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ABSTRACT

Information geometry provides a metric on spaces of probability 
density functions. Here we apply it to the space of trivariate Gaussian 
distributions of joint variation among the areal density variables for 
pixels and their  rst and second neighbours, from radiographs and 
simulations. At a pixel scale of one millimetre these distributions can 
pick up essential structural features including  occulation intensity 
and scale. We do this by applying the technique of dimensionality 
reduction to large mixed data sets of samples and the results show 
promise for classi  cation, including extraction of groupings that 
represent different former types. This kind of analysis could be valu-
able in evaluating trials, comparing different installations of similar 
formers and for identifying anomalous behaviour.
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1 INTRODUCTION

Much analytic work has been done on modelling of the statistical geometry of 
heterogeneous  brous materials such as paper [1, 2]. The inherent non- uniformity 
of paper in  uences its mechanical properties [3, 4],  uid ingress or transfer [5, 6, 
7] and optical uniformity [8, 9].

The basic property of interest in applications is the uniformity in grammage, or 
formation. Several quantitative measures of the formation of paper, are reported 
and widely used in the literature. Experimentally an array of local average gram-
mage values is obtained via a calibrated radiographic technique; for comparison 
of imaging methods see [10]. Using complete sampling by contiguous square 
inspection zones, the distribution of local average grammage is typically well 
represented by a Gaussian distribution of variance that decreases monotonically 
with increasing inspection zone size [1]; the rate of decay is dependent on  bre 
and  bre cluster dimensions, see, e.g. [11]. Several other techniques have been 
applied to characterise formation: Norman et al. [12, 13, 14] used frequency 
domain image processing to obtain power spectra allowing quanti  cation of the 
contribution of structural features of different scales to the overall variability; 
Jordan, with Nguyen and others [15, 16, 17, 18] used the speci  c perimeter as a 
measure of  oc size; Bouydain et al. [19] and Keller et al. [20, 21, 22] use the 
wavelet transform to capture the spatial variability of non- uniformity within and 
between regions of a given texture; Farnood et al. [23] developed a stochastic 
decomposition approach to yield characteristic  oc sizes and grammages; this 
approach is developed in the proceedings of this symposium [24]. Direct 
mappings, albeit in some cases highly non- trivial ones, exist among all these 
measures [25, 26].

For a random network of  bres, i.e. one where the  bre centres are distributed 
according to a point Poisson process in the plane with uniform distribution of 
 bre axes to any arbitrary direction, the power spectrum, speci  c perimeter 

and variance of local grammage are known analytically, see [27], [15] and 
[28] respectively. Noting the direct relationships among all these quanti  ers of 
formation, we focus now on the theory for the variance of local grammage, since 
this provides an appropriate framework for discussion of our subsequent 
treatment. We denote the local average of a random variable by a tilde (~) and 
the global average by a bar (–). Dodson [28] derived the spatial covariance 
for arbitrary rectangular  bres and gave the variance of local grammage,  2x(

~) 
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observed in a random  bre network partitioned into contiguous square zones of 
side x as

  (1)

where 2( ) is the variance of grammage at points, which is readily determined 
from the underlying Poisson process of coverage, (r) is the point autocorrelation 
function for  bres, i.e. the probability that a  bre covering a given point in the 
plane covers also another point separated by a distance r from the  rst; b(r, x) is 
the probability density of separation, r, of pairs of randomly chosen points within 
a square zone of side x. Full derivations of expressions for (r) and b(r, x) are 
provided in [29].

At most scales of inspection, x, the variance of local grammage in real paper is 
greater than that of a random network formed from the same constituent  bres [1]. 
We have then

  (2)

where *2( ) is the point variance of the clustered, i.e. non- Poissonian, process of 
 bre coverage, and *(r) is the point autocorrelation function for  bre clusters, or 
 ocs. Farnood et al. [23] modelled  ocs as disks with  xed grammage, G and 

provide expressions for a the autocorrelation function of a random process of 
disks. For now, pertinent to our subsequent analysis we make three remarks about 
the autocorrelation function *(r):

• it is a global average property of the sampled area;
• it characterises the underlying texture of a grammage map;
• covariance matrices among pixel densities are integrals of *(r).

