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This study focused on a computerised TCM (tool condition monitoring) 
system as a part of automated monitoring of the machining processes in 
the wood industry. The system’s principal task was to evaluate the actual 
state of tool wear without disrupting the normal course of machine tool 
exploitation for cutting force and vibro-acoustic signals analysis. During 
the experiment, five physical quantities that are generated during 
machining were measured and recorded: cutting forces in two directions 
(Fx, Fy), ultrasonic stress waves (acoustic emission - AE), acoustic 
pressure in the range of audible frequencies (noise - N), and acceleration 
of mechanical vibrations (V). Six pairs of tools were used in the 
experiment. One tool from each pair was experimental, the other was a 
control tool. Out of the five physical quantities generated during machining 
that were tested as an indirect source of information on the tool condition, 
signals of cutting forces and mechanical vibrations proved the most useful. 
Both acoustic emission and noise signals emerged as wholly inadequate 
as evidence to predict tool wear. 
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INTRODUCTION 
 

The automation of production processes is becoming a priority in the manufacturing 

of products made of wood-based materials. Computer numerical control (CNC) machine 

tools or automated production lines are routinely used for such automation. One of the 

problems that remains unsolved in this kind of production is the automated monitoring of 

the machining processes, and tool condition monitoring is a high priority (Iskra and 

Hernández 2012). It is worth noting that tool wear is a particularly important research topic 

that it is traditionally given a lot of attention (Szwajka and Trzepieciński 2016, 2017a,b). 

It is evident that gradual deterioration of the cutting edge results in decreased machining 

quality and increases the risk of a sudden catastrophic tool failure, which in turn may lead 

to such consequences as unplanned tool stoppage in problematic circumstances. 

Woodworking tool wear online measurement is an essential step in improving wood 

industrial automation (Wei et al. 2018). Therefore, a subject of interest in recent years is 

the idea of special computerised tool condition monitoring (TCM) systems designed to 

function in an on-line mode. Their principal task is to evaluate the current state of tool wear 

without disrupting the normal course of machine tool exploitation. Such systems are 

typically based on an indirect identification of the cutting edge’s wear on the measurement 

and analysis of cutting forces or vibro-acoustic signals generated in the cutting zone 
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(Jemielniak et al. 2012). For wood-based materials, advanced scientific research into TCM 

systems machining has been conducted for years (Lemaster and Jackson 2000a, 2000b). 

They have chiefly consisted of systematic attempts to determine the most useful signals 

and their features that would allow for an unequivocal, fast, and reliable identification of 

the tool condition during the machining process (Wilkowski and Górski 2011; Kurek et al. 

2016; Świderski et al. 2017). However, any reports of commercial or at least prototype 

TCM systems that could be applied in machine tools for wood-based boards are yet to 

materialise. Designing such systems requires further research using various tools and 

various wood-based materials.  

Under these circumstances, it is advisable to develop a tool wear identification 

model in relation to the cutting force and vibro-acoustic signals analysis for compreg 

milling. Compreg is a special processed wood made of veneers impregnated with phenolic 

resins and compressed to reduce shrinking and swelling as well as to increase density and 

strength. Compreg is relatively easy to machine and is used for making berths of railway 

coaches and seats, boxes of heavy equipment, industrial pallets, marine decks and cabins, 

and many other products (Wilkowski and Górski 2011). 

 

 

EXPERIMENTAL  
 
Materials 

A machining centre CNC (Jet 130; Busellato, Thiene, Italy) was used in the 

experimental studies. A machine tool was equipped with a single edge cutter head that was 

40 mm in diameter (Faba SA, Baboszewo, Poland) with an exchangeable carbide cutting 

edge KCR08 (Fig. 1)  

 

 
 

Fig. 1. General view of the cutter head (a.) and the scheme of the workpiece machining (b.); in 
the bottom right corner: 3-axis coordinate system used in CNC machine tool 
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The material used for experimental machining was 20-mm-thick compreg (Sklejka-

Pisz Paged Sp. z o.o., Pisz, Poland). Its selected physical and mechanical properties were 

determined in accordance with valid standards that are shown in Table 1. 

