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ABSTRACT

The aim of this research is to gain more understanding of the physics 
of the transportation of materials having viscoelastic characteristics, 
high transport speeds, a small thickness and a large surface area. This 
study introduces new models that take into account both material 
viscoelasticity and the  uid- structure interaction between the travel-
ling material and the surrounding  owing  uid. A web (continuum) 
travelling between two  xed supports is considered, modelling the 
web as a Kelvin–Voigt type viscoelastic panel and the air  ow as 
a potential  ow. Stability of the system is studied with the help of 
its eigenfrequencies (eigenvalues) for two different types of  ow 
geometries. First, a  ow inside an enclosure with a rectangular 
cross- direction, through which the panel is travelling, is added to the 
equations of out- of- plane motion of the panel with the help of added 
mass coef  cients. Secondly, a free stream potential  ow obstructed 
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by the travelling panel is analyzed using the analytical solution for the 
aerodynamic reaction pressure. Some numerical examples are given 
for both models.

INTRODUCTION

In this study, we address questions concerning the stability of axially moving 
materials involving high transport speeds. Examples of such processes in industry 
are manufacturing of paper, steel or textiles, etc.

The analysis that will be presented can be applied in any process with 
axially moving plate- like materials, but our viewpoint is especially paper web 
handling processes with wide and thin webs. This study is among the  rst 
studies on the moving web, in which both material viscoelasticity and the interac-
tion between the web and the surrounding  uid (air) have been included in the 
model.

It is well known that a high transport speed of axially moving material may lead 
to loss of stability resulting in damage or even breakage of the material being 
processed. The models used for simulating the transverse motion of travelling 
materials include strings, membranes, beams, panels and plates. The stability of 
these models has often been studied by dynamic modal analysis, i.e. by studying 
the eigenfrequencies of the system.

Archibald and Emslie [1] and Simpson [2] studied the effects of axial motion 
on the frequency spectrum and eigenfunctions. Both the travelling string and 
beam were shown to experience divergence instability at a suf  ciently high 
velocity. It was also observed that the natural frequency of each eigenmode 
decreases as the transport velocity is increased. Wickert and Mote studied the 
stability of axially moving strings and beams, presenting analytical expressions 
for the critical transport velocities [3]. They used modal analysis and a Green’s 
function method. Recently, Wang et al. showed that no static instability occurs at 
the critical velocity in the case of a string model [4]. Kong and Parker found 
closed- form expressions for the approximate frequency spectrum via perturbation 
analysis in their study concerning axially moving beams with small  exural 
stiffness [5].

For thin and wide webs, interaction with surrounding air affects signi  cantly 
the behaviour of the travelling material. Especially in the case of travelling paper 
webs, the effects of the air are important, see e.g. Kulachenko et al. [6, 7] and 
Pramila [8].

Pramila and Niemi published a series of papers during 1986 and 1987 
concerning the interaction between the travelling paper web and the external 
medium, using at  rst the analytical added- mass approximation and then the 
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 nite element method [9, 8, 10, 11]. These studies by Pramila and Niemi are 
considered  rst studies in which  uid- structure interaction has been taken into 
account in the context of axially moving webs. In their studies, it was found 
that the presence of air reduces the values of the eigenfrequencies and critical 
velocities drastically compared to the vacuum case. The presence of air may 
reduce both to about 15–26 % of the vacuum case [8]. However, the model that 
was used, was later interpreted by Pramila to mean that the  uid particles 
move with the travelling web, which probably is not the actual physical case there 
[10]. Recently, Frondelius et al. used an added mass model with non- constant 
coef  cients derived via boundary layer theory [12]. However, for this approach 
to be applicable, one needs to include a leading edge assumption in the  uid 
 ow model.

Chang and Moretti further developed the added mass approach for axially 
moving webs comparing also their theory to their wind- tunnel experiments for 
stationary webs surrounded by  owing air [13]. They modelled the web as an 
ideal membrane and the surrounding air was treated using potential  ow theory. 
Kulachenko modelled the  uid- structure interaction on the basis of acoustic 
theory  nding also that the presence of air reduces the eigenfrequencies of the 
web compared to the vacuum case [6]. Recently, Banichuk et al. studied the 
interaction between the moving web and  owing air using a panel model (a plate 
with cylindrical deformation) and an analytical expression for the aerodynamic 
reaction pressure [14, 15]. The aerodynamic reaction was solved analytically for 
potential  ow in the complex plane where the panel was represented as a cut. 
Eigenfrequencies and dynamic behaviour of this model were further investigated 
by Jeronen [16].