Comparative quanti  ers of formation, where the measured formation is compared 
to that of a corresponding random  bre network, are useful, since they provide 
natural absolute measures of the extent to which formation might be improved 
through process interventions [1, 2]. However, all the approaches identi  ed so far 
seem to rely on second- order statistics. Here, we quantify differences in formation 
through analysis of distributions that incorporate spatial covariance of local gram-
mage, by means of information geometry.

Information geometry uses a natural distance structure, the Fisher information 
metric [30], on smoothly parametrized families of probability density functions. 
Gaussians parametrized by mean and standard deviation yield a 2- dimensional 
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curved surface, bivariate Gaussians yield a 5- dimensional curved space and trivar-
iate Gaussians yield a 9- dimensional curved space. Thus, the information metric 
gives an arc length function along any curve between two probability density func-
tions in the given family. The geometry of commonly occurring families of prob-
ability density functions is well- known, see [30] for relevant examples and some 
applications. The technical algorithmic dif  culty is that, in the curved space of 
probability density functions, the true information distance between two points is 
the in  mum of arc length taken over all curves joining the points. This in  mum 
does exist and is the length of the shortest curve, called a geodesic, between the 
points; on a sphere the geodesic (literally ‘divides the Earth’) is a great circle.

Accordingly, information geometry can be readily applied to the smooth fami-
lies of the distributions that arise in characterizing paper, to illustrate and metrize 
the evolution of structure during the manufacturing process under changes of 
conditions or constituent mixtures of  bres and their clustering properties. Further, 
it provides a means to quantify the proximity of a process to a natural reference 
state in the family of probability density functions—e.g. the corresponding 
Poisson process.

In what follows we shall illustrate the differences of features in given data sets 
obtained from the distribution of local grammage of real samples and simulated 
paper structures. In such cases there is bene  t in mutual information difference 
comparisons of samples in the set but the dif  culty is often the large number of 
samples in a set of interest—perhaps a hundred or more. The problem is how to 
present the information contained in the whole data set, each sample yielding a 
3×3 covariance matrix  and mean . The optimum presentation is to use a 
3- dimensional plot, but the question is what to plot on the axes.

To solve this problem we use dimensionality reduction to extract the three most 
signi  cant features from the set of samples so that all samples can be displayed 
graphically in a 3- dimensional plot. The aim is to reveal groupings of data points 
that correspond to the particular characteristics; in our context we have different 
former types, grades and differing intensities of  occulation. Such a methodology 
has particular value in the quality control for processes with applications that 
frequently have to study large data sets of samples from a trial or through a change 
in conditions of manufacture or constituents. Moreover, it can reveal anomalous 
behaviour of a former or unusual deviation in a product. The raw data of one 
sample from a study of formation might typically consist of a spatial array of 
250×250 pixel density values, so what we solve is a problem in classi  cation for 
stochastic image textures. The method, which we introduced in a preliminary 
report [33], depends on extracting the three largest eigenvalues and their eigen-
vectors from a matrix of mutual information distances among distributions repre-
senting the samples in the data set. The number in the data set is unimportant, 
except for the computation time in  nding eigenvalues.
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2 BACKGROUND THEORY

The covariance of a pair of random variables, p and q is a measure of the degree 
of association between them and is given by

  (3)

In particular, the covariance of a variable with itself is its variance. From the array 
of local average grammage values ~

i, we generate two numbers associated with 
each: the average grammage of the 6  rst- neighbour pixels, ~

