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A highly selective cellulose-based adsorbent for mercury [(Hg)II] ion was 
prepared and characterized using Fourier-transform infrared 
spectroscopy, X-ray diffraction, thermogravimetric analysis, X-ray 
photoelectron spectrometry, elemental analysis, and scanning electron 
microscopy. The results showed that functional thiosemicarbazide-grafted 
cellulose achieved equilibrium adsorption in 120 min, and the adsorbents 
had a Hg(II) ion removal rate of approximately 98.5% at a pH of 5.0. The 
adsorption kinetics fit the pseudo-second-order model, which indicated 
that the adsorption was a chemical process. Additionally, the adsorption 
isotherm data showed a best fit with the Langmuir isotherm model, with a 
maximum Hg(II) ion adsorption capacity of 331.1 mg/g. This adsorbent 
had a good selectivity for Hg(II) during competitive adsorption. 
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INTRODUCTION 
 

Large amounts of wastewater are generated and discharged globally due to the 

continuous development of the textile, plastic, printing, and paper industries. This 

industrial wastewater contains many heavy metal ions, such as mercury, copper, cadmium, 

and palladium, which compose the principal metallic pollution caused by industrial 

production. Because they are not biodegradable, once these heavy metal ions are released 

into the environment they pollute the environment and destroy the ecology. They can also 

accumulate through entering the food chain, causing serious and sometimes fatal health 

disorders to humans, including various cancers (Fu and Wang 2011; Salman et al. 2015; 

Lofrano et al. 2016; Zhao et al. 2018).  

Over the past several years, some common techniques have been utilized to remove 

heavy metal ions from industrial wastewater. These include chemical precipitation (Zhang 

et al. 2016; Gao et al. 2018), ion exchange (Khoiruddin et al. 2017; Andrzej et al. 2018), 

functionalized membrane (da Silva et al. 2016; Khoiruddin et al. 2017; Yang et al. 2018; 

Barros et al. 2018), ion flotation technique (Xu et al. 2017; Yenial and Bulut 2017; 

Micheau et al. 2018), and electrochemical treatment (Kabdaşlı et al. 2009; Ali et al. 2011). 

Mercury ion is one of the most hazardous heavy metal ions in wastewater, so these 

techniques have also been developed to remove mercury ions and have achieved great 

results (Hou et al. 2013; Oehmen et al. 2014; Xia et al. 2017). Although these techniques 

can yield positive achievement, they have disadvantages, including high cost, long 

duration, low sensitivity and stability, susceptibility to contamination, and secondary 

environmental pollution. Adsorption for heavy metal ion removal yields less 

environmental pollution and has a high removal efficiency, with additional advantages of 
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lower cost and portable operation (Yu et al. 2014). Meanwhile, various adsorbents, a wide 

range of source materials, and reusability are also among the important factors that make 

adsorption one of the most common techniques in the treatment of industrial wastewater 

(Nayab et al. 2014; Yan et al. 2014). 

Previous studies have examined functionalized adsorbent preparation techniques, 

which offer flexibility in design and operation and in many cases facilitate the reacquisition 

of the precious metal ions, yielding additional economic value (Hoai et al. 2010). Activated 

carbon (AC) adsorbents (Hadi et al. 2015; Largitte and Pasquier 2016; Park and Lee 2018), 

carbon nanotubes (CNTs) (Wang et al. 2015; Oyetade et al. 2017; Zhang et al. 2017), and 

functionalized chitosan (Kheirandish et al. 2017; Dinu et al. 2018; Mousavi et al. 2018) 

are widely used in the removal of heavy metal contaminants. Bioadsorbents, such as fungi 

(Yusuf and Tekin 2017; Pourkarim et al. 2017), dead biomass (Cheng et al. 2017), and 

bacteria (Qian and Zhan 2016; Manasi et al. 2018), are also widely used.  

The application of cellulose-based adsorbents for metal ion remediation and 

wastewater purification has received widespread attention in recent years, and it has the 

advantages of large surface area, strong mechanical properties, and being biodegradable. 

Most importantly, the chemically active hydroxyl enhances the adsorption capacity (Lindh 

et al. 2016; Huang et al. 2017). Because of the distinctive properties of cellulose, many 

researchers have attempted to develop functionalized cellulose materials (Hokkanen et al. 

2016). 

