL) of 12 mm, 

upper specification limit (USL) of 15 mm, and an operational target of 14 mm (Tumuluru et al. 

2011). The nonparametric bootstrap simulation had an �̅� = 15.27 mm and 𝜎2 = 0.43 mm². Most of 

the data from the simulation are within specification limits. The average losses per dry tonne are 

determined with different hypothetical cost constants k (i.e., equations 3 and 4) due to asymmetric 

specification settings, i.e., the distances from the target to the respective specification limit are 

different. The average loss per dry tonne is $45.04 using a cost constant k of $20.00 (mm²)-1. For 

data below the target, the nonparametric bootstrap simulation had an �̅� = 12.71 mm and 𝜎2 = 0.43 

mm². The average loss per dry tonne for this asymmetric nominal-the-best (includes both non-

equidistant sides) was $11.54 using a cost constant k of $5.00 (mm²)-1.  Hypothetically, for a 

250,000 dry tonnes per year biorefinery, the accumulated loss due to variation in particle size 

would equate to $7.6 million dollars (i.e., $1.2 million for the biomass below target and $6.4 

million dollars above the target).  If the variance in particle size could be reduced by one 

millimeter, the loss due to variability from particle size would be reduced to $1.5 million dollars 

annually.  

 

Economic Loss for Moisture Content 
The symmetric ‘nominal-the-best’ loss function was most applicable for moisture content 

variability. This TLF illustrates that economic loss increases the more the biomasses moisture 

content value deviates from the operational target of the respective biomass supply chain 

operation, and it will increase at an increasing rate.  For enterprises integrated in biomass supply 

chain it will be important for moisture content to be within specification limits. For example, 

chipped wood particles with great moisture content variability, possible with particles ranging 

outside specification limits are more cost intensive to dry than chipped wood particles with low 

moisture variability. Thus, it is important for operators to maintain a process mean moisture 

content near the target.  

The computed statistics from nonparametric bootstrap simulations and associated 

economic losses for three different cases for each component of a hypothetical supply chain are 

presented in Table 2. The cost constants (k) for the components harvest/collection and transport 

were derived from the dockage fees for moisture content for switchgrass (U.S. Department of 

Energy, 2016). For the components drying and densification the cost constants are derived in 

dollars per dry tonne (Kenney et al. 2013a). Three simulation scenarios were analyzed: 

 Scenario 1): Series system with independent components, recall Eq. 2;  

 Scenario 2): Series system with dependent components with equal variances (recall 

Eq. 2 for the loss and Eq. 7 for the total variance);  

 Scenario 3): Series system with dependent components with unequal variances (recall 

Eq. 2 for the loss and Eq. 8 for the total variance). The weights were derived from 

the coefficients of a simulated multiple linear regression model. 

Scenario 1: Series system with independent components 

 The coefficient of variation (CV) ranged from 4.76% for harvest/collection process to 

7.42% for the densification process (Table 2). The highest average loss per unit (i.e., average loss 

per dry ton) based on Taguchi’s nominal-the-best loss function was $13.45 per dry tonne (k = 

$3.36 (%²)-1) in the harvest/collection process. Densification had the smallest loss with $4.30 per 

dry tonne, given the smallest 𝜎2 = 2.12 %² and k = $1.47 (%²)-1.  
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Table 2. Taguchi’s Nominal, the-Best Symmetric Loss Function for Simulated Moisture 
Content for Series System with Various Independent Components (Metzner 2018) 

Component 
Harvest/ 

Collection1 
Transport2 Drying3 Densification4 

CV [%] 4.76 5.69 5.65 7.38 

�̅� [%] 40.02 30.12 29.82 19.73 

𝜎2 [%²] 3.63 2.95 2.84 2.12 

k in [$/%²] 3.36 3.36 1.87 1.47 

L in [$/dry tonne] 13.45 10.94 5.92 4.30 
1 Target = 40% (Jacobson et al. 2014) 
2 Target = 30% (Jacobson et al. 2014) 
3 Target = 30% (Jacobson et al. 2014) 
4 Target = 19% (Jacobson et al. 2014) 

 

Scenario 2: Series system with dependent components and equal variances 

 The CVs ranged from 4.76% for the harvest/collection process to 17.21% for the 

densification process (Table 3). The harvest/collection process was the first component of the 

system and had the same CV and variance as Scenario 1. The variances for the transport component 

(𝜎2 = 5.42 %²), drying (𝜎2 = 8.08 %²), and densification (𝜎2 = 9.02 %²) increased to 8.51% to 

17.21% due the cumulative effect. In this scenario the doubled sums of the covariances for each 

component were negative, thus decreasing the variance for each component. The loss for 

harvest/collection was $13.45, densification was $15.48, drying was $16.72, and transport was 

$20.13 per dry tonne. For 250,000 dry tonnes of production, a total annual economic loss of $16.4 

million dollars occurred due to moisture variability in the supply chain.  Given the average cost 

estimates of $63.84 to $86.19 per tonne documented by Amundson (2016) in the study of high 

moisture content biomass feedstocks, variation in moisture content using the symmetric ‘nominal-

the-best’ TLF may increase costs by an additional 19% to 26%.  Given the average estimates by 

Sokhansanj and Turhollow (2014) of $21.60/tonne and $23.60/tonne for harvesting and collection 

equipment, the additional increase in costs due to variability using the TLF would be from 57% to 

62%.  