1, i and the average 
grammage of the 16 second- neighbour pixels, ~

2, i. Thus, we have a trivariate 
distribution of the random variables ( ~

i, 
~

1, i, 
~

2, i ) with –
2 = –

1 = –. Figure 1 
provides an example of a typical data set obtained from a radiograph of a commer-
cial newsprint sample; the histogram and three- dimensional scatter plot show data 
obtained for pixels of side 1 mm. From the Central Limit Theorem, we expect the 
marginal distributions of ~

i, 
~

1, i and ~
2, i to be well approximated by Gaussian 

distributions. For the example in Figure 1, these Gaussians are represented by the 
solid lines on the histogram; this Gaussian approximation holds for all samples 
investigated in this study. Accordingly, the approach we apply here is to use infor-
mation geometry of trivariate Gaussian spatial distributions of pixel density with 
covariances among  rst and second neighbours to reveal features related to sizes 
and density of  bre clusters, i.e.  ocs.

What we know analytically is the geodesic distance between two multivariate 
Gaussians, A, B, with probability density functions f A, f  B mean vectors  A,  B and 
covariance matrices A, B of the same number n of variables in two particular 
cases [34]:

• Common covariance matrix, different mean vectors: A  B, A = B =  : 
f A = (n, A, ), f B = (n, B, )

  (4)

• Common mean vector, different covariance matrices: A = B = , A  B : 
f A = (n, , A), f B = (n, , B)

  (5)

From the form of D (  f A, f B) in (5) and recalling that the trace is the sum of 
the eigenvalues, it may be seen that an approximate monotonic relationship 
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arises with a more easily computed symmetrized log- trace function given by 
(  f  A, f  B) =

  (6)

This is illustrated by the plot of D (  f A, f  B) from (5) on (f  A, f  B) from (6) in 
Figure 2 for 185 trivariate Gaussian covariance matrices. For comparing relative 
proximity, this is a better measure near zero than the traditional symmetrized 
Kullback- Leibler approximate information distance [37] in those multivariate 
Gaussian cases so far tested and would be quicker than equation (5) for handling 
large batch processes.

3 DIMENSIONALITY REDUCTION FOR DATA SETS

It is common in situations where large data sets are analyzed to compare among 
themselves the objects, typically digital images or documents, in order to identify 
clustering into groups, trends in prominent features or anomalies. The data set of 
interest here is a family of trivariate Gaussian distributions obtained from textures 
characterising the distribution of local grammage from each sample; the trends or 
features are, for example, the mean grammage, intensity and size of  ocs. 
Although current analyses and simulations permit larger arrays and higher resolu-
tions, we constrain our analysis to 250×250 pixel arrays of local grammage values 
with spatial resolution around 200 m per pixel. This is what was generated in the 

Figure 1. Trivariate distribution of grammage values for newsprint sample. Left: 
source grammage map; centre: histogram of 

~
i, 

~
1, i and 

~
2, i; right: 3D scatter plot of ~

i, 
~

1, i and 
~

2, i.
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University of Toronto Archives [31], which provides data sets of 200 samples 
made on a wide range of formers. First, we illustrate the approach by analysis of 
a family of simulated textures.

Our formation simulator was described in detail at the previous symposium 
[32], so here we summarize the main aspects of the algorithm. The simulator 
generates a grammage map as an array of square pixels, which can be considered 
to correspond to the pixels obtained from a calibrated scanned image of a contact 

- radiograph.
The code works by dropping clusters of  bres within a circular region where 

the centre of each cluster is distributed as a point Poisson process in the plane and 
the number of  bres per cluster, nc, is a Poisson distributed random variable. The 
size of each cluster is determined by an intensity parameter, 0 < I  1 such that the 
mean mass per unit area of the cluster is constant and less than the grammage of 
a  bre. Denoting the length and width of a  bre by  and  respectively, the 
radius of a cluster containing nc  bre centres is

  (7)

Figure 2. Plot of information distance D  (  f A, f B ) from (5) on  (  f A, f  B ) from (6) for 185 
trivariate Gaussian covariance matrices. This shows an almost linear relationship but the 

approximation  (  f A, f B) is quicker to compute and may be useful in large analyses.