 

Table 1. Physical and Mechanical Parameters of Compreg  

Density (kg/m3) 1340 EN 323 (1993) 

Modulus of Rupture (MOR) (N/mm2) 138 ISO 16978 (2003) 

Modulus of Elasticity (MOE) (N/mm2) 12400 ISO 16978 (2003) 

Brinell’s Hardness (HB) 23.4 EN 1534 (2000) 

Swelling After 24 h (%) 4.5 EN 317 (1993) 

 

The workpieces were specimens made of compreg with measurements of 100 mm 

× 150 mm. In the experiments, a groove 6-mm-deep and 40-mm-wide was milled in the 

samples (Fig. 1). The machining was conducted with a rotational spindle speed of 

18000 rpm. The feed rate on the cutting edge was 0.15 mm/rev. The above parameters were 

adopted as recommended by the cutter head manufacturer (Faba SA, Baboszewo, Poland) 

for the precise milling of wood-based materials. During the experiment, five physical 

quantities that are generated by machining were measured and recorded: machining forces 

in two directions, i.e., parallel to the X- and Y-axes defined according to Fig. 1 (Fx, Fy), 

ultrasonic stress waves (usually called acoustic emission - AE), acoustic pressure in range 

of audible frequencies (noise - N), and acceleration of mechanical vibrations (V). The 

measurements were possible with a special experimental setup that is presented in Fig. 2. 

The machined object was fixed on a platform, and a Kistler 9601 (Winterthur, Switzerland) 

sensor was installed on the inside of the platform to measure the forces in three directions 

(as mentioned above, only two of its channels were used to measure the forces Fx and Fy). 

The output signals from this sensor were transmitted to a Kistler 5036 (Winterthur, 

Switzerland) amplifier. The noise was measured with a standard B&K 4189 microphone 

(Nærum, Denmark) (frequency range: 6.6 Hz ÷ 20 kHz) that was placed just below the 

milling table at a distance of 200 mm from the cutting zone, and a B&K Type 2690-A 

Nexus microphone conditioner amplifier (Brüel & Kjær, Nærum, Denmark). To measure 

the vibrations of the platform that served as a jig (a device that holds a piece of work), a 

Kistler 8141A (Winterthur, Switzerland) accelerometer and a Kistler 5127B (Winterthur, 

Switzerland) amplifier were used. All four signals (Fx, Fy, N, and V) were sent to a 

connector box Nr 1, and then digitally recorded via an acquisition card NI PCI-6111 (the 

frequency of sampling was 50 kHz). To measure and record acoustic emission, a Kistler 

8152B contact sensor (frequency range: 50 ÷ 400 kHz), a Kistler 5125B amplifier 

(Winterthur, Switzerland), a connector box Nr 2, and an NI PCI-6034E acquisition card 

(Austin, Texas, USA) (with a 2 MHz frequency of sampling) were used. The signal 

recording was conducted in the NI LabView (National Instruments Corporation, ver. 2015 

SP1, Austin, Texas, USA) environment. 

Six pairs of tools were used in the experiment. One tool from each pair was 

experimental, the other was a control tool. The experimental tools (marked with the 

symbols TE01 ÷ TE06) were gradually worn in a way that reflected normal exploitation in 

real industrial conditions, i.e., the machining of various wood-based materials without 

using the platform shown in Fig. 2. At some intervals, the standard tool wear indicator 

(VB), defined in Fig. 3, was measured by means of a workshop microscope (TM-505; 

Mitutoyo, Kawasaki, Japan). 
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Fig. 2. Schematic and photo of the measuring setup 
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The control tools (marked with the symbols TC01 ÷ TC06) were always brand new. 

Under the experimental procedure, nine series of workpieces were grooved (as shown in 

Fig. 1) by means of each experimental tool, with four workpieces per each series. Each 

series was made with a different wear status (i.e., different VB values) that is shown in 

Table 3. At the conclusion of each four-workpiece series, a fifth workpiece was produced 

using the adequate control tool. The machining of each mentioned above workpiece was 

performed in the experimental setup shown in Fig. 2. In this way, all cutting forces (Fx, Fy) 

and vibro-acoustic signals (V, N, and AE) were recorded. 

All of the VB values (observed for the particular experimental tools) for which 

measurement signals were recorded are shown in Table 3. With the method described 

above, 270 workpieces were produced (as each of the six pairs of tools was used to make 

45 workpieces, 36 of which were made with an experimental tool, and nine with a control 

tool). 

 

 
 

Fig. 3. Indicator of tool wear; VB (mm) 

 

Table 3. Values of VB Observed for Particular Experimental Tools During 
Measurement of Cutting Force and Vibro-acoustic Signals   

Number of 
Measuring Series  

VB (mm) for 6 Experimental Tools (TE01 ÷ TE06) 
TE01 TE02 TE03 TE04 TE05 TE06 

1 0 0 0 0 0 0 
2 0.080 0.100 0.065 0.080 0.080 0.090 
3 0.095 0.140 0.090 0.115 0.105 0.110 
4 0.140 0.150 0.140 0.130 0.145 0.150 
5 0.225 0.215 0.215 0.225 0.225 0.230 
6 0.245 0.245 0.245 0.245 0.240 0.245 
7 0.320 0.320 0.305 0.305 0.325 0.315 
8 0.345 0.340 0.345 0.330 0.350 0.340 
9 0.370 0.350 0.360 0.350 0.360 0.350 

 

For each recorded signal, 40 features were calculated (identified as f01 to f40). All 

features were calculated with the standard functions available in the MATLAB Signal 

Processing Toolbox (MathWorks, v. R2018a, Natick, MA, USA). Given that five different 

signals were recorded, this rendered a total set of 200 potential regressors (explanatory 

variables). The term potential is adequate because from the beginning it was clear that some 

part of them should be rejected due to diagnostic insignificance or redundancy, which is a 

standard selection problem when diagnostic features are generated in an automatic way. 

