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ABSTRACT

We present an analysis of the pointwise relationship between the
reflectance of print and the surface topography of the paper
before printing. We have measured the surface topography and
reflectance of paper before and after printing in a sheet-fed pilot
offset printing press. The 2D measurement maps have been
aligned to obtain local print reflectance and surface topography
values for every spatial position on the samples. In contrast to the
various deterministic modeling approaches, which imply an a pri-
ori defined underlying mathematical model, we apply probabil-
istic analysis. Therefore we first estimate joint probability density
functions (pdfs) of local topography and print reflectance using
Gaussian Mixture Models (GMMs). From these pdfs we select
paper regions with unusual properties, i.e. regions from the tails
of the pdfs. These anomaly maps are analyzed for interrelations
between the print reflectance and surface topography, its gradient
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and local variance. The degree of interrelation is characterized by
the mutual information (MI), a measure to quantify statistical
dependence without making assumptions about the linear or non-
linear nature of the regression dependence. The significance of the
MI values is confirmed by simulation based statistical hypothesis
testing. The objective is to offer answers to the question: How
does the observation of an exceptional topography point on the
paper surface change our information about whether the print
quality attainable at that point will be exceptional or not? The
results suggest that topography in combination with its local vari-
ance have the most prominent interrelation to small scale print
anomalies. Furthermore it is shown that regions with abnormal
topography have at least ten-fold higher probability to exhibit
exceptionally high print reflectance, compared to randomly
selected regions.

1 INTRODUCTION

Earlier work in the research of paper related print unevenness has focused on
identifying overall paper properties, such as PPS roughness, air leakage por-
osity or formation index that would explain variations in print quality. These
studies (e.g. [1–3]) analyzed the relationship between paper properties and
print quality, also including parameters related to ink properties and to the
printing process. Print quality was assessed with ink demand, print-through
and evenness of the scanned reflectance of printed area [4], or with subjective
quality rankings [5]. Regression models in which print quality was explained
in terms of paper properties were identified. Extensive studies were also pub-
lished on identifying and evaluating the ink transfer equations that would
relate the amount of ink transferred to the paper with the characteristics of
the paper and the printing process (e.g. [6–8]).

In more recent work 2D measurements of local paper properties have been
increasingly employed as many small-scale print defects can directly be
related to inhomogeneities in the paper structure. Statistically significant cor-
relations have been established between spatially aligned 2D measurements
of paper surface topography, formation and print quality (local gloss or print
reflectance) [9–12]. These studies have focused on identifying deterministic
relationships, usually linear ones, between local paper properties and local
print characteristics.

In our work we will also examine the relationships between a local paper
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property, namely surface topography, and local print reflectance1. However,
we do not employ deterministic models, but instead we analyze the probabil-
istic relationship. Our key approach is to identify ‘abnormal’ regions in the
paper by analyzing the (joint) probability density functions (pdfs) of the
measured properties. By ‘abnormal regions’ we mean paper regions that have
very unlikely, i.e. extreme, properties compared to the typical statistical
behaviour of the data. Such regions correspond to values in the tails of the
pdfs. Having identified the ‘abnormal’ regions we examine the relationship
between surface topography and print reflectance in these regions. These
relationships are quantified using mutual information (MI), a measure for the
mutual dependence between the variables in the pdf. We compute MI from
Gaussian Mixture Model (GMM) estimates [14, 15] of the joint pdfs of the
abnormal points, which gives more stable results than computing MI directly
from histograms [16]. We also examine conditional probabilities to quantify
how much more likely it is that a print defect occurs at a point of an
exceptional topography than on the average, and study how much the answer
will depend on the size of the exceptional topography area.

This paper is organized as follows. In Section 2 we introduce the measure-
ments analyzed in this work and describe the alignment of the measured 2D
maps. Section 3 introduces the statistical analysis methods that we apply to
the image data, and it also proposes two approaches to test the statistical
significance of the analyses. Results are presented in Section 4 and conclu-
sions are drawn in Section 5.

2 MEASUREMENT DATA

2.1 Measurements

In this work we concentrate on analyzing the dependence between the reflect-
ance measurements of printed paper and the surface topography of the paper
before printing. The applied topography measurement method is based on
photometric stereo and it closely resembles the one presented in [17]. It is a
camera-based measurement that provides reflectance and topography maps
from exactly the same area of the paper sample. The test areas of paper
samples have been imaged in this study both before and after printing. We
interpret the reflectance measurement of the printed paper so that dark areas
correspond to normal print quality and the bright spots in the reflectance

1 This is not a true reflectance measurement (as described in [13]) but rather a photographic
image of the paper surface.
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map correspond to local print defects with missing or inadequate ink trans-
mission. In the surface topography presentation, dark shades of gray are used
to denote pits and light shades denote surface elevations.

The measurement data analyzed in this work is from a printing test where
16 newspaper sheets with PPS roughness of 2.61 μm, 2.77 μm, 3.16 μm or
3.63 μm (4 sheets each) have been printed with a sheet-fed pilot offset printing
press. Each of the 16 paper sheets contains two test areas relevant for this
work, both printed with full tone cyan. One of the areas has been printed
with normal 4-colour offset settings with all four printing units pressing the
paper. The other area has been printed so that only the cyan printing unit is in
contact with the paper and thus the back-trap phenomenon is eliminated. On
one of the paper sheets, the normal cyan area has been discarded from the
analysis because the sheet has wrinkled at the printed area. The final number
of imaged areas is thus 31, containing 15 normal cyan areas and 16 non-
back-trap areas. The size of each imaged area is 22.5 mm by 15 mm and the
image size is 2268 by 1512 pixels. This results in a pixel size of 10 μm by 10
μm.

The analyzed surface topography maps have been high-pass filtered with
wavelength limit 250 μm, which emphasizes the sharp pits and elevations on
the surface. A local variance map and a map of the local gradients in the
printing direction have been computed from the high-pass filtered topog-
raphy and used in the analyses as well. This allows also other surface proper-
ties than height to explain the print quality.