Industrial materials usually have viscoelastic characteristics [17], and conse-
quently, viscoelastic moving materials have been recently studied widely. In 
paper making, wet paper webs are highly viscous, and therefore, viscoelasticity 
should be taken into account in the model (e.g. [18]).

Lee and Oh [19] studied critical speeds, eigenvalues, and natural modes of 
axially moving viscoelastic beams performing a detailed eigenfrequency analysis, 
and reported that viscoelasticity did not affect the critical velocity. In a recent 
study by Saksa et al., eigenvalues and stability characteristics of viscoelastic 
axially moving panels in vacuum were studied [20]. It was found numerically that 
if the viscosity is high enough, all modes behave in a stable manner with damped 
vibrations for any value of transport velocity, and no critical velocity was detected. 
In their study, the material derivative was used in the viscoelastic constitutive 
relations. Using the material derivative instead of a partial time derivative was 
 rst suggested by Mockensturm and Guo [21], and the material derivative has 

been used in most of the recent studies concerning axially moving viscoelastic 
beams, e.g. [22, 23].
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Previous studies on moving viscoelastic materials interacting with surrounding 
 uid seem to be rather limited to the cases of beams having a circular cross- 

section [24, 25, 26] and to viscoelastic pipes conveying  uid [27, 28]. Recently, 
Saksa et al. [29] presented a model for axially moving thin webs, in which the 
material viscoelasticity was taken into account by the Kelvin–Voigt model and 
the effects of the surrounding air were approximated using an added mass 
approach. As a new result, they reported that the presence of the  owing air 
diminished the stabilizing effect of viscosity, i.e. for certain values of the param-
eters characterizing viscoelasticity, at some given axial velocity the panel could 
be stable when surrounded by stationary air but unstable when the air was  owing.

In this study, we take both material viscosity and interaction with  uid into 
account in the model for thin panels moving axially at a high speed. We model the 
surrounding air using both the added mass approach and a free stream potential 
 ow. These models lead to a partial differential equation and an integro- differential 

equation, respectively, of the  fth order in space. We use the term panel for a two- 
dimensional web with the assumption that the transverse displacement of the web 
does not vary in the direction perpendicular to the direction of axial motion of the 
web. Using the dynamic stability analysis approach due to Bolotin [30], the 
behaviour of the panel is analyzed with the help of its complex eigenvalues (eigen-
frequencies) with respect to the axial velocity of the panel. The analysis deter-
mines both the (real- valued) eigenfrequencies and the stability across the range of 
axial velocities studied. For numerical solution, the problems are discretized via 
the  nite element method using  fth- degree Hermite polynomials with C2 conti-
nuity. We compare the results obtained from the two different models to each 
other and also to previous results [29] obtained using the  nite difference method.

PROBLEM SETUP

In this section, we present a model for a travelling web (continuum), restricting 
the consideration to one open draw. The web is mechanically supported at the 
in  ow and out  ow ends of the span, with the rest of the span unsupported. We 
represent the dynamical equations describing the out- of- plane mechanical behav-
iour of the web, based on Newton’s second law and a rheological model for mate-
rial viscoelasticity.

Consider an axially moving panel, travelling between two  xed supports at a 
constant velocity V0. Let us make the simplifying assumption that the transverse 
displacement does not vary in the y (width) direction. The panel is supported at x 
= –l and x = l, and the length of the span is 2l. The transverse displacement of the 
panel is denoted by the function w = w(x, t). The width of the panel is denoted by 
b, and the thickness of the panel by h. See Figure 1.
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The mass per unit area of the web is denoted by m. We assume constant tension 
at the panel ends denoted by T0.

Viscoelasticity is taken into account by using the one- dimensional Kelvin–
Voigt model (in the x direction) consisting of an elastic spring and a viscous 
damper connected in parallel. However, because the material is originally two- 
dimensional before the panel simpli  cation is made, Poisson ratios will be 
included. The spring element is described by the Young’s modulus, E and elastic 
Poisson ratio, v, and the damper by the viscous damping coef  cient, , and the 
Poisson ratio for viscosity, . See Figure 2.