There are many methods to functionalize cellulose materials, such as lipidization 

(Spinella et al. 2016; Gan et al. 2017), etherification (Abdel-Halim et al. 2015; Karatas 

and Arslan 2016; ), graft copolymerization (Deng et al. 2016; Sun et al. 2018a), and 

oxidization (Li et al. 2015, 2017; Beheshti Tabar et al. 2017). Oxidization is one of the 

most common techniques for cellulose-based material activation (Siller et al. 2015; Chen 

and van de Ven 2016; Cheng et al. 2016; Biliuta and Coseri 2016). In all oxidation 

reactions, the periodate can selectively oxidize the C2-C3 glucose molecule into two 

aldehyde groups by cleaving the glucopyranoside between them. This behavior allows for 

further cellulose modification while maintaining the main morphological structure and 

original properties of cellulose (Yang et al. 2015; Azzam et al. 2015; Tian and Jiang 2017). 

In this study, thiosemicarbazide-modified cellulose (TSC) for Hg(II) selective 

removal was prepared, and Hg(II) adsorption using the TSC was conducted. The structure 

and morphology of TSC were characterized via Fourier-transform infrared spectroscopy 

(FTIR), X-ray diffraction (XRD), elemental analysis, and scanning electron microscopy 

(SEM). The thermodynamic properties were characterized using thermogravimetric 

analysis. The factors influencing adsorption behavior, including pH, reaction time, and 

aqueous solution concentration, were also investigated and optimized. The adsorption 

kinetic parameters of the Hg(II) removal were calculated, and the selectivity of TSC was 

also evaluated. 

 

 

EXPERIMENTAL 
 

Materials 
Native cellulose extracted from palm wood was collected from the China National 

Tobacco Corporation (Beijing, China) and washed with deionized water after treatment in 

5% (v/v) HCl. Then, the cellulose was oven-dried at 80 °C until reaching a constant weight. 

Sodium periodate, thiosemicarbazide, hydroxylamine hydrochloride, nitric acid, sodium 
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hydroxide, and mercury chloride (HgCl2) were purchased from Guangzhou Chemical 

Reagent Factory (Guangzhou, China). Nitric acid was used after dilution, and the rest of 

the chemicals were used as received. 

 

Preparation of thiosemicarbazide-modified cellulose 

The Hg(II) ion adsorption cellulose was synthesized through a wet chemical 

process in an aqueous medium according to the following stepwise procedure. First, 1 g of 

the pretreated cellulose was dispersed into 100 mL of deionized water; 6 mmol sodium 

periodate per gram of cellulose was used to oxidize the cellulose. Then, the mixture was 

gently shaken for 6 h at 40 °C in the dark. Next, it was mixed with 10 mL of 10% aqueous 

ethylene glycol solution, and the mixture was shaken for 30 min to stop the oxidation 

reaction. After the reaction was over, oxidized cellulose was removed via filtration, 

dialysis, and centrifuging. Finally, the cellulose was washed with deionized water and 

dispersed. A special reaction between hydroxylamine hydrochloride and oxidized cellulose 

was conducted to determine the content of the aldehyde groups (Veelaert et al. 1997). The 

aldehyde content was calculated using Eq. 1,  

Aldehyde Substitution Degree = 100 
1000

162 ) ( 12 




m

VVc
    (1) 

where aldehyde substitution degree (%) is the amount of aldehyde per 100 glucoses, V1 

(mL) is the amount of sodium hydroxide for oxidized cellulose, V2 (mL) is the amount of 

sodium hydroxide for raw material cellulose, c (mol/L) is the concentration of sodium 

hydroxide, and m (g) is the weight of the sample. 

In the next step, the aqueous wet oxidized cellulose was mixed with 

thiosemicarbazide to graft the thiourea group onto cellulose. Before mixing with these 

chemicals, oxidized cellulose was pretreated via sonication, and 0.2 g thiosemicarbazide 

per gram of cellulose was dissolved at 65 °C for 30 min. The mixture was refluxed at 65 

°C for 6 h to produce the TSC, and 5 mL of 0.1 M HCl solution was added after the reaction 

was over. Then, the TSC was removed via filtration and washed with deionized water. A 

special reaction was conducted to determine the amino group content. At 30 °C, 100 mg of 

sample was dispersed in deionized water, which changed the pH to 3.0. Sodium hydroxide 

solution was slowly titrated until the pH reached 12.0, and the changes in conductivity 

were recorded. The amino groups’ content was calculated using Eq. 2 (Da Silva Perez et 

al. 2003; Filpponen and Argyropoulos 2010),  

Amino Group Content = 
m

VVc )( 12         (2) 

where amino group content is in mmol/g, c is the concentration of sodium hydroxide 

solution, V1 (mL) is the minimum consumption of sodium hydroxide at the lowest 

conductivity, V2 (mL) is the maximum consumption of sodium hydroxide at the lowest 

conductivity, and m (g) is the weight of the sample.  