2.2 Image alignment

Accurate alignment of the 2D measurements is a prerequisite for the prob-
abilistic analysis. The printed reflectance measurement is, due to the meas-
urement method [17], already exactly aligned with the printed topography
map, and the same holds for the measurements of the unprinted paper. Thus
it is sufficient to register and align either the reflectance or topography meas-
urements acquired before and after printing. We register the unprinted and
printed topography maps because they resemble each other more than the
unprinted and printed reflectance measurements.

The image registration is based on point mapping [18] that is the primary
approach to register images with random textures. A set of matching points is
searched from the reference and target images (i.e., the unprinted and printed
topography maps) using cross-correlation coefficient of the surroundings as
the similarity measure of the matching points. Typical values of the local
cross-correlation maxima are above r = 0.8 when registering the topography
maps. The subpixel coordinates of the cross-correlation maxima are
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estimated by fitting a second order 2D polynomial to the surroundings of
each cross-correlation peak. This provides the subpixel coordinates of the
matching points. A global affine transformation [19] is fitted to the set of
matching points and applied to the coordinates of the target image to overlay
them with those of the reference image. Our registration is in two phases for
accuracy, computational efficiency and robustness. The first phase estimates
the translation only, and the second phase iteratively refines the transform-
ation estimate, introducing also the rotation and shear deformation. When
the selected affine transformation model is appropriate for the application,
the transformation fitting error is less than 0.1 pixels [20]. The details on the
image registration procedure have been presented in [20, 21].

The camera optics causes slight geometric distortion at the edges and cor-
ners of the images. As a result, the selected global affine transformation is not
exactly the optimal way to warp the coordinates. The error that remains
between the aligned coordinates may exceed one pixel in the corners of the
image. To ensure accurate pointwise analysis of topography and print reflect-
ance, only the parts of the images with less than half a pixel dislocation have
been selected for the analysis. Still, the number of the pixels included on each
of the 31 test areas is more than two million.

3 STATISTICAL ANALYSIS

After aligning the measurements, we analyze the dependence between the
measured variables. We analyze probabilistic relationships instead of
deterministic models because we do not want to restrict ourselves to an a-
priori defined deterministic model between print reflectance and surface top-
ography. In probabilistic analysis, we measure the interdependence of the
variables based on their marginal, conditional and joint probability density
functions (pdfs). Examples of pdf estimates for two variables are given in
Figure 1. The marginal pdf of one variable is the 1-dimensional pdf calculated
from the 2D pdf by integrating over the whole range of the other variable,
Figure 1 (b-c). The conditional pdf, fY|x(y|X = x), is the probability density of
variable Y given a fixed value X = x, e.g. the print reflectance given that
surface topography is −3.5 μm, Figure 1 (a,c). Such analysis reveals how
much information we gain on the printed reflectance in a specified point by
observing the value of the surface topography in that point.

Generally, a relatively small number of observations suffice to estimate
reliably the pdfs of the variables in their normal value range. However, it is
especially important to have reliable estimates for the tail regions of the pdfs
because they represent the abnormal regions of paper we are interested in.
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Figure 1. (a) Histogram-based and GMM-based joint pdf estimates of surface
topography and print reflectance. The ellipses denote the 2σ equal probability
contours of the components of the GMM. (b) Marginal pdf of surface topography
(1: histogram-based, 2: GMM-based). (c) Marginal pdf of print reflectance
(3: histogram-based, 4: GMM-based), and the conditional pdfs on condition that

surface topography value is −1.5 μm or −3.5 μm (curves 5 and 6, respectively).
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With image based measurements, we have huge amounts of data and thus we
can obtain pdf estimates that describe reliably also the low-probability tail
areas of the pdfs. Certain observed values can be classified as abnormal based
on their falling into the tail area of the pdf. Thus we can analyze, how much
information we have on the reflectance in a specified point given that the
corresponding surface topography value has been deemed abnormal.

In this section, we first briefly introduce the GMM method by which we
estimate the probability density functions. We study marginal and con-
ditional pdfs and recognize the weak overall dependence between surface
topography and print reflectance. Then we proceed to the selection of the
abnormal points and study how they are located in the measurement area. As
the first approach to verify the statistical significance of the analysis results,
we present a method to test whether the abnormal points are spatially local-
ized or just randomly and independently distributed in the plane. We then
introduce the concept of mutual information (MI) to characterize the prob-
abilistic dependence between two or more variables. Our second approach to
verify the significance of the results consists of a comparison of the obtained
MI values with the corresponding simulation results. The simulation is based
on null hypothesis that print reflectance and surface topography are statistic-
ally independent. The last subsection provides more insight into the inter-
pretation of the MI results by considering the probabilities of coincidences of
abnormality in the measured variables.

3.1 Estimation of probability density functions

The joint probability density functions (pdfs) of the variables analyzed in this
work differ clearly from Gaussian distributions. Thus they are estimated with
Gaussian Mixture Models (GMMs) [14], known to describe complex multi-
variate pdfs with quite few parameters. A GMM is a weighted sum of N
Gaussian distribution components. For a d-dimensional random variable X
the pdf is described by GMM as

Only three types of parameters are needed for each Gaussian component: the
weight of the component ci (prior), mean vector μi, and covariance matrix Ci.
The parameters can be estimated by the expectation maximization (EM)
algorithm [22]. We apply the algorithm described in [23] which – unlike the
standard EM algorithm – is capable of selecting the number of mixture
components without supervision. It is worth noting that the true probability
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distribution of the underlying random variable X is unknown, and thus the
estimation procedure is initialized randomly and it searches the optimal par-
ameter values iteratively. Two GMM models trained with the same data thus
differ slightly from each other but both are appropriate estimates of the true
pdf when the number of points used for the estimation is high enough. We
always use more than a thousand data points to estimate a GMM, which
produces very robust results.