The dynamic equilibrium for the transverse displacement w in vacuum can be 
written as (see e.g. [20])

  (1)

Figure 1. An axially moving panel.

Figure 2. Kelvin–Voigt type rheological model.
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where the subscripts after a comma indicate partial derivatives, e.g. w,xt   2w/ x t. 
In equation (1), D is the bending rigidity of the panel de  ned as

  

and tR is the retardation time constant [31] (also known as the creep time constant) 
de  ned as

  

the SI unit of which is the second. We have assumed that the elastic and viscous 
Poisson ratios v and  coincide.

The boundary conditions for (1) are set as

   (2)

Again the subscripts after a comma indicate partial derivatives. For derivation of 
the boundary conditions, see [20].

Equation (1) together with the boundary conditions (2) describes the out- of- 
plane displacement of the panel moving at a constant axial velocity V0 through a 
span of length 2l. Further below, we will study these equations with the help of 
dynamic analysis separating a known time- dependent part. Thus, we will not 
study the full time- dependent equation (1), but will instead investigate a certain 
type of behaviour that is important with regard to the stability of the moving 
panel. To solve the full equation, one would also need to set two initial conditions 
in addition to the boundary conditions (2).

In the following, we will consider two  ow models: a panel travelling through 
an enclosure, and a panel subjected to an axial free- stream  ow.

Panel travelling through an enclosure with a rectangular cross- section

In the  rst model, we let the panel travel through a long enclosure with a rectan-
gular cross- section, to model a web travelling through a drying oven. The height 
of the enclosure is H and its width is B. The velocity  eld of the  uid is denoted 
by U. See Figure 3. Note that the rollers in the  gure only express the web being 
supported along the lines x = – l and x = l. In the  ow model, the rollers are not 
accounted for.

Following Chang and Moretti [13], we include added masses due to the trans-
verse, Coriolis and centripetal acceleration (i.e. in all inertia terms) denoted by m1, 
m2, and m3, respectively.
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Inserting the added masses into (1), we obtain the dynamic equation for the 
travelling panel interacting with the surrounding air:

  (3)

The added mass terms in (3) can be calculated as [13]

  

where Ca is the added mass coef  cient depending on the problem geometry, f is 
the density of the surrounding air, * is the displacement thickness of the boundary 
layer and  is the momentum thickness of the boundary layer.

Figure 3. An axially moving panel submerged in  owing  uid.
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If U = U(r) is the velocity of the  uid  ow with respect to the distance r from 
the panel, * and  are given by

  

where  is the thickness of the moving  uid layer [13].
If the  uid velocity pro  le U(r) is known, * and  can be determined, and 

values obtained for the added masses mi for i = 1, 2, 3. Equation (3) with the 
boundary conditions (2) (given above) describes the behaviour of the panel travel-
ling through an enclosure.

Travelling panel submerged in a free stream  ow

Now let us consider the second model. Let the panel travel in an unlimited space 
with axial  ow surrounding it. Since the panel model is onedimensional, the 
surrounding  ow is two- dimensional, and the domain of the  uid  ow is the 
in  nite xz plane with the part representing the panel removed.

The axial  ow is modelled as a free stream potential  ow. The free stream 
velocity is denoted by v . See Figure 4. Again, the rollers in the  gure only 
express the web being supported at x = –l and x = l, and are not part of the  ow 
model.

The free stream velocity is allowed to be either zero (to model stationary air) or 
nonzero. It is also possible to set v  = V0, in which case the surrounding free 
stream follows the axial motion of the moving panel.

Figure 4. A travelling panel submerged in a free stream potential  ow.
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The equation for the out- of- plane motion of the travelling panel is now written 
with the help of the aerodynamic reaction pressure qf:

  
(4)

We assume nonstationary aerodynamic  ow in the xz plane (Figure 4). The reac-
tion pressure qf exerted by the  uid can be expressed as

  
(5)

where – and + denote the limits

  

and  is the aerodynamic disturbance velocity potential, describing the non- 
freestream component of  uid motion, due to the solid obstacle. As before, in (5) 
the constant f denotes the density of the surrounding air.

