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ABSTRACT

We use simulation and analytic modelling to probe the structural
similarity reported in the literature for fibre networks with mani-
festly different degrees of uniformity. From simulations of point
processes in the plane to represent random, clustered and disperse
fibre centres, we show that the distribution of distances between
pairs of centres is very insensitive to the extent of clustering.
Further, we quantify the correlation between the lengths of
adjacent polygon sides arising from a Poisson line process in the
plane as being ρ = 0.616 ± 0.001 and show that this is very
insensitive to fibre orientation and only weakly influenced by
clustering. The relevance of this correlation to pore geometry is
discussed.

In the final part we analyze simulated areal density maps and
show that their variance relative to that of a random fibre network
of the same constituent fibres, as quantified by the formation
number, depends at small scales on the flocculation intensity only
and depends at large scales on the number of fibres per floc only.
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INTRODUCTION

At the preceding symposium, we presented an analysis of the influence on the
pore size distribution of correlation between adjacent free-fibre lengths in
thin networks in random (i.e. Poisson), flocculated, and oriented fibre
networks [1], cf. also [2]. We conjectured that there was an intrinsic ‘ground-
state’ positive correlation between the lengths of the adjacent free-fibre-
lengths that form the perimeters of polygonal voids. This correlation explains
the earlier observation that polygons (pores) in thin fibre networks tend to be
‘roundish’ rather than ‘slit-shaped’ [3]. We made the qualitative observation
that the influence of fibre orientation on correlation, and hence polygon
shape, was overwhelmed by the inherent random variation of density in the
network. Our numerical analysis suggested also that flocculation (fibre
clumping or clustering) had only a weak influence on statistics characterizing
the pore size distribution.

The variance of local areal density (grammage) is known analytically for
the special case of isotropic random fibre networks [4]. The ratio of variances
obtained by dividing the measured β-radiographic variance of local areal
density by that calculated for the same fibres in an isotropic random network
yields a dimensionless statistic called the formation number, nf. For com-
mercial paper samples nf is typically greater than 1 at scales of inspection
above about 200 μm. While recognising the importance of chemical additives
to the flocculation propensity of fibre suspensions, we note the result of
Chatterjee [5] who studied the effects of chemical flocculants and increased
suspension consistency, i.e. increased potential for mechanical flocculation,
on formation. Chatterjee concluded that these influences were not easily
distinguished, so it seems that chemical and mechanically induced interaction
of fibres in suspension generate a similar class of flocculated structures.

In the context of the current study, an important result is that a plot of nf

against the scale of inspection is roughly linear up to inspection zone sizes of
about 4 mm [6]; this persists for a large range of papers formed using
Fourdrinier and twin-wire forming sections [7]. This indicates a similarity in
structures for different paper samples and supporting evidence for this is
provided by Farnood et al. [8], who demonstrated a strong correlation
between the mean floc size and its standard deviation in machine-made
papers and handsheets. Note also that although the influence of hydro-
dynamics in the forming section on fibre orientation tends to favour good
formation [9], the direct influence of fibre orientation on formation is very
weak [10, 11].

Structural stability in the distribution of mass manifests itself also in the
complementary distribution of void sizes. Measurements and simulations
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show that the pore radius distribution is well described by a gamma distribu-
tion [12–15] with the standard deviation of pore radii being proportional to
the mean for changes in fibre morphology and flocculation [3, 15, 16]. A
significant contribution to this invariance is the insensitivity of the
z-directional pore structure to changes in areal density distribution (forma-
tion) [17], the dimensions of the pore height distribution dominating
measurements of pores in paper [18]. Although there is some evidence of a
weak influence of formation on mean pore size [15, 19], the gamma
distribution holds.