A schematic of the cellulose modification reactions is shown in Fig. 1. 
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Fig. 1. Synthesis of TSC 

 

Methods 
Characterization of samples 

A Fourier-transform infrared spectrometer (Bruker VERTEX 70; Bruker 

Corporation, Billerica, MA, USA) was used to investigate the spectra of the native, 

oxidized, and modified cellulose. A quantitative analysis of the C, N, O, and S contents of 

the TSC was performed with an elemental analyzer (Vario EL cube; Elementar, 

Langenselbold, Germany). An X-ray powder diffractometer (D8 ADVANCE Plus; 

Bruker Corporation, Billerica, MA, USA) was utilized to investigate the crystallinity of the 

native, oxidized, and modified cellulose. A scan mode was applied to collect the data for 

2θ = 5° to 40°. X-ray photoelectron spectrometry (XPS; ESCALAB 250Xi; Thermo Fisher 

Scientific Inc., Waltham, MA, USA) was used to analyze the binding energy of the 

adsorbents for analysis of its elements. A thermogravimetric analysis (TGA; TG 209 F1 

Libra®; Netzsch, Selb, Germany) was conducted at a heating rate of 10 °C/min from 40 °C 

to 600 °C. The metal ion content was determined using inductively coupled plasma optical 

emission spectrometry (ICP-OES; Optima 5300 DV; PerkinElmer, Waltham, MA, USA). 

The surface morphology of the samples was examined via SEM (EVO 18; Zeiss, 

Oberkochen, Germany). 

 

Adsorption of Hg(II) on TSC 
Effect of initial pH on the adsorption of Hg(II) 

The pH value of the solution was one of the key factors that affected the adsorption 

effectiveness of Hg(II) ions, it not only affected the presence of metal ions but also affected 

the adsorbent surface charge. In these experiments, 100 mg of TSC was placed in a 250-
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mL Erlenmeyer flask containing 200 mL of mercury aqueous solution with a main 

concentration of 100 mg/L. The adsorption of Hg(II) ions was performed with a pH ranging 

from 2.0 to 5.0 because metal precipitation interferes with and is indistinguishable from 

the adsorption phenomenon for pH values up to 7. All of the flasks were shaken using a 

constant temperature water bath oscillator at a constant shaking rate of 130 rpm for 24 h 

until adsorption equilibrium. Then, the cellulose was removed by a filter, and the residual 

Hg(II) ion content was estimated via ICP-OES.  

The adsorption capacity of Hg(II) ions on TSC and the removal rate of Hg(II) ions 

were calculated using Eqs. 3 and 4, respectively,  

qe = (ci – ce) 
m

V
         (3) 

Removal Rate (%) = (ci – ce) 
i

100

c
       (4) 

where qe (mg/g) is adsorption capacity, ci (mg/L) is initial mercury ion concentration, ce 

(mg/L) is equilibrium mercury ion concentrations, V (L) is the volume of aqueous solution, 

and m (g) is the weight of the sample. 

 

Effect of reaction time on the adsorption of Hg(II) 

In these experiments, 100 mg TSC was placed in a 250-mL Erlenmeyer flask 

containing 200 mL of mercury aqueous solution with a main concentration of 100 mg/L, 

and the adsorption of Hg(II) ions was performed at a pH of 5.0. All of the flasks were 

shaken using a constant temperature water bath oscillator at a constant rate of 130 rpm with 

a reaction time from 0 min to 360 min until adsorption equilibrium. Then, the cellulose 

was removed using a filter, and the residual Hg(II) ion content was estimated via ICP-OES.  

The adsorption ability of Hg(II) ions on TSC and the removal rate of Hg(II) ions 

were calculated using Eqs. 3 and 4, respectively. 

  

Effect of solution concentration on the adsorption of Hg(II) 

In these experiments, 100 mg TSC was placed in a 250-mL Erlenmeyer flask 

containing 200 mL of mercury aqueous solution with a main concentration ranging from 

50 mg/L to 700 mg/L, and the adsorption of Hg(II) ions was performed at a pH of 5. All of 

the flasks were shaken using a constant temperature water bath oscillator at a constant rate 

of 130 rpm for 24 h until adsorption equilibrium. Then, the cellulose was removed by a 

filter, and the residual Hg(II) ion content was estimated via ICP-OES.  