The aerodynamic disturbance potential  can be determined analytically by 
solving the Laplace equation for  in the xz plane from which the part z = 0, –1  
x  1 is cut. If we assume that the panel displacement w and its derivatives are 
small, in the  ow geometry it is possible to approximate the panel as being 
perfectly  at (whence z = 0 in the cut), and account for the shape and the motion 
of the panel only through the boundary condition which states that no  ow occurs 
through the panel surface. This is suf  cient for the analysis of small vibrations 
and stability. See [15] for details.

To present the solution, we  rst introduce the dimensionless coordinates x', t' 
and the dimensionless displacement function w':

  
(6)

Here l is half the span length. The constant  is called the characteristic time and 
it can be chosen freely.

The aerodynamic problem for the potential  ow surrounding the panel is now 
written as

  

(7)
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Solving the aerodynamic problem (7) (see [15] for details) and inserting the solu-
tion into (5), we obtain the analytical expression for qf(x, t):

 
(8)

where the kernel function N is

  
(9)

  
(10)

In (8),  is a dummy variable of integration. We have used the dimensionless 
displacement w'. Comparing (8) with the expression in [15], in which the dimen-
sional displacement w was used, there is an additional multiplication by 1/l. 
Noting that w = lw', the expressions agree.

We have thus obtained the aerodynamic pressure qf, which describes the pres-
sure difference generated over the panel surface, as the surrounding  ow reacts to 
the shape and the motion of the panel. Since the response can be presented analyt-
ically with the help of the displacement function w, we have only one equation 
(after inserting (8) into (4)) that describes the behaviour of the panel. As before, 
the boundary conditions are (2), given further above.

DIMENSIONLESS FORMS

We now have two problems, one for each  ow model considered. The problem 
(2), (3) describes the behaviour of the panel travelling through an enclosure, while 
the problem (2), (4) describes the behaviour of the panel travelling in a surrounding 
axial free stream  ow.

For the purpose of numerical analysis, we present the problems (2), (3) and (2), 
(4) in a dimensionless form, which is a standard preparation step when numeri-
cally working with partial differential equations describing physical phenomena. 
The dimensionless form minimizes the number of independent parameters in the 
mathematical problem, and in some cases also facilitates the use of a reference 
domain for computations. For example, in the second model, by using dimension-
less variables, the solution (8) can be directly applied without modi  cation for 
any physical span half- length l.
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Let us choose the characteristic time  in (6) as follows:

  
(11)

We now introduce the following dimensionless problem parameters:

  
(12)

  
(13)

  (14)

Above,  is called the dimensionless retardation time.
We will  rst rewrite the dynamic equation in the case of the added mass 

approach, i.e. problem (2), (3). Inserting (6) into (3), using the dimensionless 
parameters in (12)–(14) and omitting the primes from the dimensionless coordi-
nates, we obtain

  (15)

Note that equation (15) also describes the vacuum case, by setting  = 2 = 3 = 1 
(i.e. no added mass, m1 = m2 = m3 = 0).

For the dynamic equation of the travelling panel submerged in a free stream 
potential  ow, i.e. problem (2), (4), we proceed in a similar manner.

We insert (6) into (4), use the dimensionless parameters in (12)–(13) and  nally 
omit the primes from the dimensionless variables, obtaining

  
(16)

Setting  = 0 in (16) gives us the vacuum case.
We make the insertion of (6) also to the boundary conditions (2) and get

     (17)
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We now have the dimensionless forms for the panel behaviour using both  ow 
models. The problem (15), (17) describes the behaviour of the panel travelling 
through an enclosure, while the problem (16), (17) corresponds to the panel trav-
elling in a surrounding axial free stream  ow.

DYNAMIC ANALYSIS

In this section, we brie  y describe the method that is often (and also here) used in 
the analysis of time- dependent partial differential equations. We will analyze the 
boundary value problems (15), (17) and (16), (17) via their eigenvalues. With the 
help of the eigenvalues, it is possible to study the characteristic behaviour for 
different values of problem parameters, and to make systematic parametric 
studies.