Figure 1 (a) gives an example of a 2D joint pdf approximated as the joint
histogram and modeled as a 3-component GMM. The marginal pdfs of the
variables are shown by the discrete histogram presentations and continuous
GMMs in Figure 1 (b-c). In Figure 1 (c), two conditional pdfs of print
reflectance are exemplified, given that the surface topography value is fixed
either at −1.5 μm or at −3.5 μm. In the former case, the conditional and
marginal pdfs of print reflectance closely resemble each other, while the latter
conditional pdf clearly deviates from the marginal pdf. This illustrates the
fact that the statistical dependence between print reflectance and the
unprinted surface topography is considerably stronger at the markedly low
values of surface topography (−3.5 μm) than at the relatively typical topog-
raphy values (−1.5 μm).

3.2 Selection of points based on abnormality

The overall dependence between surface topography and print reflectance is
weak, as exemplified in Figure 1. This means that predicting the print reflect-
ance in a specified point by measuring the surface topography in that point is
highly uncertain in the general case: very little information in addition to that
provided by the marginal pdf is gained. We therefore proceed to identifying
and examining the abnormal points of the measured maps. The hypothesis is
that the dependences are much more significant at the tail areas of the
distributions.

3.2.1 Construction of the mask

A binary mask is constructed to select the abnormal points from the meas-
urement data. The mask can be formed based on the joint pdf of the
measured variables, or based on the extremeness of the values of single vari-
ables. Figure 2 exemplifies the mask identification procedure using the joint
pdf of unprinted surface topography and print reflectance as a basis for the
mask. The joint pdf is visualized by the joint histogram, and the line on top
of the histogram denotes the mask criterion boundary. The mask selects the
points outside the boundary, i.e. the points that correspond to the least likely
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p percent of the combinations of surface height and print reflectance. These
points of the mask are given a value 1 while the rest of the mask assumes
value 0. Figure 2 (d) shows the p = 1.5 % of pixels that have the lowest values
in the joint pdf, Figure 2 (c).

Mathematically, denoting the pdf of the (vector) variable X as f(X), the
condition for an observation x at location i to be abnormal to degree p is

where the relationship between C and p is determined through

The mask indicates those locations i that satisfy the above condition at the

Figure 2. (a) Unprinted high-pass filtered surface topography and (b) print
reflectance (reflected intensity in arbitrary units) on a 4 mm by 3 mm selection of a full
tone cyan printing area. (c) Joint histogram of the variables together with the
probability thresholding limit, C(p) (gray curve), where p = 1.5 %. (d) The resulting
mask that shows by white the 1.5 % of pixels with the most unlikely combinations of

topography and print reflectance.

Analysis of Small-Scale Print Defects with Aligned 2D Measurements

14th Fundamental Research Symposium, Oxford, September 2009 1301



chosen degree of abnormality, p. In other words, the selected points are
responsible for the percentile p of the distribution of X. In the case shown in
Figure 2, the random variable X is 2-dimensional, containing the observa-
tions of both surface topography and print reflectance.

We evaluate the relationship between surface topography and print reflect-
ance in two setups: in ‘forward’ and ‘backward’ analysis. In the backward
analysis we select regions with ‘abnormal print’, using the tail of the marginal
pdf of print reflectance, and examine whether the topography might be
responsible for these print defects. In forward analysis, we test how well the
various selections of surface property characteristics are able to predict miss-
ing ink. The mask regions are selected according to paper surface properties:
surface topography, its gradient and its local variance. We employ both the
marginal and joint pdfs of the surface properties to select the abnormal
points from the topography map, and then we examine the interrelation of
these points with the local print reflectance. Figure 3 presents the gradient
and variance maps corresponding to the surface topography shown in Figure
2 (a).

The mask construction methods that directly select the mask points from
the tail areas of the pdfs, as discussed above, operate over the whole image
area at once. We have additionally examined in the forward analysis a two-
step mask construction procedure in which the selected areas are locally
refined. This procedure is aimed to find regions with low topography values
that additionally have large local variation in topography.

Figure 3. (a) Gradient and (b) local variance maps of the surface topography shown
in Figure 2 (a). The gradient has been computed in the printing direction, i.e. y-
direction. Both maps have been normalized to unit variance and thus the color bars

are not shown.
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Step 1:
a. Select a relatively small number, K, of the lowest values of the surface

topography map.
b. Assign a label to each connected group of pixels found. This produces a

‘seed mask’ with typically 100–200 labeled objects.

Step 2: Repeat for each seed object
c. Set a window of size d by d pixels around the center of the seed object.
d. Select a percentage q of the highest local variance values inside the

window.
e. Assign a label to each connected group of pixels found in the local

window. This produces a local d by d mask with typically 1–5 labeled
objects.

f. Augment the seed object by the all the local labeled objects that have
overlap with the seed object.

The result of the second stage is an augmented topography mask that takes
into account the shape of the surroundings of the topography pits. We have
used the following parameters in the algorithm: K = 1000, K = 1500 and
K = 2000; d = 35; q = 5 %.

Unlike the other masks, a fixed mask percentage is not applied in this
technique. Instead, the number of pixels selected by the mask depends on the
content of the image and on the parameters defined above. We have applied
very low values of K in the seed masks, which produces low mask percent-
ages, typically 0.2 % . . . 0.5 %. The choice of small K was made because the
objective was to produce masks that differ clearly from the other forward
masks. In addition, the labeling and processing of the seed objects becomes
computationally demanding when the number of seeds increases. Table 1
summarizes the masks used in the analysis.

3.2.2 Spatial correlation of mask points

Studying the coincidence of abnormality at single pixel level is rather a
limited perspective. We include the spatial aspect of abnormalities as follows.
After constructing the mask, we examine how the masked points are distrib-
uted in the plane by counting the number of 1’s in the mask inside a sliding
window. The statistical significance of the spatial extent of mask point areas
is evaluated by comparing the result of the sliding summation to the null
hypothesis of uniformly and independently distributed mask points. If the
null hypothesis is true, the summation in the sliding window produces
binomial distributed numbers. As the average mask coverage is small, it is
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particularly efficient to test the null hypothesis by studying the distribution of
the maximum number of points within the sliding window.