The adsorption capacity of the Hg(II) ions on TSC and the removal rate of Hg(II) 

ions were calculated using Eqs. 3 and 4, respectively.  

 

Selectivity Experiments 
The competitive metal ion adsorption studies were performed using a 100 mg 

sample dispersed in a 250-mL Erlenmeyer flask containing 200 mL of aqueous solution 

that was mixed together with mercury, lead, cadmium, and copper of an initial 

concentration of 100 mg/L The adsorption capacity of each metal ion was calculated, and 

the distribution coefficient (calculated using Eq. 5) was utilized for the selectivity 

evaluation (Liu et al. 2017a; Khan et al. 2017), 
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D = [(ci – ce) / ce] 
m

V
         (5) 

where ci (mg/L) is the initial mercury ion concentration, ce (mg/L) is the equilibrium 

mercury ion concentrations, V (L) is the volume of aqueous solution, and m (g) is the weight 

of the sample.  

 

Desorption Experiments 
Desorption experiments on TSC were performed using 0.1 M HNO3 and 0.1 M HCl 

solution as the desorption media. The amount of desorbed Hg(II) was measured using ICP-

OES. 

 

 

RESULTS AND DISCUSSION 
 

Characterization of the Modified Cellulose 
The results of the oxidation and modification reactions showed that the product 

yield was approximately 91.2%, and the degree of aldehyde substitution was approximately 

46%. The weight loss of cellulose might have been caused by degradation during the 

chemicals’ interaction. The amino group content was approximately 1.15 mmol/g. 

The results of the elemental analysis of native cellulose, oxidized cellulose, and 

modified cellulose are shown in Table 1. After the oxidation and modification of cellulose, 

there was an obvious increase in the nitrogen and sulfur content, which indicated that the 

thiosemicarbazide reactive groups were grafted onto the oxidized cellulose. 

 

Table 1. Elemental Analysis of Native, Oxidized, and Modified Cellulose  

Cellulose C (%) H (%) O (%) N (%) S (%) 

Native 41. 23 5. 122 53. 648 - - 

Oxidized 38. 46 4. 977 56. 563 - - 

Modified 39. 13 5. 497 49. 966 3. 19 2. 217 

 

The FTIR results are shown in Fig. 2. The spectra of the native cellulose exhibited 

diagnostic spectral peaks at approximately 1070 cm-1 to 1150 cm-1 due to C-O stretching 

vibrations, 1240 cm-1 to 1380 cm-1 because of O-H bending, and 3200 cm-1 to 3500 cm-1 

due to O-H stretching. After the oxidation reaction, the adsorption band at 1710 cm-1 

corresponded to C=O stretching vibration, indicating oxidization of the hydroxyl groups 

of the cellulose (Koprivica et al. 2016; Chen and Ven 2016; Kim et al. 2017). After 

thiosemicarbazide modification, the spectrum showed a new peak at approximately 1670 

cm-1, which could have been due to the stretching vibration of C=N of the Schiff base 

formed between the aldehyde group of the oxidized cellulose and the amino group of the 

thiosemicarbazide (Monier and Abdel-Latif 2012). In Fig. 2, a peak appears to be present 

in the TSC spectrum at 1490 cm-1, and the peaks at approximately 767 cm-1 and 1230 cm-1 

were related to the C=S bond. The FTIR spectra indicated that characteristic functional 

groups were present on the modified cellulose and that TSC was successfully created 

(Morcali et al. 2015; Essawy et al. 2016). 
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Fig. 2. FTIR spectra of (a) native cellulose, (b) oxidized cellulose, and (c) TSC 

 

The XRD results of the investigation of the crystalline structure are shown in Fig. 

3. The native cellulose presented the characteristic crystalline peaks at approximately 16° 

to 17°, an intense peak at 23°, and a peak at approximately 29°. Meanwhile, there was no 

noticeable change of characteristic peaks in the XRD patterns of oxidized and modified 

cellulose (Toba et al. 2013). One can make an initial conclusion that the inside aggregate 

crystalline structures of the oxidized and modified cellulose did not greatly change after 

the reaction. The crystallinity indices of the different samples are presented in Table 2. The 

crystallinities of the different cellulose samples were 72.9%, 70.6%, and 67.3% (Segal et 

al. 1959). This phenomenon might have been explained by most hydrogen bonds between 

the hydroxyls being broken during the oxidization reaction, with the amorphous region 

created from the subsequent modification reaction (Kim et al. 2000). 