In the present study, the goal of this analysis is to investigate the dynamical 
stability of the system, and to  nd the lowest critical velocity for axial web motion, 
up to which the system behaves in a stable manner. The result is a theoretical 
stability limit for stable web motion in real open draws, such as are encountered 
in actual paper machines.

Furthermore, the analysis produces the characteristic frequencies of free vibra-
tions of the paper web in a given open draw, i.e. those frequencies at which the 
system may resonate, at least according to the model where small vibrations are 
assumed.

To study the dynamical stability of the problems (15), (17) and (16), (17), we 
perform classical dynamic stability analysis [30] by inserting the standard time- 
harmonic trial function

  (18)

into the dimensionless form of the problem. In (18),

  

where  is the dimensionless angular frequency of small transverse vibrations.
The (complex- valued) quantity s is called the stability exponent. The sign of 

the real part of s characterizes the stability of the system. If Re s > 0, the behaviour 
is unstable, and otherwise it is stable. This classi  cation is based on two important 
properties. For any linear differential equation, the real and imaginary parts of the 
solution (18) are also solutions of the same equation. Hence the complex- valued 
solution immediately gives physically admissible real- valued solutions. The other 
property is that if Re s > 0, via the use of Euler ‘s formula (in complex analysis) 
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one can split the complex- valued exp into the product of a harmonic vibration (or 
as a special case, a constant) with a real- valued exponential that grows with 
increasing t. Thus, if the system  nds itself in a state where Re s > 0, the model 
predicts that the vibrations will grow without bound, leading to dynamical insta-
bility.

Inserting (18) into the dimensionless added mass problem (15), (17) we obtain

  (19)

We proceed similarly in the case of free stream potential  ow. Insertion of (18) 
into (16) gives

  
(20)

The boundary conditions for W in (19) and (20) are

  (21)

We have reduced both problems into a form with no explicit time dependence; 
what remains is a boundary value problem for an ordinary differential equation in 
x. The problem (15), (17) has been reduced into the problem (19), (21), and the 
problem (16), (17) into the problem (20), (21), respectively.

The time dependence of each solution is determined by the value of s, via the 
exp(st) in (18). The task in the eigenvalue analysis is to simultaneously determine 
the unknown eigenvalue s and the corresponding solution W.

NUMERICAL EXAMPLES

We will consider two examples, one for each  ow model. First, we consider a 
simple  ow through an enclosure with a rectangular cross- section, and second the 
free stream potential  ow. For some more results on the  rst model, see [29].

The problems (19), (21) and (20), (21) were discretized via the  nite element 
method using a Hermite basis with C2 continuity, consisting of  fth- degree poly-
nomials. The degrees of freedom were the function value, the  rst derivative, and 
the second derivative at the nodes. A uniform grid was used with 20 elements. It 
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was observed that doubling the number of elements from this did not affect the 
values of the  rst three pairs of eigenvalues signi  cantly. Note that the integral 
terms in the second model produce full matrices.

In the case of both considered problems, discretization leads to a quadratic 
eigenvalue problem with respect to s, which can be solved using standard 
techniques (see e.g. [32]). In the  gures, the lowest three eigenvalue pairs are 
shown.

In the following numerical examples, the dimensionless frequency F has been 
calculated with the help of the dimensionless angular frequency  = Im s.

The original, dimensional frequency f is

  
(22)

We de  ne the dimensionless frequency so that we divide f by the natural frequency 
of non- moving ideal string in vacuum, that is, by

  

We obtain

  
(23)

The behaviour of the dimensionless frequency F is studied with respect to the 
dimensionless panel velocity c. Motivated by (23), in the  gures both the real and 
imaginary parts of s have been scaled by 2/ .

The material parameters used for both examples were

  (24)

Let us begin with the example of the panel travelling through the drying oven. 
We assume a Couette type  ow such that the  uid velocity coincides with the 
panel velocity on the panel surface and is equal to zero at the surface of the enclo-
sure. The velocity pro  le is linear. See Figure 5.