Figure 3 shows examples of density maps generated by the simulator. We observe 
textures that increase in ‘cloudyness’ with nc and increase in ‘graininess’ with I.
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Now, a family of 100 samples would give us a 100×100 symmetric positive 
de  nite matrix of mutual information distances between pairs of samples, each 
sample represented by a trivariate Gaussian distribution. Graphically, we can 
comprehend a 3- dimensional representation of features so we need a method to 
reduce the feature representation in our data set of 100 to  t into a 3- dimensional 
image. Human brains can do this rather well, since we have enormous numbers of 
optical sensors that stream information from the eyes into the brain but the result 
is a 3- dimensional reduction which serves to help us ‘see’ the external environ-
ment. We want to see our whole data set organised in such a way that natural 
groupings are revealed and quantitative dispositions among groups are preserved. 
There is a convenient and widely applied mathematical method that can help us 
achieve what we want, it is called multi- dimensional scaling, or dimensionality 
reduction, see Carter et al. [35, 36] for a detailed presentation with examples. 
Brie  y, the series of computational stages is as follows:

1. Obtain mutual ‘information distances’ D(i, j) among the members of the data 
set of textures X1, X2, . . ., XN each with 250×250 pixel density values.

2. The array of N × N differences D(i, j) is a symmetric positive de  nite matrix 
with zero diagonal. This is centralized by subtracting row and column means 
and then adding back the grand mean to give CD(i, j).

Figure 3. Simulated grammage maps each representing a 4 cm × 4 cm region with 
mean grammage 60 g m–2 formed from  bres with length  = 1 mm, linear density  = 

2 × 10–7 kg m–1 and width  = 20 m.
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Figure 4. Embedding in 3 dimensions via univariate Gaussian Fisher distances. Left: 
data set of 0.2mm pixels for 12 simulated networks made from 1mm  bres with differing 
levels and intensities of clustering at the same mean areal density. Right: the same clus-
tered networks, together with 12 unclustered Poisson  bre networks with differing mean 
areal densities using univariate Gaussian information distances. The clustered networks are 

those in a fan from the green point.

3. The centralized matrix CD(i, j) is again symmetric positive de  nite 
with diagonal zero. We compute its N eigenvalues ECD(i), which are 
necessarily real, and  nd the N corresponding N- dimensional eigenvectors 
VCD(i).

4. Make a 3 × 3 diagonal matrix A of the  rst three eigenvalues of largest 
absolute magnitude and a 3 × N matrix B of the corresponding eigenvectors. 
The matrix product A · B yields a 3 × N matrix and its transpose is an N × 3 
matrix T, which gives us N coordinate values (xi, yi, zi) to embed the N samples 
in 3- space.

4 RESULTS

First we illustrate with univariate Gaussian distributions of pixel densities in a 
small number of simulated networks of straight  bres. Figure 4, left, shows 
the dimensional reduction embedding of 12 data sets of 250×250 pixels of side 
0.2 mm from simulated  bre networks with differing levels and intensities of 
clustering at the  xed mean 60 g m–2. Here the source data for the analysis 
consisted of the matrix of areal density pixel differences from a Poisson  bre 
network with no clustering. These individual distributions of pixel differences 
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were all very close to univariate Gaussians centred on zero and we used distances 
in the Gaussian Fisher metric. The right diagram in Figure 4 uses data from the 
same clustered networks, together with 12 unclustered Poisson  bre networks 
with differing mean areal densities from 5 g m–2 up to 60 g m–2 at the red point. 
The clustered networks are those in a fan from the green point.