To order these data, a special (uniform) coding system for particular variables was adopted, 

using the letter V and a four-digit code. Thus, an ordered set of experimental data was 

created that could be used to develop and test multiple linear regression models as a base 

of TCM. Generally multiple linear regression is a statistical technique which gives the 

answer to a following question: "To what extent do E1, E2, … (two or more explanatory, 
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independent variables) can predict D (single dependent variable)?". This technique 

estimates D according to the strictly linear model based on Eq. 1, 
 

D = β0 + β1·E1 + β2·E2 + …+ βp·Ep                                                    (1) 
 

where E1÷Ep are p explanatory variables (predictors) and β0 … βp are linear regression 

coefficients. In the all models developed in the study the dependent variable was tool wear 

indicator (VB) and explanatory variables were features calculated for recorded signals (i.e. 

aforementioned variables named using the letter V and the four-digit code). 

 

 

RESULTS AND DISCUSSION 
 

The analysis of the research results started with a preselection of potential 

explanatory variables. At that stage, variables that were too weakly correlated with the VB 

(minimum R2 = 0.8) were discarded, followed by those that were too highly correlated with 

each other (maximum R2 = 0.9). Only 10 variables out of the 200 passed the preselection. 

Table 4 presents a list of those variables along with a reference to the standard functions of 

MATLAB applied to their calculation. It was worth noting that the AE signal was the only 

one to prove itself totally inadequate, that is, none of its features passed the preselection. 

  

Table 4. Variables that Passed the Preliminary Selection Stage 

ID Specification Matlab 

V1004 Root-mean-square level of Fx signal Rms (Fx) 

V1012 Sample skewness of Fx signal Skewness (Fx) 

V2002 Max. value of Fy signal Max (Fy) 

V2003 Min. value of Fy signal Min (Fy) 

V3003 Min. value of V signal Min (V) 

V3008 Standard deviation of V signal Std (V) 

V3013 Quotient of the mean and the standard deviation of V signal Mean (V) / std (V) 

V4006 Difference between the max. and min. values of N signal Peak2peak (N) 

V4008 Standard deviation of the noise signal Std (N) 

V4013 Quotient of the mean and the standard deviation of N signal Mean (N) / std (N) 

 

The next step was the final selection of regressors, which involved statistical 

comparison of the effectiveness for different variants of the linear regression model (as a 

base of TCM) creation using a multifactor analysis of variance (ANOVA). The basic 

effectiveness criterion adopted was the root mean squared error (RMSE) of the regression 

model that was calculated using Eq. 2, 

                               (2) 

where VBT is the real (true) tool wear, VBP is the expected (estimated) tool wear, and m is 

the sample size. 

It was assumed that the regression model could make use of any combination of ten 

variables that passed the preselection stage. The model could be developed based on a 

different number of tools. To account for that factor, the parameter nT was introduced, 

which was equal to the number of pairs of tools (where a pair of tools is to be construed as 

one experimental tool and one control tool) that took part in model creation. For simplicity, 
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the signals recorded for particular experimental tools were integrated with the signals 

recorded for their respective control tools, which created six inseparable subsets of data. 

The parameter nT may equal 1, 2, 3, 4, or 5, except in the case of nT = 6, because then all 

tool pairs would be applied to develop the model, which would preclude testing it on those 

data that were not used to create the model. It was also assumed that the model could be 

developed using calculations of explanatory variables based on machining individual 

workpieces or on the moving mean from results obtained for several subsequent 

workpieces. This meant that the different window sizes for a moving average filter (MM = 

1 ÷ 4) could be used. This rendered 20460 variants of the model structure. A multiple linear 

regression model was developed for each of these variants (built on the number of tools – 

nT appropriate for a given variant) and tested on the pairs of tools that had not been used 

to create the model. The test took account of not only the real (de facto random) sequence 

in which the particular pairs of tools were exploited, but also other theoretically possible 

sequence variants. For example, for nT = 1 (which meant creating the model on one pair 

and testing it on five remaining pairs), the model was constructed and tested as many as 

six times. Each time, it was constructed on a different pair of tools and tested on the 

remaining tools. The effectiveness of all six variants was averaged and a single RMSE 

value was calculated. 