The null hypothesis can be simulated by repeatedly drawing M samples
from a binomial distribution with parameters n and p, where n denotes the
size (in pixels) of the sliding window and p is the mask coverage. We denote
the samples as N ∼ bin(n,p). The number of samples, M, equals to the number
of pixels in the image divided by n, i.e. the number of independent summa-
tion results obtainable in the image area. The histogram in Figure 4 (a)
presents the distribution of M = 10785 samples from a binomial distribution
with parameters n = 225 and p = 0.015, and implies that if the mask points
were uniformly and independently distributed, a sliding 15 by 15 (i.e. 225)
pixel window would almost always contain 10 mask points or less. The max-
imum of the M-sample set is recorded; the maximum in the simulation run
shown in Figure 4 (a) was 12. To obtain a histogram estimate of the distribu-
tion of the maximum number of 1’s in the mask inside a sliding window when
the null hypothesis is true, we could repeat the experiment many times, each
time recording the maximum value from the M-sample set. However, there is
an analytical way. If the mask point positions are correlated, there will be
more samples of exceptionally high density of points (inside a window) than
according to the null hypothesis. Hence we choose as our decision variable
the maximum of N among the M observations and call it Nmax. The prob-
ability that the random variable Nmax (in M observations) takes a given value

Table 1. Summary of masks.

Analysis Mask name Points selected according to Mask percentages

Forward Topo lowest values of unprinted
topography

0.2 % . . . 1.5 %

Forward TGV most unlikely combinations of
topography, its (y-)gradient and its
variance

0.2 % . . . 1.5 %

Forward LocalVar a low percentage of the lowest
topography spots with local refining
to take into account the variance of
surface topography values around the
selected pits

0.2 % . . .0.5 %

Backward Refl. highest values of print reflectance 0.2 % . . . 1.5 %

Overall Random uniformly and randomly distributed
points

0.2 % . . . 1.5 %
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nmax, Pmax(Nmax = nmax), can be calculated with standard order statistics. Figure
4 (b) illustrates such probability Pmax as a function of nmax.

The idea behind this test is to show that the mask regions found by our
procedures are much larger than for random masks. This indicates that the
selected abnormal points are not uniformly placed but spatially correlated,
i.e. they in fact represent regions of abnormal paper properties. The spatial
correlation of the points of the mask under testing is statistically significant
at points where the sliding summation result of the mask exceeds a chosen
percentile, e.g. 99%, of Pmax.

We apply the simulation results in Section 4 and show that in our masks the
number of 1’s inside a sliding window exceeds the maxima of the binomial
distributed numbers and thus our masks are not random.

3.3 Analysis of dependence through mutual information

3.3.1 Mutual information

Mutual information (MI) characterizes the interdependence of any two ran-
dom variables, whatever the functional form of their joint pdf may be, and
without making assumptions about the linear or nonlinear nature of their
regression dependence. MI specifies how much the uncertainty about one
variable is reduced by knowing the value of the other variable: it is a measure
of how much information a variable carries about another variable. MI is
symmetric and always non-negative – it reaches the value of zero if and only

Figure 4. (a) Histogram of 10785 binomially (bin(n,p)) distributed random numbers
with parameters n = 225 and p = 0.015. (b) Probability of the maxima of drawing

10785 samples from bin(225,0.015).
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if the variables are statistically independent. MI is calculated between the
measured variables based on the pdf estimate. We use the parametric GMM
presentation of the joint pdf instead of histogram because the former pro-
duces robust MI estimates whereas the histogram based MI depends heavily
on the number of histogram bins [16]. Let us denote by X and Y the (possibly
multidimensional) random variables. Let the joint pdf be f(x,y) and the mar-
ginal pdfs of X and Y fX(x) and fY(y), respectively. The MI between X and Y,
I(X;Y), is defined as [15]

If the logarithm is of base e, the unit of MI is nat, and with base 2 logarithm
the unit is bit.

By the concept of mutual information, it is possible to examine any stat-
istical dependences, without restricting the analysis to the Gaussian statistics
as the standard correlation and R-squared analyses do. However, the inter-
pretation of MI is less intuitive. In the case of jointly Gaussian distributions,
the dependence between two variables, X and Y, is linear, and MI reveals
information identical to the coefficient of determination of linear regression,
R2. For joint Gaussian pdfs, MI is related to this familiar R-squared concept
by [24]

The same can be generalized to the Gaussian joint distributions of more than
two variables by using the covariance matrix instead of a scalar correlation
coefficient.

In a typical data analysis task the distributions are not Gaussian, and the
above reasoning is inadequate. In practice, the absolute values of MI may not
be as important as the maximization of MI with respect to certain criteria.
This is the case, for instance, in various image registration applications where
the objective in optimizing the image transformation parameters is to maxi-
mize the mutual information between the pair of images [25, 26]. In our
analyses, the absolute MI values are also of less importance. We measure the
MI between print reflectance and the topography-related variables and search
for a topography-based strategy of selecting the abnormal points that maxi-
mizes the MI. Interpretations for the results are searched through compar-
isons and simulations, as described in the rest of this section.
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3.3.2 Statistical significance of mutual information

We estimate MI from data sets selected by the masks described in Section
3.2.1. Because MI is by definition larger or equal to zero, the MI estimate
from a finite data set is always larger than zero even if the sampled variables
were statistically independent. To assess the statistical significance of the MI
between random variables X and Y, we test by simulations, how estimated
MIs are distributed when variables are statistically independent and the data
set is of finite size.

The first idea to simulate statistically independent data sets might be to use
white noise. However, when the masks are set up according to the true data,
the simulated data must have spatial correlations identical to the ones in true
data of each of the individual variables. Thus we need a procedure to make
the topography and print reflectance maps statistically independent while
maintaining their internal spatial structure. This can be achieved by random-
izing one of the maps. We have chosen rather arbitrarily the topography map
to be randomized.

