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Thermal modification is a widely used wood protection method. This 
method has attracted attention because there are no toxic chemicals used 
in the process. The influence of thermal modification was investigated 
relative to the ignitability and the mass burning rate of Norway spruce 
wood (Picea abies). The spruce wood samples were subjected to 
temperatures of 100 °C, 150 °C, 200 °C, 220 °C, 240 °C, and 260 °C for 
durations of 1 h, 3 h, and 5 h. The treatment at temperatures higher than 
200 °C resulted in a lower mass loss at 600 s and a lower average relative 
burning rate, but it did not influence ignition time, the flame-died-out time, 
and maximum relative burning rate. The class of reaction to fire of the 
spruce wood samples was not changed due to the treatment. Therefore, 
it can be stated that the thermal treatment at temperatures below 200 °C 
does not influence the fire safety of an important class of wooden products. 
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INTRODUCTION 
 

Unprotected wood after its exposure to outdoor conditions undergoes a variety of 

degradation reactions caused by diverse environmental factors, such as light, moisture, 

heat, oxygen, pollutants, pests, etc. (Evans et al. 1992; Hon 1994; Teacă et al. 2013). There 

are several methods of wood treatment to improve wood properties. 

Thermal modification has attracted increased interest because the environmental 

impact of this process is low (Palanti et al. 2011). Heat is introduced to the treatment system 

and smoke from wood degradation can be retrieved, condensed, and purified (Pétrissans et 

al. 2007). At the end of its life cycle, heat-treated wood can be recycled without a 

detrimental impact on the environment in contrast to chemically treated wood impregnated 

with biocidal active ingredients (Candelier et al. 2016). It is also known that the 

environmental credentials of thermally modified wood in terms of ecotoxicity are superior 

to that of untreated wood and may surpass that of several man-made materials (González-

Peña et al. 2009). Among the benefits of thermally modified wood are an improved decay 

resistance (Hakkou et al. 2006; Shi et al. 2007a; Calonego et al. 2010), dimensional 

stability (Tjeerdsma et al. 1998), surface hardness (Gündüz et al. 2009; Bakar et al. 2013), 

lower equilibrium moisture content (Esteves et al. 2007; Gündüz et al. 2008), and darker 

decorative colour (Bekhta and Niemz 2003; Brischke et al. 2007; González-Peña and Hale 

2009). The disadvantages of thermally modified wood include the deterioration of some of 

the mechanical properties, such as the bending and compression strengths (Unsal and 
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Ayrilmis 2005; Yildiz et al. 2006), stiffness, shear strength (Bakar et al. 2013), modulus 

of rupture, and modulus of elasticity (Shi et al. 2007b; Esteves et al. 2008; Kačíková et al. 

2013), and the occurrence of mass loss (Alén et al. 2002; Esteves et al. 2007; Kučerová et 

al. 2016). 

According to the International ThermoWood Association (2003), the rate of the 

heat release level of the heat-treated pine was approximately 10 kW greater than that of the 

untreated pine, the total heat rate increased approximately 15%, the smoke production was 

roughly doubled, and the ignition time was shortened 30%. Additionally, it was stated that 

ThermoWood does not differ remarkably from normal wood when it comes to the fire 

safety and that ThermoWood has a fire class of D. Changes to all of these characteristics 

depend on the changes in the chemical composition of the wood (Kačík et al. 2015, 2016, 

2017; Luptáková et al. 2018). 

Research concerning the influence of thermal modification on fire-technical 

characteristics is scarce. Therefore, the aim of this study is to investigate the influence of 

thermal modification on the ignitability and mass burning rate of spruce wood. 

 

 

EXPERIMENTAL 
 

Materials 
Norway spruce wood (Picea abies) samples were obtained from the University 

Forest Entreprise (Zvolen, Slovakia). Samples measuring 50 mm × 40 mm × 10 mm (length 

× width × thickness) were used to determine the mass burning rate. To determine the 

ignitability, samples measuring 250 mm × 90 mm × 2 mm (length × width × thickness) 

were used. The wood samples were thermally treated at temperatures of 100 °C, 150 °C, 

200 °C, 220 °C, 240 °C, and 260 °C for 1 h, 3 h, and 5 h. Measurements of the mass burning 

rate were performed on five replicates per each treatment condition, and the ignitability 

was determined on three replicates per each treatment condition. 