 

 
Fig. 3. XRD patterns of (a) native cellulose, (b) oxidized cellulose, and (c) TSC 
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Table 2. Crystallinity Indices of Different Cellulose Samples 

Sample Native Cellulose Oxidized Cellulose TSC 

Crystallinity (%) 72.93 70.57 67.31 

 

The native cellulose and modified cellulose were also examined using XPS. 

Although it simply conducts an analysis of elements on the cellulose surface, XPS provides 

a valuable indication of changes in the chemical functional groups during the chemical 

reactions. The XPS survey scans of native cellulose and TSC are presented in Fig. 4. For 

native cellulose, only two peaks were observed: one at 285.7 eV and another at 533.1 eV, 

corresponding to C and O, respectively (Banuls-Ciscar et al. 2016). However, for the TSC, 

the XPS spectrum showed a nitrogen adsorption peak at 400.2 eV and the S2p specific 

peak at approximately 162.4 eV. These results were further evidence for TSC’s successful 

creation (Konshina et al. 2016; Ahmad et al. 2018). 

 

 
Fig. 4. XPS patterns of (a) native cellulose and (b) TSC 

 

Thermogravimetric analysis was employed to evaluate the thermal stability of the 

native cellulose, oxidized cellulose, and modified cellulose. The TGA curves are shown in 

Fig. 5. The thermal degradation temperature of native cellulose was approximately 260 °C. 

The mass of the native samples decreased while the temperature was below 120 °C due to 

water evaporation inside the cellulose. Although the samples were dried prior to TGA, 

some moisture could not be removed because of hydrogen bonding. The thermal 

degradation temperature of oxidized cellulose was approximately 200 °C; the thermal 

stability of oxidized cellulose was reduced compared to native cellulose. After cellulose 

oxidization by sodium periodate, the C2-C3 bonds on each glucose unit of the cellulose 

molecular chains were fractured, which destroyed the six-membered ring structure of the 

glucose units and led the oxidized cellulose to degrade at a lower temperature. The thermal 

degradation temperature of modified cellulose was greater than that of oxidized cellulose 

and was up to 220 °C. This might have been because the thiosemicarbazide functional 

group grafted onto the oxidized cellulose molecular chains, which lengthened the modified 

cellulose molecular chains.  
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Fig. 5. TGA of (a) native cellulose, (b) oxidized cellulose, and (c) TSC 

 

The SEM results for the native cellulose and TSC are displayed in Fig. 6. As can 

be easily observed with approximately 500× magnification, the cellulose lengths were 

approximately several mm, and the widths were approximately 10 µm. Moreover, the 

native cellulose surface was smooth and had no swelling from dehydration. In contrast, the 

rough and porous surface of the modified cellulose indicated that after oxidation and 

thiosemicarbazide modification, functional and active sites were distributed on the 

cellulose surface, providing greater specific surface area and enhancing the ability to 

adsorb Hg(II). Meanwhile, the lengths and widths of the cellulose were distributed more 

evenly, and the widths were slightly reduced to approximately 7.0 µm. This result may 

have been the reason for chemicals touching the amorphous area of cellulose and causing 

degradation. 
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(a) 
 

 
(b) 
 
Fig. 6. SEM photos of (a) native cellulose and (b) modified cellulose 

 

Adsorption Properties 
Mercury(II) chloride was selected for the Hg(II) solute because it is ionized to 

(HgCl)- instead of Hg(II). Then, (HgCl)- was ionized to Hg(II) and Cl- through an 

ionization balance process. When Hg(II) ions were adsorbed by TSC, the decrease of Hg(II) 

ion concentration in the system promoted the further ionization of (HgCl)-. Therefore, the 

concentration of HgCl2 could be raised to a higher level without fear of forming a 

precipitate. Inductively coupled plasma optical emission spectrometry detects the total 

amount of Hg(II) in the solution; its particular form would not affect the test results. 