The key idea in the randomization of the topography map is that the
spectrum of the random map is kept identical to the spectrum of the original
topography map, and hence the spatial autocorrelation of the data is kept
identical as well. This is achieved through manipulation in the Fourier
domain. The high-pass filtered surface topography map is first transformed
into the Fourier domain by 2D Fast Fourier Transform (FFT). Then the
phases at each frequency are chosen as randomly and uniformly distributed
values between 0 and 2π while keeping the amplitude unchanged. Finally the
2D inverse FFT of the modified Fourier transform produces a topography
map whose variance and spectrum are identical to those of the original map
but which is uncorrelated with the original map. We refer to the resulting
image as random-phase topography. Figure 5 presents a comparison of the
original and simulated topography maps, their spectra and the corresponding
pdfs. The original and simulated pdfs differ slightly because the original pdf
was not Gaussian which would be a prerequisite to preserve the exact pdf.
The slight differences between the original and simulated spectra are caused
by the finite size of the image: edge effects are not simulated in the random
phase spectrum.

Figure 6 gives an example of simulated and true MI values between surface
topography and print reflectance. Both the true and simulated cases employ
the true print reflectance map and select the data points using a locally refined
topography mask (LocalVar mask with p = 0.3 %), but the simulation uses
random-phase topography images in the place of the true topography meas-
urement. Both sets of results have variance larger than zero but the MIs
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Figure 5. Simulation of topography by randomizing the phase information. (a)
Original surface topography on a 9 mm by 6 mm selection, (b) corresponding
random-phase topography, (c) logarithm of the 2D spectrum of the original
topography, (d) logarithm of the 2D spectrum of the random-phase topography, (e)

marginal pdfs of the original and random-phase topography images.
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computed from true data are always much higher than the simulated MIs.
The differences in MI between repeated calculations are caused by three fac-
tors. Firstly, since we are estimating the pdfs by GMM using a different
random initialization each time, the GMM estimates differ slightly from each
other even if the input data stays exactly the same. Secondly, the numerical
integration applied in the MI computation causes minor deviation to the
results. Thirdly, in the simulation, we generate a new random-phase topog-
raphy data at each simulation experiment.

3.4 Coincidence of abnormalities

As the final analysis method, we examine the coincidence of abnormalities in
the measurements. We classify the observations of topography and print
reflectance into normal or abnormal classes individually – with their mar-
ginal probabilities – and then compute the probabilities of coincidences of
abnormality, p(y � normal | x � normal). This resembles the technique used
in [9]. Specifically, we measure the probability of having a print defect in a
spot that has been deemed abnormal based on its surface topography. We
also examine the dependence of the results on the size of the exceptional
topography spot.

We do not have subjective evaluations or other references to classify the
values of the print reflectance map as normal or abnormal. Therefore mask-
ing is based on the selected degree of abnormality, i.e., the selected percentile

Figure 6. Histogram of 500 MI values computed between print reflectance and
simulated topography and comparison with 500 repetitions of MI computation using

the true data from one of the non-back-trap cyan samples.
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of the pdf that determines where the ‘normal’ part of the pdf turns into the
‘abnormal’ tail. Various mask percentages are tested. We apply the same
mask percentage to both the print reflectance map and the surface topog-
raphy map, and then examine the overlap of the masks. If the occurrence of
an abnormality in the print reflectance does not depend on the classification
(normal/abnormal) of the corresponding spot in the surface topography
map, the expected overlap of the masks equals the selected mask percentage.
The results presented in Section 4 show that the overlap percentages are
considerably larger than that. This will provide a new insight into the inter-
pretation of the MI results as well.

4 RESULTS

Masks with abnormality degree, p, varied between 0.2 % and 1.5 % have been
generated for the whole set of images. The masks indicate the p percent most
abnormal points of the variables and their combinations according to the
‘forward’ and ‘backward’ approaches introduced in Section 3.2.1. The back-
ward approach applies a mask that indicates the highest values of the print
reflectance map (Refl. mask) and the forward approach applies three
topography-based masks (Topo, TGV, and LocalVar masks) as listed in
Table 1. In addition, we have used a random mask in which the number of
points specified by p is distributed independently and uniformly on the image
area. This corresponds to modeling the overall dependence between print
reflectance and unprinted topography, without classifying the observations
into normal or abnormal categories.

In this section, we first verify the spatial correlation of the mask points by
comparing the masks with the null hypothesis of randomly and independ-
ently distributed mask points, as described in Section 3.2.2. Then, for each
mask, we estimate the joint pdf of the variables in the points indicated by the
mask, and calculate the mutual information from the pdf. The statistical
significance of the MI results is evaluated by comparing the results with
simulations that use random-phase surface topography instead of the ori-
ginal aligned topography map, as described in Section 3.3.2. Finally, we study
the overlap of the forward and backward masks and show that observing an
exceptional value in the surface topography map provides useful information
for predicting the occurrence of a print defect in that point.

4.1 Spatial correlation of mask points

We test whether the positions of mask points in the image are correlated or
not, the null hypothesis being that no correlation exists. Let us study a win-
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dow of √n by √n pixels within the image. If the mask point positions are not
correlated, then the number of mask points within such window is binomially
distributed N ∼ bin(n, p), where p is the proportion of masked points in all the
points (i.e. the mask percentage). If the image size is √m by √m pixels we may
generate M = m/n independent samples of N. If the mask point positions are
correlated, there will be more samples of exceptionally high density of points
and exceptionally low density of mask points than according to the null
hypothesis. Hence we choose as our decision variable the maximum of N
among the M observation and call it Nmax.