 

Methods 
Heat treatment 

The heat treatment was applied to the experimental Norway spruce wood samples 

in a laboratory type heating oven (Memmert UNB 200, Fisher Scientific, Loughborough, 

UK), which had an accuracy of 1 °C, under atmospheric pressure at temperatures of 100 

°C, 150 °C, 200 °C, 220 °C, 240 °C, and 260 °C. Samples were placed in the oven preheated 

to the target temperature and kept there for 1 h, 3 h, or 5 h. Temperature was kept constant 

during the treatment. Static air atmosphere was used. 

 

Fire-technical characteristics 

The class of reaction to fire was determined according to EN ISO 11925-2 (2011). 

The mass burning rate was measured using an apparatus shown in Fig. 1 (Zachar et al. 

2012) consisting of an electronic weight (4) with an accuracy of two decimal places, weight 

protection unit (3), metal holder (6) for placing the sample (5), metal loading frame (2) for 

placing the radiant heat source, and infrared thermal heater with an input of 1000 W (1). 

The sample was placed 30 mm (h) from the heat source and the weight was recorded every 

10 s for 10 min 
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Fig. 1. Testing apparatus for the determination of mass burning rate (Zachar et al. 2012) 

 

Statistical analysis 

For all of the parameters, several of the comparisons were first subjected to an 

analysis of variance (ANOVA), and the significant differences between the average values 

of the control and treated samples were determined by Duncan’s multiple range test with a 

p-value of 0.05. The data were analysed using Statistica software (StatSoft, version 12.0, 

Tulsa, OK, USA) 

 

 

RESULTS AND DISCUSSION 
 

The mass loss of the samples, logically, gradually increased during the exposure to 

the radiant heat (Figs. 2 to 4). Until the ignition (at 26 s to 53 s) and after the flames died 

out (at 288 s to 364 s), the increase was less sharp than during flame burning. 

The mass loss of the samples treated for 1 h after exposure to the radiant heat source 

for 10 min decreased at 100 °C, increased at 150 °C, and then decreased in the rest of the 

investigated temperature range (Fig. 2). However, only the changes in the samples treated 

at temperatures over 220 °C were significant. The samples treated for 3 h showed the same 

trend as the samples treated for 1 h (Fig. 3). In samples treated for 3 h, the changes in the 

samples treated at the temperatures between 200 °C and 240 °C were significant. The 

samples treated for 5 h showed a similar trend as the samples treated for 3 h (Fig. 4), except 

that the mass loss in the samples treated at 260 °C increased, but this change was 

insignificant. Changes in these samples were also significant in the temperature range of 

200 °C to 240 °C (Table 1 and Fig. 5). Linear regression of the data showed that generally, 

the mass loss at 600 s decreased with the treatment temperature. The decrease can be caused 

by the degradation of the less thermally stable hemicelluloses and amorphous fraction of 

cellulose due to the heat treatment (Kačíková et al. 2013), and by the increase of more 

thermally stable lignin content, which is more condensed in thermally-treated wood than 

in the natural wood (Kačíková et al. 2008). 
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Fig. 2. Mass loss of the spruce wood samples after the thermal treatment for 1 h while subjected 
to radiant heat 
 

 
 

Fig. 3. Mass loss of the spruce wood samples after the thermal treatment for 3 h while subjected 
to radiant heat 
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Fig. 4. Mass loss of the spruce wood samples after the thermal treatment for 5 h while subjected 
to radiant heat 

 
 

Table 1. Selected Fire-technical Characteristics of the Spruce Wood Samples 
after the Thermal Treatment 

Temperature 
(°C) 

Time 
(h) 

Mass Loss at 
600 s (%) 

Ignition 
Time 
(s) 

Flames 
Died Out 
Time (s) 

Average Relative 
Burning Rate 

(%/s) 

Maximum 
Relative 

Burning Rate 
(%/s) 