Chang and Moretti [13] computed the added mass coef  cient Ca for different 
simple problem geometries assuming potential  ow in the cross- direction plane, 
obtaining the stream- function by a  nite difference method. In such conditions 
that H/B = 0.4 and b/B = 0.8, they found that Ca = 1.66.
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The used parameters related to the  ow geometry were

  (25)

Two representative examples are given. The retardation time tR is given 
the values tR = 5 · 10–5 s and 5 · 10–3 s. See Figure 6 for the results. In the 
 gure, the three lowest complex eigenvalue pairs are plotted for a range of 

velocities around the  rst critical point. The real part of s characterizes the 
stability behaviour of the moving panel, while the imaginary part gives the 

Figure 5. Couette type  ow surrounding the moving web, following Chang and 
Moretti [13].

Figure 6. Behaviour of the lowest three pairs of eigenvalues for the added mass model 
near the  rst critical point. Notice the shift on the horizontal axis. Left: tR = 10–5 s. Right: 

tR = 10–3 s.
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real- valued eigenfrequency. Negative real parts indicate damping, positive real 
parts instability.

The  rst critical point is the point where the imaginary parts of the lowest 
eigenvalue pair merge. In both sub  gures, this occurs between the axis marks 
c = 0.000020 and c = 0.000025 (but note the shift on the horizontal axis).

It is observed that for the larger value of the retardation time constant tR, the 
values of the eigenfrequencies increase, i.e. the natural vibration of the moving 
panel becomes faster than in the other case. That is, when the eigenfrequencies are 
considered, the material viscosity has the opposite effect to that of introducing the 
surrounding  uid.

Also, if the material viscosity is high enough, we see that the  rst critical point 
may become stable. In the case with tR = 10–3 s, the real parts of all three eigen-
value pairs remain negative. Physically, this means that a suf  ciently viscous 
material can be driven without losing stability at velocities higher than the  rst 
critical point.

The qualitative behaviour captured here is the same as for the  nite difference 
solution reported in [29].

Next, consider the moving panel submerged in free stream potential  ow. We 
consider two different cases, giving two representative examples of each. The  rst 
case is with stationary  uid (no free stream, v  = 0; in equation (20),  = 0), and 
in the second case, the free stream is assumed to move at the same velocity as the 
panel (v  = v0; in equation (20),  = c).

The panel dimensions used were l = 0.5 m and h = 10–4 m, the same as in the 
added mass example. For the stationary  uid, the retardation time tR was given the 
values tR = 5 · 10–5 s and 5 · 10–3 s.

Figure 7. Behaviour of the lowest three pairs of eigenvalues for the free stream potential 
 ow mass model near the  rst critical point. Stationary  uid,  = 0. Notice the shift on the 

horizontal axis. Left: tR = 10–5 s. Right: tR = 10–3 s.
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The  rst critical point is found near c = 1. It is a property of this  uid model (see 
[15, 16]) that when  = 0, it does not change the critical velocity from the vacuum 
case, but only the eigenfrequencies are changed. Hence, the small shift in the 
critical point, compared to the ideal string for which the critical point occurs at 
c = 1, comes only from the bending rigidity and material viscosity contributions.

The results are qualitatively similar to those from the added mass model. For 
small material viscosities, the  rst critical point is unstable, but if the material 
viscosity is high enough, it becomes stable.

The same values for the retardation time were also tested for the case of the 
 uid moving with the panel, but the two values produced almost identical results, 

and hence only one is shown. Numerical tests using constant values for  indi-
cated that the destabilizing effect of the free- stream  uid motion (see [15]) cancels 
the stabilizing effect of the material viscosity. This is the case also when  = c. It 
seems the  uid terms dominate, rendering the results near identical. However, by 
further increasing the value of tR by another factor of 100, a minor stabilizing 
effect reappears, but it is not strong enough to stabilize the critical point. In Figure 
8, cases tR = 5 · 10–3 s and 5 · 10–1 s (the latter displaying some stabilization) are 
shown.

For the two cases of the moving panel submerged in free stream potential  ow, 
the location of the  rst critical point matches Pramila’s interpretation [10] that 
was mentioned at the beginning. If the free stream moves at the same velocity as 
the panel, the critical velocity is drastically reduced (Figure 8; note that the critical 
point is located between c = 0.50 and c = 0.52, and compare to the earlier exam-
ples above). Indeed, if there is no free stream, then according to this model, the 
critical velocity remains the same as in the vacuum case.