As noted in Section 3.2.2, the probability that Nmax (in M observations)
takes a given value nmax, Pmax(Nmax = nmax), can be calculated with standard
order statistics. The probability in the case n = 225, p = 0.015 and M = 10785,
corresponding to the mask parameters studied in Figure 4 in Section
3.2.2, is shown in Figure 7 (a). The probability that Nmax exceeds the value
nmax = 17 is 0.001. Figure 7 (b) gives a typical example of observed distribu-
tion of number of mask points per 15 by 15 pixel windows with 10785
independent observations in total. The maximum of these is over 100. Hence
the null hypothesis is rejected on a confidence level of 0.001 and we conclude
that the positions of mask points in the images are correlated.

For all paper samples, the Topo, TGV and Refl. masks with 5 mask per-
centages varying between 0.2 % and 1.5 % have been analyzed by the sliding
summation technique using window sizes from 10 by 10 pixels to 30 by 30

Figure 7. (a) Probability of the maxima of random variables from binomial
distribution bin(255, 0.015). (b) Histogram of the 10785 sums of a 1.5 % TGV mask
inside a sliding window of size 15 by 15 (255) pixels. The axes in (b) have been zoomed

for visualization: the highest peak was 8208 and the last non-zero bin was 181.
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pixels. Each time the histogram of the sliding summation results has been
compared with the corresponding maxima histogram obtained from the
repeated binomial distribution sampling. We have counted how large propor-
tion of the independent sliding summation results exceeds the 99 % percentile
of the maxima distribution such as that shown in Figure 7 (a). This is a
measure for the proportion of mask pixels that is to a very high probability
spatially concentrated. Figure 8 (a) presents the results for the three mask
types with the window size fixed to 20 by 20 pixels. The local concentrations
of the mask points are slightly more frequent in the Topo mask than in TGV
and Refl. masks. Figure 8 (b) uses the Topo mask again to illustrate the effect
of the sliding window size on the results. In conclusion, Figure 8 confirms
that, independent of the selected mask percentage and type, there are always
numerous locations in the mask where the local sum of the mask points
exceeds the value that it would most likely maximally have if the mask points
were randomly and independently distributed. The proportion of the signifi-
cantly spatially concentrated mask points increases with the mask percentage.

4.2 Mutual information and its significance

With each mask, we have estimated by GMM the joint pdf of the masked
points of the four maps: print reflectance (R), surface topography (T), the

Figure 8. The proportion of the mask pixels that are to a very high probability
spatially concentrated. (a) Topo, TGV and Refl. masks with window size 20 by 20
pixels, (b) Effect of window size demonstrated with the Topo mask. In (b), the
reference binomial distribution corresponding to a marker has parameters n and p,
where n is denoted by the marker type and p is the location of the marker on the

x-axis.
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gradient of surface topography (G), and the local variance of surface topog-
raphy (V). This joint pdf estimate is used to compute the mutual information
between print reflectance and the topography-related variables and their
combinations. From all possible combinations of datasets we report the
results for the four combinations that contain reflectance and topography:
RT, RTG, RTV and RTGV. It is thus possible to assess whether the gradient
of the surface is a better predictor of print reflectance than the local variance
of the surface topography, or vice versa.

To assess the statistical significance of the MI results computed based on
the measurements, the corresponding MI values have been computed using
simulated random-phase surface topography data together with the true
reflectance measurements. In this analysis, the simulated topography map
replaces the true topography before the gradient and variance maps are com-
puted. The simulated topography map thus preserves its relationship with the
gradient and variance maps like the original topography map. As described in
Section 3.3.2, the simulation also preserves the spatial correlations of the
original topography map, as well as the marginal pdf. When the simulated
topography data is used in GMM estimation and MI computation together
with the original reflectance map, the dependences are very weak because the
topography is random with respect to the reflectance. The simulated case thus
serves as a reference and indicates the level of MI attainable even with ran-
dom data when the sample size is finite.

The smallest masks select 0.2 % of the points of the measurement maps
(that is approximately 5000 data points) while the largest mask selects 1.5 %.
The mask percentage slightly affects the MI values but the effect depends on
the type of mask used. The results of the MI analysis are reported in Table 2
for the non-back-trap samples and in Table 3 for the normal samples. Com-
parison of the values shows that the interdependence between topography
and print reflectance is stronger in the samples printed without back-trap
conditions than with normal printing conditions. This seems reasonable since
back-trap related print unevenness is also linked to paper properties like
formation or porosity variations [27] which are not related to small-scale
topography variations.

The MI values given in the tables are the average results of the 16 non-
back-trap or 15 normal samples. The tables report the lowest and highest
mask percentages used, and the MI results obtained with 0.3 . . . 1.2 % masks
fall between these values. The standard deviations corresponding to the MI
averages are not given in the tables but Figures 9 and 10 illustrate the devi-
ation in the form of 95 % confidence limits.

Figure 9 shows a graphical view of the ‘forward’ analysis results with
0.37 % masks, and Figure 10 respectively the ‘backward’ analysis results with
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the same mask percentage. The labeled bars in Figures 9 and 10 correspond
to the masks listed in Tables 2 and 3. ‘Forward’ refers to the fact that
abnormal points are identified based on paper surface properties that may
give a prediction for the print result. ‘Backward’ means that the abnormal
regions are identified from the print, which may be used to analyze the print
defects. The overall mutual information results, computed without the iden-
tification of any abnormalities and given at the bottom of Tables 2 and 3,
have not been plotted but they can be compared in the tables with the corres-
ponding simulated results that use random-phase topography in the place of
the true topography. The comparison shows that even though the overall
dependence between surface topography and print reflectance is weak, it is
consistently higher than the MI computed from random data.

According to Figure 9, the highest MI results are obtained by selecting the
points by the locally refined topography mask that accounts for the variance
in the surroundings of the selected topography pits (LocalVar mask). This
masking strategy seems to be best suited to select regions in which the paper
surface properties and print reflectance have significant statistical depend-
ence. The mask based on the joint distribution of the three topography-

Figure 9. Comparison of MI in true topography-based masks and random-phase
simulations for non-back-trap Cyan samples. Mutual information has been evaluated
between the combinations of variables denoted on the horizontal axis. The whiskers at

the end of the bars indicate the 95% confidence limits among the 16 samples.
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related variables (TGV mask) provides the second highest mutual informa-
tion between the print reflectance and the explanatory variables. Comparison
between TGV mask and Topo mask shows that surface topography, its gradi-
ent and local variance together reveal more interrelation between topography
and reflectance than the topography map alone.