 

Effect of pH 

Many previous studies have shown that the pH of a solution makes an essential 

impact in chemical heavy metal ion adsorption experiments (Monier and Abdel-Latif 2013; 

Guo et al. 2016). The pH value range of 2.0 to 5.0 was to determine the effect of the 

removal of Hg(II) by TSC. Higher pH values could not conduct, because with pH values 

of 6 and greater the Hg(II) ions would form a precipitate. The adsorption results are shown 

in Fig. 7. As shown in the adsorption curve, the removal rate of Hg(II) ions clearly 

increased when raising the pH from 2.0 to 5.0. This trend might have been because the 

Hg(II) ions adsorption mainly via the active sites on the surface of the modified cellulose 

could coordinate with the heavy metal cation. When pH was low, the quantity of hydrogen 

ions in the aqueous solution increased, and the majority of the active adsorption functional 

groups had been protonated. Consequently, the cellulose surface was full of positive 
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charge, which subsequently weakened the coordination capability between the surface 

active sites and the Hg(II) ions. With increased pH, the quantity of hydroxide in the 

aqueous solution also increased, resulting in charge transfer in the carbon-sulfur double 

bond and the formation of a thioether structure, which subsequently enhanced the Hg(II) 

adsorption (Motahari et al. 2015; Sarkar et al. 2016; Zou et al. 2017).  

 

 
Fig. 7. Effect of pH value on the removal of Hg(II) ions by TSC (initial concentration 100 mg/L, 

adsorbent 0.5 g/L, shaking rate 130 rpm, 30 C, and for 24 h) 

 

Adsorption Kinetics 

To investigate the time to reach saturation during the adsorption process, the 

adsorption rate throughout the experiment’s duration, and the interaction between the 

adsorbent and the heavy metal ions, Hg(II) ion adsorption kinetic experiments were 

conducted at 30 C and an initial concentration of 100 mg/L from 0 min to 360 min. The 

results of the adsorption rate throughout the experiment are exhibited in Fig. 8. As is clearly 

shown in the curve, the adsorption rate continuously decreased with the time elapsed until 

the adsorption capacity had reached saturation at 176 mg/g after approximately 100 min.  
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Fig. 8. Effect of contact time on the removal of Hg(II) ions by TSC (initial concentration 100 mg/L, 

adsorbent 0.5 g/L, pH 5.0, shaking rate 130 rpm, and at 30 C) 
 

Because there are various functional groups in the TSC, such as N-H and C=S, it is 

essential to investigate the different possible interaction types. The Hg(II) ion adsorption 

data were subjected to kinetic adsorption model fitting and analysis for increased 

comprehension of the adsorption mechanism, and finally determined the limit for the rate 

that affected the adsorption process (Lee and Kim 2016; Zhu et al. 2017; Cruz-Tirado et 

al. 2017). 

The most frequently used kinetic equations to describe the uptake kinetic 

mechanism are the pseudo-first-order equation (Eq. 6) and the pseudo-second-order 

equation (Eq. 7) (Ho and McKay 1999; Azizian 2004), 

tkqqq 1ete ln)(ln          (6) 

e

2

e2t

1

q

t

qkq

t
          (7) 

where qt (mg/g) is the adsorption capacity at time t (min), and k1 (min-1) and k2 

(g/(mg·min)) are the adsorption rate constants of the pseudo-first-order kinetic model and 

pseudo-second-order kinetic model. 

For both kinetic models, k and qe are usually calculated by calibrating the linear 

plots of ln(qe – qt) and t/qt versus t and then comparing the theoretical values with 

experimental values to evaluate the best kinetic models that fit with the work.  

Table 3 lists the constants qe, k, and R2, which describe the adsorption mechanism 

and models. Clearly, the pseudo-second-order equation showed a better match with the 

experimental data between the experimental and calculated qe and the high value of R2 (> 

0.999). Furthermore, the better fit of the pseudo-second-order equation signified that the 

adsorption (Yao et al. 2016; Dogan et al. 2018; Song et al. 2018). Additionally, TSC 

exhibited a high initial adsorption rate of 22.35 mg/(g·min) for Hg(II), which was greater 

than those in previous reports (Yao et al. 2016). Noticeably, the pseudo-first-order model 

was not an appropriate model of the adsorption kinetic behavior because of the poor value 

of R1
2 (< 0.86). 
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Table 3. Kinetic Parameters for Hg(II) Adsorption by TSC 

Metal 
Ion 

qe.exp 
(mg/g) 

Pseudo-first-order Model Pseudo-second-order Model 

qe 

(mg/g) 
k1 

(min-1) 
R1

2 qe 

(mg/g) 
k2 

(g/(mg•min)) 
R2

2 

Hg(II) 176.62 177.01 0.05768 0.85475 181.82 6.76 × 10-4 0.9994 

 

Adsorption isotherms 

Two extensively applied adsorption isotherm models, the Langmuir and Freundlich 

models, are important in explaining the relation between the Hg(II) ions on the adsorbent 

samples and the initial concentration of the metal ions. These two common isotherm 

models are formulated as the Langmuir equation (Eq. 8) and the Freundlich equation (Eq. 