Figure 5 uses a trivariate Gaussian  tting to the pixel differences from a Poisson 
network. It shows a plot of D (  f A, f  B) as a cubic- smoothed surface (left), and as a 
contour plot (right), for trivariate Gaussian information distances among 16 data 
sets of 1 mm pixel differences between a Poisson network and simulated networks 
made from 1 mm  bres, each network with the same mean density but with 
different clustering. Second row: Embedding of the same data grouped by 
numbers of  bres in clusters and cluster densities.

Next, Figure 6 shows the plot of D (  f A, f  B) as a cubic- smoothed surface (left), 
and as a contour plot (right), for trivariate Gaussian information distances among 
16 data sets of 1 mm pixels for simulated networks made from 1 mm  bres, each 
network with the same mean density but with different clustering. Using pixels of 
the order of  bre length is appropriate for extracting information on the sizes of 
typical clusters. Second row: Dimensionality reduction embedding of the same 
data grouped by numbers of  bres in clusters and cluster densities; the solitary 
point is an unclustered Poisson network.

Figure 7 shows the plot of D(  f A, f  B) = D (  f A, fB + D (  f A, f  B) as a 
cubic- smoothed surface (left), and as a contour plot (right), for trivariate Gaussian 
information distances among 16 simulated Poisson networks made from 
1 mm  bres, with different mean density, using pixels at 1 mm scale. Second 
row: Dimensionality reduction embedding of the same Poisson network data, 
showing the effect of mean network density. The bene  t from this kind of 
analysis is the representation of the important structural features of number of 
 bres per cluster and cluster density, by almost orthogonal sequences in the 

embedding.
Figure 8 shows a 3- dimensional embedding for a data set from [31] including 

182 paper samples from gap formers, handsheets, pilot machine samples and 
hybrid formers. We see that to differing degrees the embedding separates 
these different and very disparate forming methods by assembling them into 
subgroups. This kind of discrimination could be valuable in evaluating trials, 
comparing different installations of similar formers and for identifying anoma-
lous behaviour.

Elsewhere we shall report on analyses using  ner structure than 1 mm pixels 
and more detailed interpretation of  occulation behaviour.
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Figure 5. Top row: plot of information distance D  (  f A, f  B) as a cubic- smoothed surface 
(left), and as a contour plot (right), for trivariate Gaussian information distances among 16 
data sets of 1mm pixel differences between a Poisson network and simulated networks 
made from 1mm  bres, each network with the same mean density but with different clus-
tering. Second row: Embedding of the same data grouped by numbers of  bres in clusters 

and cluster densities.
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Figure 6. Top row: plot of information distance D  (   f  A, f  B ) as a cubic- smoothed surface 
(left), and as a contour plot (right), for trivariate Gaussian information distances among 
16 data sets of 1mm pixels for simulated networks made from 1mm  bres, each network 
with the same mean density but with different clustering. Second row: Embedding of the 
same data grouped by numbers of  bres in clusters and cluster densities; the solitary point 

is an unclustered Poisson network.
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Figure 7. Top row: plot of information distance D(  f  A, f  B ) = D (  f  A, f  B ) + D  (  f  A, f  B ) 
as a cubic- smoothed surface (left), and as a contour plot (right), for trivariate Gaussian 
information distances among 16 simulated Poisson networks made from 1 mm  bres, with 
different mean density, using pixels at 1 mm scale. Second row: Embedding of the same 
Poisson network data, showing the effect of mean network density increasing from the 

green point to the red point.
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Figure 8. Embedding using 182 trivariate Gaussian distributions for samples from the 
data set [31]. Blue points are from gap formers; orange are various handsheets, purple are 
from pilot paper machines and green are from hybrid formers. The embedding separates 

these different forming methods into subgroups.
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Steve I’Anson  FRC Chairman (from the chair)

In  gure 8 in the proceedings, most points are identi  ed by coloured markers. 
There are colours for different formers, forming methods etc. What do the black 
points represent?