Mutual information between a set of variables can only increase or stay the
same when the number of variables increases, because a new variable intro-
duced in the joint pdf model can never reduce the dependences that have
already been described by the model. Therefore the MI values – also the
simulated ones – presented in Figures 9 and 10 increase from left to right,
when the RT combination is switched to RTG or RTV, and further when
proceeding to the 4-variable combination, RTGV. As the simulated values
also increase, it is justified to assess how the MI develops in the variable
combinations and masking strategies with respect to the simulated MI (the
dark gray bars). Based on this comparison between the true data-based MI
and the respective simulated results, MI is higher in the RTV combination

Figure 10. MI computed using true data from non-back-trap Cyan samples or a data
set where the topography map has been replaced by random-phase topography. Both
cases use a reflectance-based mask with p = 0.37%. Mutual information has been
evaluated between the combinations of variables denoted on the horizontal axis. The
whiskers at the end of the bars indicate the 95% confidence limits among the 16

samples.
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than in the RTG combination in the backward mask and all forward masks,
except the TGV mask. This implies that the local variance of surface topog-
raphy may be a slightly better predictor of the print reflectance than the
gradient of topography. Comparing the 3-variable and 4-variable combin-
ations in the forward case reveals that MI is not significantly higher in the
combination of all the four variables than in a combination of three variables
where either the gradient or local variance of the surface topography has
been excluded. In the backward analysis the fourth variable introduces some
new information. This means that, for the prediction of print reflectance in
the abnormal points of surface topography, the information between V and
G is redundant, but when explaining the observed print anomalies by the
topography characteristics, both the gradient and the variance carry useful
information.

Finally, Figures 9 and 10 show that the dependence between surface topog-
raphy properties and print reflectance is, on average, weaker in the print
defect spots than in the spots of abnormal surface topography, because print
defects are also caused by other paper properties than surface topography.
However, identifying the abnormal topography points does facilitate the pre-
diction of print reflectance.

4.3 Coincidence of abnormalities

The coincidences of the ‘forward’ masks with the ‘backward’ masks have
been evaluated to measure the probability of observing an abnormally high
value in the print reflectance map on condition that the surface topography in
that point has been classified abnormal. The forward masks are the Topo,
TGV and LocalVar masks that were used in the MI analyses as well, and the
backward mask is the one that selects points of exceptionally high print
reflectance. The coincidence analysis always applies the same mask percent-
age, p, for the forward and backward masks, studying the range from
p = 0.2 % to p = 1.5 %.

The typical overlap of topography abnormalities with the points of
unusually high print reflectance varies from 7 % to 12 % in the normally
printed cyan samples and from 10 % to 18 % in the non-back-trap cyan
samples. The Topo mask produces slightly higher overlaps than the LocalVar
or TGV masks. The overlap percentages in all the cases are considerably
larger than the probability for an accidental coincidence of the masks which
equals p. As the mask percentage is increased, both the accidental and the
realized overlaps of the topography and print reflectance abnormalities
increase, but within the low mask percentages studied in this work, the latter
increases considerably faster (as a function of p) than p itself. This means that
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the increase in the overlap is a result of true coincidence of abnormal regions
in surface topography and print reflectance.

The forward masks have also been divided into sub-masks that only con-
tain objects (connected group of pixels) of specified sizes, and their coinci-
dence with the reflectance mask has been measured as the proportion of
overlapping pixels. This reveals, as a function of the size of the exceptional
topography area, the probability of observing an unusually high print reflect-
ance on condition that the topography shows abnormal behavior.

Figure 11 presents the overlap results, averaged over the 16 non-back-trap
samples within each mask type. For Topo and TGV masks, the smallest and
largest mask percentages are presented, Figure 11 (a-d). In the locally refined
topography masks the range of mask percentages is so narrow (p = 0.2 % . . .
0.5 %) that one diagram represents the results sufficiently. In the averaging
between the paper samples, the overlaps in each size category have been
weighted by the number of (the specified size) objects found in each sample.
The variance of the overlap results among the paper samples is high in
the size categories where the number of objects is relatively low. However,
the results clearly show that, also inside the size categories, the surface
topography anomalies coincide with print defects with a considerably higher
probability than the accidental probability, p.

The results presented in Figure 11 cover the range of overlaps detected
with the various mask construction techniques and mask percentages. The
regions selected by the Topo mask show increasing overlap with the reflect-
ance mask when the size of the abnormal topography regions increase, as
illustrated in Figure 11 (a,b). With the TGV masks this tendency is not as
strong as with Topo masks. The average overlap between the TGV mask
regions and reflectance mask remains between approximately 10 % and 20 %
over the range of object size categories in Figure 11 (d) where p = 1.5 %. At
the lowest mask percentage (p = 0.2 %), Figure 11 (c), the TGV mask selec-
tions do not coincide with the brightest print reflectance points so well.
Figures 11 (e) shows that abnormal topography regions of small size have
particularly high overlap with the mask of print defects, if these topography
regions are selected by the LocalVar mask. The differences in the results
between the mask types are addressed to the fundamentally different methods
of constructing the masks. The TGV and LocalVar masks tend to select
larger individual regions of the topography map than the Topo mask because
the former are based on the properties of the surroundings of the topography
depressions, and not only the topography values as such. Overall, this reason
reduces the overlap of the TGV and LocalVar masks with the corresponding
reflectance mask.

Topo mask reaches the largest overlap with the print defects, whereas
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Figure 11. Overlap of the reflectance mask with the forward masks as a function of
the size of objects picked from the forward masks. (a) Topo mask with p = 0.2 %,
(b) Topo mask with p = 1. 5 %, (c) TGV mask with p = 0.2 %, (d) TGV mask with
p = 1.5 %, (e) LocalVar mask with p = 0.33 %. The dashed lines represent the 95 %

confidence limits of the 16 non-back-trap results.