The regression error (RMSE) was treated as a dependent variable in the statistical 

analysis based on an ANOVA (y = RMSE). In contrast, 10 factors (independent variables 

x1 … x10) that affected the dependent variable were taken into account. These were binary 

variables with only two values: 0 or 1. The values of x1 … x10 were determined by the 

individual use (xi = 1) or the individual rejection (xi = 0) of ten pre-selected regressors 

(respectively: V1004, V1012, V2002, V2003, V3003, V3008, V3013, V4006, V4008, and 

V4013). For example, x1 = 1 when V1004 was used in the model and x1 = 0 in the opposite 

situation.  

Summarizing: all estimation models developed in the study (for all variants of nT 

and MM parameters) were formally based on the Eq. 3, 

 

VBP=a0+a1·x1·V1004+a2·x2·V1012+a3·x3·V2002+a4·x4·V2003+a5·x5·V3003+ 

+a6·x6·V3008+a7·x7·V3013+a8·x8·V4006+a9·x9·V4008+a10·x10·V4013        (3) 

 

where VBP is the expected (estimated) tool wear, a0 … a10 are regression coefficients 

(calculated by means of linear least squares method), V1004 … V4013 are ten selected 

predictors defined in table 4, x1 … x10 are ten binary (with only two values: 0 or 1) factors 

explained in the previous paragraph. 

The main effects of each factors are shown in Fig. 4. Each of the factors proved to 

be statistically significant.  

Based on the results of a multi-factor ANOVA, it was found that only the six 

following explanatory variables were worth considering when creating a model: V1004, 

V1012, V2002, V2003, V3008, and V3013. This meant that four out of the ten pre-selected 

regressors were definitively rejected. In this manner, the final selection of explanatory 

variables was made. Thus, the acoustic emission (AE) measurement and noise (N) 

measurement proved totally inadequate.  
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Fig. 4. The main effect of independent variables (factors x1 ÷ x10) on the dependent variable 
(RMSE) 

 

Figures 5 and 6 detail the effect of two previously defined factors, i.e., nT and MM, 

on the selected indicators quantifying the quality of tool wear identification model, which 

was based on the six final predictors. Besides RMSE (defined by means of formula no. 1), 

the coefficient of determination (R2) was provided between the real VB and the expected 

VB, and the mean absolute percentage error (MAPE) was calculated using Eq.4, 

             (4)       

where VBT is the real (true) tool wear, VBP is the expected (estimated) tool wear, m is the 

sample size. 
 

 
Fig. 5. The effect of the number of tool pairs used to develop regression model (nT = 1 ÷ 5) and a 

window size for a moving average filter (MM = 1 ÷ 4) on the RMSE of the model (a.) and on R2 

between real and expected tool wear (b.) 
 

 
 

Fig. 6. The effect of the number of tool pairs used to develop regression model (nT = 1 ÷ 5) and a 
window size for a moving average filter (MM = 1 ÷ 4) on the MAPE of the model 
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Because division by zero is not possible, calculations of the value of MAPE omitted 

cases in which the real VB value equalled 0, which meant that brand new tools were 

omitted. This did not constitute a significant methodological issue in the diagnostics of 

brand new tools; even though it was possibly interesting from the scientific point of view, 

it is not vital in the manufacturing practice. The MAPE value was considered especially 

important as it often serves as a basis for assessment of the practical usefulness of 

predictive models. It is usually assumed that acceptable MAPE values (proving acceptable 

practical usefulness of a model) should be lower than 10%. On this basis, it can be stated 

with a certain approximation that models adequately useful in practice would be 

constructed on at least three pairs of tools (nT ≥ 3), with application of a moving mean from 

the results obtained for at least two subsequent workpieces (MM ≥ 2). The best effects can 

be obtained with a model created on five pairs of tools and with averaged results for four 

subsequent workpieces (for nT = 5 and MM = 4; R2 = 0.98; RMSE = 0.021 mm; and 

MAPE = 8.7 %). 

 

 

CONCLUSIONS 
 
1. Out of five physical quantities that were generated while machining and tested as an 

indirect source of information on the tool condition, the signals of cutting forces and 

mechanical vibrations proved to be the most useful. Acoustic emission and noise 

signals emerged as wholly inadequate for sensing of tool wear.  

2. Models adequately useful in practice could be constructed on at least three pairs of tools 

(nT ≥ 3), with application of a moving mean derived from the results obtained for at 

least two subsequent workpieces (MM ≥ 2). In those instances, the MAPE value stood 

at 10% or lower, which was considered as a sign of practical usefulness. 

3. The best effects (R2 = 0.98, RMSE = 0.021 mm, and MAPE = 8.7 %) were obtained 

with a model created on five pairs of tools and with averaged results for four subsequent 

workpieces.  
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