 

Table 3. Taguchi’s Nominal-the-best Symmetric Loss Function for Moisture Content in 
Series System with Dependent Equal Variance Components (Metzner 2018) 

Component 
Harvest/ 

Collection 
Transport Drying Densification 

CV [%] 4.76 8.51 10.29 17.21 

�̅� [%] 40.02 30.12 29.82 19.73 

𝜎2 [%²] 3.63 5.42 8.08 9.02 

∑ 𝜎2 [%²] 3.63 6.57 9.41 11.53 

∑ 2 × 𝐶𝑂𝑉 [%²] - -1.15 -1.33 -2.51 

k in [$/%²] 3.36 3.36 1.87 1.47 

L in [$/dry tonne] 13.45 20.13 16.72 15.48 

 

Scenario 3: Series system with dependent components and unequal variances 

Scenario 3 presented a hypothetical biomass supply chain in which the moisture content 

variability of each component has a weighted impact on the subsequent operation. The CVs ranged 
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from 4.76% for harvest/collection to 7.85% for densification (Table 4). Given the dependent 

components in the supply chain, the variances for the components transport (𝜎2 = 0.11 %²) and 

drying (𝜎2 = 0.31 %²) decreased in a series system, resulting in much smaller CVs compared with 

scenario 1 and 2 with 1.03% and 1.77%. The CV for densification (𝜎2 = 3.05 %²) slightly increased 

to 7.85%. The weights in Table 4 were generated from a multiple linear regression model (MLR). 

Densification was set to be the response variable in the MLR, since actual data for a response 

variable such as biofuel yield at the biomass conversion were not available at the time of the 

experiment. Due to the weights, the highest loss was experienced at the harvest/collection process 

with $13.45 per dry tonne. The losses for transport and drying, of $0.46 per dry tonne and $0.70 

per dry tonne, respectively, are much lower, similar to scenarios 1 and 2. For densification, the 

average loss of $5.80 per dry tonne was slightly higher as in the scenario with independent 

components. For 250,000 dry tonnes of production, a total annual economic loss from variability 

is estimated to be $5.1 million dollars. The costs were much smaller relative to Scenario 2 because 

the weights (Table 4) are relatively small and impact the components 2, 3, and 4 of the supply 

chain. 

 

Table 4. Taguchi’s Nominal-the-best Symmetric Loss function for Moisture Content in 
Series System with Dependent Unequal Variances Components (Metzner 2018) 

Component 
Harvest/ 

Collection1 
Transport2 Drying3 Densification4 

CV [%] 4.76 1.03 1.77 7.85 

�̅� [%] 40.02 30.12 29.82 19.73 

𝜎2 [%²] 3.63 0.11 0.31 3.05 

∑ 𝜎2 [%²] 3.63 0.10 0.28 2.40 

2 × ∑ 𝐶𝑂𝑉 [%²] - 0.01 0.03 0.65 

Weights -0.08 0.16 -0.25 1 

k in [$/%²] 3.36 3.36 1.87 1.47 

L in [$/dry tonne] 13.45 0.46 0.70 5.80 

 
 
CONCLUSIONS 
 

1. The contribution of this research is to advance the understanding and improve the estimates of 

costs associated with key factors in the biomass logistic supply chain.  Use of cumulative 

variance with the Taguchi Loss Function to estimates has not been previously studied for 

biomass feedstocks. 

2. The use of Taguchi’s quality loss function (i.e., nominal-the-best and smaller-the-better) in the 

context of Galton’s theory of cumulative variance allows for a more accurate quantification of 

the economic impact of variation in cellulosic feedstock supplies.  An improved quantification 

of costs of feedstock supplies reduces risk for businesses using biomass feedstocks.  

3. The simulation Excel tool allows decision makers to quantify the economic loss induced by 

variation of the key quality characteristics and focus resources on the components in the system 

with the greatest variance which induce the greatest cost. 
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4. Future research should be conducted between the biomass industry and academic researchers 

to estimate the costs associated with cumulative effect of variance for key attributes of biomass 

(e.g., ash content, moisture, etc.) using the Taguchi Loss Function in the presence of the ‘scale-

up effect’ from the laboratory to pilot-scale; from pilot-scale to industry scale production.   
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