The analysis presented in [1] provided a basis for this study, which seeks
reasons for the seemingly narrow class of structures that are realised in
papermaking processes. Again, our reference structure is the isotropic Pois-
son random network; the Central Limit Theorem tells us that the distribution
of local areal density will be approximately Gaussian (truncated to finite
domain), since it is the result of a large number of independent random fibre
depositions. In fact, similar distributions are found for most papers, just with
larger variances when flocculation is present.

Here, we use simulation to illustrate and quantify our conjecture that the
lengths of adjacent polygon sides in isotropic random line networks, which
have a controlling influence on the statistics of inter-fibre voids, are correlated
and show that this correlation exhibits only a weak dependence on fibre
orientation and clustering. Formation depends on the location of fibre
centres relative to each other and we proceed to use simulation to show that
the distribution of distances between fibre centres is extremely insensitive to
the degree of flocculation in the network. In the final part we describe a
formation simulator that decouples the influence of cluster (floc) size and
intensity. The data arising from the simulator provide insights into the rela-
tionship between the scale of inspection and the formation number, nf, which
we interpret using an approximate analytic model.

DISTANCES BETWEEN FIBRE CENTRES

The probability density of the distance between pairs of points chosen
independently and at random in a square of side d is [20]

It can be used also to describe the distribution of distances between pairs of
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fibre centres in a Poisson random fibre network. We have used simulation to
calculate approximately the distribution of distances between fibre centres for
disperse and flocculated networks. The distribution of fibre centres for floccu-
lated fibre networks is simulated as a compound Poisson process occurring
within a unit square. Circular regions are generated with centres occurring as
a Poisson point process in the plane and points are randomly distributed
within these circular regions. The number of points occurring within each
circular region itself has a Poisson distribution with mean determined by the
diameter of the circles (i.e. the cluster or ‘floc’ size) and and an intensity
factor, Ic which is a multiple of the expected number of points per unit area in
the network as a whole. Each simulation generates the locations of 50 000
points and then computes the distances between one million pairs of points
selected at random from these.

Some outputs of the simulation are shown in Figure 1 for the three cases of
interest: disperse, random and clustered. The left column shows the locations
of a random selection of 5000 points and the centre column shows fibre
networks with uniform orientation and with the locations of fibre centres
given by the point process. The column on the right shows histograms of the
distribution of distances between pairs of points; the solid line plotted on the
same axes is the probability density function of Ghosh which was derived for
the random case. As expected, the results from our simulation show excellent
agreement with Ghosh’s theory, but importantly the distribution obtained for
the disperse case is indistinguishable from that of the Poisson random case;
for the compound Poisson clustered case, we observe only a weak departure
from Ghosh’s theory for a simple Poisson process in the region of the max-
imum. Note that the simulations represented in Figure 1 consider a sufficient
number of points for the statistics describing the distribution of distances
between pairs of fibre centres to be stable, so can be considered representative
of large zones. We therefore expect this stability of the distribution to persist
in the statistics that characterize formation at larger scales. This is addressed
in more detail in the sequel.

CORRELATED FREE-FIBRE-LENGTHS

In our previous analysis of the pore structure of fibrous networks [1], we
conjectured that there was an intrinsic ‘ground-state’ positive correlation
between the lengths of adjacent free-fibre-lengths. Here we use simulation to
quantify this correlation and to identify the influence of fibre orientation and
clustering on it. There is plenty of analytic and Monte Carlo evidence that for
coherent isotropic random fibre networks, polygon statistics differ little from
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similar networks of infinite lines [21–23]. Accordingly, we consider simula-
tions of random networks of infinite lines, thus simplifying the problem. The
distribution of free-fibre-lengths in a random line network or a random fibre
network is exponential [24], so before considering our simulation we derive
the correlation between ordered pairs of free-fibre-lengths drawn from
independent and identical exponential distributions, this provides a simple
analytic reference model. The ordering of pairs is important, since without it
we would necessarily have no correlation; the treatment therefore provides the
effect that ordering independent random pairs has on their correlation and it
takes no account of clustering of crossings. It is the latter effect that we study

Figure 1. Left: Disperse, random and flocculated (clustered) point processes. Centre:
isotropic fibre networks constructed on these with points determining fibre centres.
Right: probability density function of Ghosh (lines) and histograms of spacings

between centre points.
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by simulation: if the results of our simulation yield greater correlation, then
we will have demonstrated the intrinsic ‘ground state’ of our earlier
conjecture.