Bill Sampson

These are the data that we grouped as “miscellaneous”. There are some data which 
are not well classi  ed: odd pairs of handsheets, a pair of vertiformer samples, that 
kind of thing. They’re not suf  ciently grouped to see a cluster; many are pairs of 
points only and it would be nice to drill down further into it. One of the problems 
with the archive that these data come from5 is that, although we know a lot about 
what is there, we don’t know any detail. For example, many are labelled as “pilot 
machines” but it would be very interesting to know which pilot machine. Which 
sample was from the Manchester machine? Which one from Grenoble, which 
from FEX in Stockholm? They are probably all in there and that’s actually not 
captured in the archive.

5C.T.J. Dodson, W.K. Ng and R.R. Singh, “Paper: Stochastic Structure Analysis Archive”, Pulp and 
Paper Centre, University of Toronto 1995, 3 CDs.
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Discussion

Session 1

Kit Dodson  University of Manchester (co-author)

Bill, can I start by answering the question that you raised, if we go back to the 
density level and  gure 7 in the paper? The reason the points pack closely on 
those bends is that they are lying on a cubic surface and that is where the curvature 
is highest. The information geometry extracts important features and groups like 
qualities.

The other point I wanted to make was to emphasize one of your statements. 
This isn’t just a very exciting piece of theory and quite new technique coming 
from a thesis completed only four years ago, it is used, for example, also in radar 
work for tracking of aircraft. It is used in meteorology, wave height analysis and 
so on, and so it has a great variety of applications in many areas. But in the 
contexts that interest people here, it can be a diagnostic tool, as Bill said, but it can 
also allow you to identify anomalies in the behaviour, for example, of a particular 
former or of a process. There are other ways of applying it, and one would be to 
surface texture which has similar statistical features that can be analysed in the 
same way. The real trick, and why it’s used for big data in very large scale anal-
yses, is that you can reduce to view in three dimensions any number of points. In 
a sense this is what the eyes do; we have tens of thousands of sensors picking up 
light, telling us things about the external world, and the brain very cleverly gives 
us a three-dimensional picture. The process is something like a dimensional 
reduction.

Pierre Caulet  Munksjö

You did not mention  llers. Did you work on purely cellulose sheets?

Bill Sampson

There will be  llers in the commercial sheets. The algorithm is not sensitive to 
what gives rise to a given texture, instead it seeks to characterize it. So, it does not 
matter if the grammage distribution is arising from non-uniform distribution of 
 ller or non-uniform distribution of  bre, or indeed from the mass distribution of 

a coated sheet. If you wanted to look at whether you had a change in your process 
that affected the uniformity of distribution of  ller in the plane of the paper then 
this technique should be able to detect it.

Ramin Farnood  University of Toronto

Thank you Bill for a very interesting talk. You might have mentioned it in your 
presentation, but did you examine the effect of  bre dimensions and, if so, what 
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would you expect would be the change in the diagram which shows the random 
sheet behaviour in this three dimensional space?

Bill Sampson

No, we’ve not done that yet. Part of the issue is that here we’ve analysed mainly 
the simulations that we already had, although some were speci  cally performed 
for this project. We originally developed the simulations to look at second order 
statistics. We ran our simulator to look at the effect of  bre dimensions to ensure 
that we matched the analytical results, which we did. Thereafter we focused on 
clustering of  bres with one morphology. Given time, and a pair of hands, we will 
look at this again using the new technique.

Wolfgang Bauer  Graz University of Technology

Did you try to compare the method to information obtained with spectra derived 
from wavelets or FFT? And did you use your method on other materials?

Bill Sampson

We have been using it on other materials. We do not need to consider other spectra 
because the algorithm works on the raw 2D grammage map. So the distribution of 
local grammages at the base pixel resolution is our information, and then we look 
for the distances among pairs of those values. We have looked at other materials, 
and other stochastic sequences, and the preliminary results are very encouraging.
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