9) (Yao 2000; Senniappan et al. 2016; Taoufik et al. 2017), 

)()
1

(
m

e

mLe

e

q

c

qkq

c
          (8) 

)(ln
1

lnln eFe c
n

kq          (9) 

where qe (mg/g) is the adsorption capacity of metal ions at equilibrium, ce (mg/L) is the 

metal ion concentration of solution at equilibrium, kL (L/mg) is the Langmuir constant, qm 

(mg/g) is the maximum adsorption capacity of the adsorbent, kF is the Freundlich constant, 

and 1/n is the heterogeneity factor. 

Comparing these two adsorption isotherm models in principle, the Langmuir model 

assumes that the heat of adsorption was constant throughout the adsorption process and 

that the adsorption process was an isothermal monolayer interaction that was established 

on adsorbent molecules and metal ions. Meanwhile, the Freundlich model is an isothermal 

adsorption equation utilized as a semi-empirical formula (Afonso et al. 2016; Terdputtakun 

et al. 2017).  

The adsorption experiments for isotherm models were conducted at 30 C, and the 

results are exhibited in Fig. 9. Clearly, the adsorption capacity continuously increased, but 

the adsorption rate continuously slowed until reaching equilibrium. 

The experimental data were fitted with both the Langmuir and Freundlich isotherms. 

The results and parameters are listed in Table 4. Clearly, compared with the Freundlich 

isotherm, the Langmuir isotherm had a better fitness for the equilibrium with R2 = 0.992. 

This result indicates that adsorption of Hg(II) ions by TSC mainly followed the monolayer 

adsorption pattern, and the theoretical maximum adsorption capacity was 331.1 mg/g. 
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Fig. 9. Adsorption isotherms of Hg(II) ions by TSC (initial concentration 0 mg/L to 700 mg/L, 

adsorbent 0.5 g/L, pH 5, shaking rate 130 rpm, and at 30 C) 

 

Table 4. Parameters for Hg(II) Ion Adsorption by TSC According to Different 
Equilibrium Isotherms 

 

The essential characteristic of the Langmuir model can be reflected by the constant 

RL, which evaluated the suitability of the adsorption process. It can be calculated as follows 

in Eq. 10 (Monier et al. 2014; Wang et al. 2017), 

L0

L
1

1

kc
R


          (10) 

where c0 is the initial concentration of metal ions in solution. The value of RL presents the 

tendency of the isotherm to be unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 

1), or irreversible (RL = 0). Further, a smaller RL value predicts greater affinity between the 

adsorbent and metal ions. The specific values for Hg(II) adsorption by TSC were between 

0.034 and 0.308, indicating that TSC is a suitable adsorbent for Hg(II) ions (Tian et al. 

2011b; Liu et al. 2017b). 

The results of Hg(II) ion adsorption on different adsorbents under similar 

experimental conditions are exhibited in Table 5. The maximum adsorption capacity for 

Hg(II) of TSC is the greatest among several other adsorbents. The factors affecting the 

disparity in Hg(II) ion removal were the properties of the different adsorbents. 

 

 

  

Langmuir Isotherm Parameters Freundlich Isotherm Parameters 

kL(L/g) qm (mg/g) R2 lnkF n R2 

0.0405 331.13 0.992 4.726 5.8 0.91322 
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Table 5. Adsorption Capacities of Hg(II) Ions onto Other Similar Adsorbents 

Adsorbent qm (mg/g) 

Poly(methacrylic acid)-modified cellulose acetate (Tian et al. 2011a) 23.8 

Activated carbon prepared from agricultural solid waste (Kadirvelu et al. 2001) 125 

PP-g-AA-TU fibers (Yao et al. 2016) 52.02 

(SBF-g-SA)-g-PAM (Sun et al. 2018b) 178.0 

TSC (present study) 331.13 

 

Metal ion competitive adsorption 

In this study, it was necessary to consider the selectivity of adsorption of different 

heavy metal ions by modified adsorbent samples. Table 6 shows the selective separation 

and distribution coefficient of Hg(II) adsorption on TSC compared with Pb(II), Cd(II), and 

Cu(II) at a pH of 5.0, with an initial concentrations of 100 mg/L, and at 30 C. The 

adsorption capacity of Hg(II) ions was 186.2 mg/g in the case of interference by other 

heavy metal ions, which indicated an excellent selectivity of Hg(II) by TSC. 