Figure 8. Behaviour of the lowest three pairs of eigenvalues for the free stream potential 
 ow mass model near the  rst critical point. Fluid moves with the panel,  = c. Left: tR = 

10–3 s. Right: tR = 10–1 s. Note the small asymmetry in the real parts at the right.
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CONCLUSIONS

The results in this paper shed light on the behaviour of the panel model, when 
linear viscoelasticity and certain simple kinds of  uid  ows are taken into account. 
From the viewpoint of mathematical modelling, the behaviour of the model near 
the  rst critical point is an interesting question with important stability implica-
tions (in the Bolotin sense).

It was seen that in most of the studied cases, the critical point is unstable, as is 
expected for a travelling material. As an exception, in the case of the added- mass 
model with high enough material viscosity, the critical point becomes stable. This 
result is obtainable also in the vacuum case, because the added- mass model only 
modi  es the coef  cients of the equation describing the material behaviour in 
vacuum. As for the potential  ow model using the analytical solution of the  ow 
problem, it was seen that when the  uid moves with the panel, then at least in the 
range of values that were tested for the retardation time constant tR , there is no 
such stabilization effect.

The presented model has an application in modelling the behaviour of fast 
moving wide webs in industry, e.g. in paper making. By using measured param-
eter values in the model, and measuring the natural frequencies of the actual phys-
ical system at different axial velocities, it is possible to  nd the model where the 
predicted eigenfrequencies best match the measured data. Then, by examining the 
prediction for critical velocity from that model, it is possible to predict the critical 
velocity for an actual open draw. Of course, when predicting the stability limit for 
the whole paper machine, the smallest of all predicted critical velocities (for the 
different open draws) is the relevant quantity.

However, it should be noted that the models used in the present study are rather 
simple. For improving on the predictions made in this paper, one should notice 
that viscoelasticity in paper does not behave linearly and that, to take into account 
the complicated air  ows inside the paper machine, the potential  ow model is 
probably not accurate enough.

Especially air  ows with real viscous  uid properties around the moving web 
seem to be very complex. Potential  ow theory does not take into account the 
effects of  uid viscosity, and therefore the inertial time- dependent effects of non- 
steady- state moving webs are not accurate.

Even though in the added- mass model, the boundary layer effects were taken 
into account in parameters m2 and m3 concerning the Coriolis and centripetal 
terms, real time dependence and turbulent air  ow around the moving, vibrating 
web cannot be understood using this approach. One of the possible future direc-
tions could be to investigate the dynamics of the moving web coupled with the 
Navier- Stokes equations.
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Sören Östlund  KTH

Could you, please, comment on the upstream boundary condition of a vanishing 
curvature? In elasticity, this would mean a vanishing bending moment.

Juha Jeronen

Actually, that is a good question. In the pure elastic case, of course, the 
second derivative corresponds to the bending moment, but this is not the case for 
a visco-elastic material, so we have just inserted this as a kinematic boundary 
condition. We have not considered what happens to the bending moment. 
There is a book by Wilhelm Flügge5 which explains how to deal with the 
bending moment for a visco-elastic material. It is a bit more complicated than in 
the elastic case.

5Wilhelm Flügge, “Viscoelasticity”, Springer-Verlag, Berlin-Heidelberg (1975), ISBN 978-3-662-
02278-8, DOI 10.1007/978-3-662-02276-4.
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Discussion
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Bill Sampson  University of Manchester (from the chair)

I’d like a clari  cation. You talked about the fact that your analysis was best suited 
for long and narrow draws and yet, of course, most draws in paper machines 
nowadays are short, and wide.

Juha Jeronen

Yes, that is true.

Bill Sampson

You have used a value of 0.6 metres for width, so, can you talk a bit about the 
applicability? You said that the shape should not be such a big deal, but then you 
chose a value for width typical of a narrow draw.

Juha Jeronen

Basically, if you want to analyse a short and wide draw, it is not possible to apply 
these techniques and you would need a more complicated model. So what we 
wanted to do here was to make a  rst step. This was fundamental academic 
research to see what happens. Since we had already earlier solved this  uid  ow 
problem with a semi-analytical solution, we wanted to see what would happen if 
we introduced material visco-elasticity of the solid into the model, in the sense of 
building the model one step at a time.
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