20 0 94.13 ± 0.70 45 ± 6 343 ± 16 0.154 ± 0.001 0.444 ± 0.018 
100 1 90.33 ± 5.23 42 ± 7 360 ± 33 0.148 ± 0.009 0.459 ± 0.056 

150 1 93.04 ± 1.56 50 ± 10 364 ± 36 0.153 ± 0.003 0.486 ± 0.116 

200 1 91.13 ± 5.07 48 ± 29 334 ± 34 0.149 ± 0.008 0.508 ± 0.102 

220 1 90.37 ± 4.53 37 ± 7 308 ± 33 0.148 ± 0.007 0.542 ± 0.053 

240 1 84.18 ± 3.95 32 ± 5 355 ± 30 0.138 ± 0.006 0.474 ± 0.064 

260 1 79.25 ± 5.41 47 ± 4 348 ± 22 0.130 ± 0.009 0.454 ± 0.044 

100 3 91.97 ± 4.70 37 ± 3 336 ± 50 0.151 ± 0.008 0.503 ± 0.065 

150 3 93.22 ± 0.75 45 ± 9 347 ± 38 0.153 ± 0.001 0.448 ± 0.066 

200 3 89.59 ± 5.14 35 ± 8 335 ± 31 0.147 ± 0.008 0.520 ± 0.070 

220 3 83.85 ± 1.60 30 ± 8 353 ± 35 0.137 ± 0.003 0.476 ± 0.043 

240 3 78.64 ± 7.04 48 ± 16 310 ± 35 0.129 ± 0.012 0.451 ± 0.084 
260 3 75.26 ± 1.30 53 ± 15 288 ± 9 0.123 ± 0.002 0.458 ± 0.106 

100 5 93.63 ± 1.16 35 ± 4 323 ± 21 0.153 ± 0.002 0.444 ± 0.027 

150 5 94.42 ± 0.70 45 ± 7 321 ± 12 0.155 ± 0.001 0.484 ± 0.041 

200 5 91.62 ± 5.02 28 ± 7 285 ± 40 0.150 ± 0.008 0.496 ± 0.064 

220 5 85.60 ± 3.81 26 ± 11 302 ± 26 0.140 ± 0.006 0.489 ± 0.133 

240 5 77.76 ± 0.42 49 ± 12 316 ± 20 0.127 ± 0.001 0.474 ± 0.079 

260 5 78.98 ± 3.17 50 ± 4 285 ± 26 0.129 ± 0.005 0.455 ± 0.059 

Note: Data represents the mean ± standard deviation 
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Fig. 5. Influence of the temperature on the mass loss at 600 s  

 

 

 
 

Fig. 6. Influence of the temperature on the ignition time 
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The ignition time decreased in the samples treated at 100 °C for all of the treatment 

times, increased at 150 °C, and then decreased again. Then, the ignition time increased for 

the samples treated at 260 °C for 1 h and for the samples treated at temperatures over 240 

°C for 3 h and 5 h. However, most of the changes were insignificant. Significant changes 

were only found between the samples treated at 220 °C and 240 °C for 3 h and 5 h and at 

150 °C and 200 °C for 5 h (Table 1 and Fig. 6). This means that the thermal treatment does 

not influence the ignition time of the samples. Linear regression of the data showed almost 

constant lines. 

The time when the flames died out on their own in the samples treated for 1 h 

increased until 150 °C, decreased until 220 °C, increased again at 240 °C, and then 

decreased. In the samples treated for 3 h, the flame-die-out time decreased at 100 °C, 

increased at 150 °C, decreased at 200 °C, increased at 220 °C, and then decreased in the 

rest of the investigated temperature range. In the samples treated for 5 h, the flame-die-out 

time decreased until 200 °C, increased until 240 °C, and then decreased again. Only one of 

these changes, between the samples treated at 220 °C and 240 °C for 1 h, was significant 

(Table 1 and Fig. 7). From these results, it can be concluded that the thermal modification 

does not influence the flame-die-out time. Linear regression of the data showed weak or 

very weak correlation between flame-die-out time and the temperature treatment. 