Section 4.2 showed that the mutual information between print reflectance and
surface properties is not as high in the Topo mask as in the other forward
masks. This may be due to the fact that Topo mask causes an abrupt edge to
the space of topography observations, since the mask selects points in which
the topography values fall below a certain threshold. Hence the GMMs are
not able to describe the joint pdf of the surface properties and print reflect-
ance in a similar precision as in the case of TGV and LocalVar mask points.
It must also be noted that mutual information describes basically different
interrelations than the plain overlap of two binary masks.

5 CONCLUSIONS

We have estimated the pointwise joint probability density functions of print
reflectance and surface topography characteristics of newsprint paper
printed in a sheet fed pilot offset press. We have studied the mutual relation-
ships both throughout the observation range and in anomalous points, i.e.
points with unusual topography or print reflectance. Applying GMMs and
MI we have suggested a procedure to identify regions on the paper with
exceptional values of topography, topography gradient and topography vari-
ance. These regions have a highly increased – at least tenfold – probability to
have extremely high print reflectance, compared to randomly selected
regions.

Our results have shown that topography, its gradient and its local variance
all contribute to identifying the regions where the surface characteristics and
print reflectance have stronger than average interdependence. Independent of
the search strategy for the identification of regions with exceptional topog-
raphy, the modeling results inside these regions always suggest that surface
topography in combination with its local variance are the most important
variables to describe the interrelation between small-scale paper surface top-
ography and local print reflectance. We have confirmed the statistical signifi-
cance of our results by showing that unrelated data with the same statistical
and spatial correlation properties as the true data shows negligible values for
MI compared to the interrelations revealed by our analysis.

The probabilistic approach, which does not assume an underlying math-
ematical model describing the interrelations between target variable, i.e. print
reflectance, and its explanatory variables (e.g. topography), provides a viable
alternative to the various deterministic modeling approaches that need a pri-
ori formulation of a model. The simulation methods that have been
developed to prove the statistical significance of the mutual information
found between the analyzed variables provide a quantitative interpretation
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for MI. This might contribute to a better applicability of information theor-
etic analysis methods in pulp and paper research.
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Ilya Vadeiko FPInnovations

Thank you for a very interesting presentation and a strong approach. First
question, what was the print density of your prints? Was it commercial level
or somewhat different?

Marja Mettänen

The print density was from 0.9 to 1.1, the target density being 1.0. It was
intended to be at a commercial level.

Ilya Vadeiko

Okay. Did you apply the high-pass filter to the prints as well as to the
topography?

Marja Mettänen

No, the print reflectance images were not filtered at all.

14th Fundamental Research Symposium, Oxford, September 2009

Transcription of Discussion



Ilya Vadeiko

Just a comment. Your filter had a cut of 250 μm, is that correct?

Marja Mettänen

Yes, that is the limit the wavelength.

Ilya Vadeiko

Normally, at commercial print densities, the human eye is not that sensitive to
variations at such short wavelengths.

Just another comment regarding your suggestion that some particular
masks applied to the topography of paper can provide good assessment of
the paper surface effect on print quality. It would be interesting to introduce
several other parameters like you did for the height of the topography
points or for the gradient, and look for some principal directions in the
multi-dimensional space of the parameters in order to better understand the
optimal mask that determines the print quality.

Marja Mettänen

Thank you for the comment.

Stefan Lindström Mid Sweden University

It was nice to see a new statistical method, but I wondered if there is some
objective way to discriminate whether this is a better method than using the
correlation number?

Marja Mettänen

I would say that, yes, we can just use correlation. But we will not see the whole
picture because there is more than linear dependence, and the modelling of
the whole probability density function will give us complete information
about the dependence and not only linear dependence.

We can estimate the MI using the non-Gaussian joint probability density,
for instance a GMM. For comparison, we can also estimate the MI using a
Gaussian pdf estimate, which corresponds to computing the correlation
coefficient and transforming it into MI. There is an analytical expression for
that transformation. Then, as the MI from the Gaussian assumption is
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smaller than the MI from GMM, this means that also the coefficient of
determination, “R-squared”, is smaller in the linear model.

William Sampson University of Manchester (from the chair)

Your surface topography that you showed on the screen looked rather sym-
metrical – it looked Gaussian. So are the heights you are observing typical of
what you see?

Marja Mettänen

I would say it is typical at least after the high pass filtering. I was kind of
wondering about the distribution of the surface topography values because I
had the impression that it should be log normal and not normal.

William Sampson

I think it should be skewed, yes. Kit Dodson presented a model in 2001 for
pore heights in the surface, and in the bulk of the sheet, and they were
effectively exponential. However, that would only end up tipping over to a
gamma distribution which is like a log-normal and Ramin Farnood has data,
which he has yet to publish but he will, which shows a skew distribution and I
have done some simulations that would suggest the skew as well. So I think it
is worth looking at what that filter is doing to the data, because it may be that
it is giving you some of your MI number.

Marja Mettänen

Well, you think the filter is causing the MI?

William Sampson

Well, the filter is doing something to the distribution and the MI is quantify-
ing the covariance between your distributions, so if one of your distributions
is changing shape it might be concerning.

Marja Mettänen

Yes, thank you for the comment, I will look at that.
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A further comment from the authors

The shape of the distribution of surface heights is partly explained by the
technique by which the surface topography is measured. We do not use a
surface profilometer but instead a camera-based system with inclined lights,
i.e. photometric stereo. Our device is therefore not capable of recording the
depths of the deepest surface pores as we must place the lights at a large
enough angle with respect to the surface normal to have enough contrast in
the images and to be able to detect subtle height variations on the paper
surface. However, it was checked afterwards that the topography values do
have a negative skew both before and after high-pass filtering.
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