The distribution coefficient was calculated by Eq. 5, and the selectivity coefficient 

that indicated the modified adsorbent’s ability to adsorb Hg(II) ions compared to other 

metal ions is also shown in Table 6. As shown, TSC presented a distribution coefficient for 

Hg(II) over 50 times greater than for the other heavy metal ions. These results indicated 

that the functional sites grafted on TSC after the modification reaction can better form 

complex structures with Hg(II) ions (Chen et al. 2018; Wu et al. 2018). 

 

Table 6. Selective Adsorption of Hg(II) from Multi-component Mixtures by TSC  

Metal qe (mg/g) D (L/g) 
Selectivity Coefficient 

βHg(II)/Mn+ 

Hg(II) 186.21 27.01 - 

Pb(II) 42.51 0.54 50.02 

Cu(II) 39.32 0.49 55.12 

Cd(II) 36.12 0.44 61.39 

Note: Initial concentration 100 mg/L, adsorbent 0.5 g/L, shaking rate 130 rpm, solution pH 5.0, and 

at 30 C 

 

Desorption and reusability of TSC 

After measuring the Hg(II) concentration in the desorption medium, the desorption 

ratios for Hg(II) metal ions using 0.1 M HNO3 and 0.1 M HCl solutions were 91.3% and 

92.6%, respectively. The adsorption capacity of TSC could still reach 85% after five cycles, 

so there was no particularly notable decrease in the adsorption efficiency of TSC. 

 

Adsorption mechanism 

Figure 10 shows the sulfur element (S2p) XPS spectra of TSC before and after 

Hg(II) adsorption. As shown, the binding energy of the narrow XPS spectrum for S2p was 

162.5 eV, which may have been due to the C=S bonds. After adsorption of Hg(II), the S2p 

binding energy moved to a slightly greater value of 165.4 eV, corresponding to the transfer 

of electrons from S atoms of -C=S- to Hg(II) (Bai et al. 2011; Ding et al. 2016). Figure 11 

shows the mercury element (Hg4f) XPS spectrum of TSC after adsorption. As shown in 

the curve, 101.1 eV and 104.9 eV Hg4f binding energies could suggest coordination via -

C=S- groups, as illustrated in the molecularly modeled schematic in Fig. 12 (Yao et al. 

2016; Jie et al. 2018). 
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Fig. 10. S2p narrow XPS scan for TSC before (a) and after (b) adsorption of Hg(II) (initial 
concentration 100 mg/L, adsorbent 0.5 g/L, pH 5.0, shaking rate 130 rpm, and at 30 ℃) 

 

 
 

Fig. 11. Hg4f narrow XPS scan for TSC after adsorption of Hg(II) (initial concentration 100 mg/L, 

adsorbent 0.5 g/L, pH 5.0, shaking rate 130 rpm, and at 30 C) 
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Fig. 12. Proposed model of complexation of Hg(II) with TSC 

 

 

CONCLUSIONS 
 

1. A novel and functional adsorbent for Hg(II) removal in aqueous solutions was prepared 

by employing thiosemicarbazide to modify dialdehyde cellulose. The mercapto group 

on the surface of this derived chelating cellulose could efficiently and effectively adsorb 

Hg(II) ions with high selectivity.  

2. The performance of TSC was investigated by various techniques, and the adsorption 

properties of Hg(II) ion removal were also studied under different conditions. The 

adsorption behaviors of modified cellulose were superior to native cellulose both in 

equilibrium adsorption ability and in adsorption rate.  

3. The adsorption kinetics of Hg(II) onto TSC was fast and followed the pseudo-second-

order model, which indicated that chemical adsorption occurred during the adsorption 

process.  

4. The Langmuir isotherm model had the best fit with the Hg(II) ion adsorption data 

through a monolayer adsorption capacity of 331.1 mg/g.  

5. The results of the multi-component system adsorption experiments supported the TSC’s 

selectivity toward Hg(II) ions in the presence of interference from other ions. 
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