 

  
 

Fig. 7. Influence of the temperature on the time it took for the flames to die out with 95% 
confidence intervals 
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samples treated in the temperature range of 200 °C to 240 °C were significant. The samples 

treated for 5 h showed a similar trend as the samples treated for 3 h, except the average 

relative burning rate increased in the samples treated at 260 °C. However, this change was 

insignificant. The changes in these samples in the temperature range of 200 °C to 240 °C 

were also significant (Table 1, Fig. 8). Linear regression of the data showed that generally, 

the mass loss at 600 s decreased with the treatment temperature. Reasons for the decrease 

in average relative burning rate are the same as for the mass loss at 600 s, since these two 

properties are interlinked. 

  
 

Fig. 8. Influence of the temperature on the average relative burning rate 
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Table 2. Ignitability of Spruce Wood Samples After Thermal Treatment Test of 
the Surface 

Treatment 
Temperature 

(°C) 

Treatment 
Time (h) 

Time of 
Flame 

Impingement 
(s) 

Ignition 
(Yes / 
No) 

Fs ≤ 150 
mm / 20 s 
(Yes / No) 

Time of 
Flame 

Impingement 
(s) 

Ignition 
(Yes / 
No) 

Fs ≤ 150 mm 
/ 60 s (Yes / 

No) 

20 0 15 Yes Yes 30 Yes Yes 

100 1 15 No Yes 30 Yes Yes 

150 1 15 No Yes 30 Yes Yes 

200 1 15 No Yes 30 Yes Yes 

220 1 15 No Yes 30 Yes Yes 

240 1 15 No Yes 30 Yes Yes 

260 1 15 No Yes 30 Yes Yes 

100 3 15 No Yes 30 Yes No (58) 

150 3 15 Yes Yes 30 Yes Yes 

200 3 15 Yes Yes 30 Yes No (51) 

220 3 15 Yes Yes 30 Yes Yes 

240 3 15 No Yes 30 Yes Yes 

100 5 15 No Yes 30 No Yes 

150 5 15 No Yes 30 Yes Yes 

200 5 15 Yes Yes 30 Yes Yes 

220 5 15 Yes Yes 30 Yes No (50) 

240 5 15 No Yes 30 Yes Yes 

Note: Numbers in parentheses represent the time in s when Fs ˃ 150 mm 

 
Table 3. Ignitability of Spruce Wood Samples After Thermal Treatment Test of 
the Edge 

Treatment 
Temperature 

(°C) 

Treatment 
Time (h) 

Time of 
Flame 

Impingement 
(s) 

Ignition 
(Yes / 
No) 

Fs ≤ 150 
mm / 20 
s (Yes / 

No) 

Time of 
Flame 

Impingement 
(s) 

Ignition 
(Yes / 
No) 

Fs ≤ 150 mm 
/ 60 s (Yes / 

No) 

20 0 15 Yes Yes 30 Yes No (28) 

100 1 15 Yes Yes 30 Yes No (32) 

150 1 15 Yes Yes 30 Yes No (27) 

200 1 15 Yes Yes 30 Yes No (30) 

220 1 15 Yes Yes 30 Yes No (23) 

240 1 15 Yes Yes 30 Yes No (22) 

260 1 15 Yes Yes 30 Yes No (25) 

100 3 15 Yes Yes 30 Yes No (28) 
150 3 15 Yes Yes 30 Yes No (31) 

200 3 15 Yes Yes 30 Yes No (27) 

220 3 15 Yes Yes 30 Yes No (25) 

240 3 15 Yes Yes 30 Yes No (27) 

100 5 15 Yes Yes 30 Yes No (32) 

150 5 15 Yes Yes 30 Yes No (35) 

200 5 15 Yes Yes 30 Yes No (27) 

220 5 15 Yes Yes 30 Yes No (21) 

240 5 15 Yes Yes 30 Yes No (37) 
Note: Numbers in parentheses represent the time in s when Fs ˃ 150 mm 
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Fig. 9. Influence of the temperature on the maximum relative burning rate with 95% confidence 
intervals 
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CONCLUSIONS 
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4. The class of reaction to fire of the spruce wood was not changed due to the thermal 

treatment. 
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