We start with pairs of randomly chosen numbers from the exponential
distribution; hence the mean value of the product of these pairs is 1. Then
convert each pair {xi, yi} into an ordered pair (xi, yi) such that xi ≤ yi and
create now two distributions, one for the first member x and one for the
second member y. Intuitively, we take any yi < xi from the source distribution
of y and add them to source distribution of x; also we take any xi > yi from
the source distribution of x and add these to the source distribution of y.
Note that the mean product of pairs xy = 1 unaltered; however, the ordered
pairs are no longer independent. This yields the probability density function
for x:

with mean, x̄ =
1

2
 and variance, σ2(x) =

1

4
. The probability density function for

y is

with mean, ȳ =
3

2
 and variance, σ2(y) =

5

4
.

The correlation ρ is given by

See also our Chapter 9 in Arwini and Dodson [2] for more discussion.
We have written Mathematica code to extract pairs of x and y representing

the lengths of the adjacent sides of polygons arising from a Poisson line
process in a unit square. The code works by solving the equations of lines
drawn at random within the unit square for the coordinates of all crossings
that occur between them. Each of the coordinates is identified by the lines
that generate it, allowing the coordinates of the adjacent crossings on these
lines to be extracted; from these the lengths of adjacent pairs of polygon sides
are calculated. Graphical representations of these random line networks are
shown in Figure 2. Note that we consider only pairs of polygon sides
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bounded entirely by the unit square. Where either of a pair of adjacent
polygon sides crosses the sides of the unit square, these are discounted from
the analysis. In Figure 2 these polygon sides are represented by broken lines;
importantly, discarding these polygon sides from our analysis had no signifi-
cant influence on the distribution of polygon sides, which was exponential, as
expected.

In Figure 3, the correlation between adjacent polygon side lengths is plot-
ted against the intensity of the line process generating them. The process
intensity is calculated as the total length of lines in the unit square. The error
bars on ρ represent 95% confidence intervals calculated from 10 different
random seed numbers. Networks with an increasing number of lines per unit
area were generated each random seed, permitting the correlation to be
tracked as a function of process intensity; this process is illustrated in the
inset figure. For processes of 1000 lines in the unit square we calculate the
correlation between more than a million pairs of adjacent polygon sides and
observe a correlation of ρ = 0.616 ± 0.001; this is represented by the broken
horizontal line in Figure 3. We observe the same correlation in networks of
500 lines with a confidence interval varying only in the fourth decimal place.
Note also that whereas the correlation for individual line processes may
exceed this value at low process intensities, the mean correlation observed
over our 10 cases was always less than 0.616 for process intensities less than
500. It is interesting that for processes of 20 or more lines per unit area, the
correlation is always greater than that calculated for independent and ordered

pairs, i.e. ρ =
1

�5
≈ 0.447 and increases rapidly towards its stable value with

increasing intensity.
Now, free-fibre-lengths represent the sides of polygonal voids in the plane

of the sheet. Our numerical analysis of the influence of fibre orientation and
clustering on these voids suggested that these had only a weak influence on

Figure 2. Graphical representation of random line processes in the plane.
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the statistics characterizing the size of these voids. Further, we speculated that
the inherent clustering of fibre centres was sufficiently strong to overwhelm
any effect of orientation on correlation such that this would remain positive,
resulting in polygonal voids tending to be ‘roundish’ rather than ‘slit-shaped’,
consistent with the observations of Corte and coworkers [3, 25]. Note that
‘slit-shaped’, or oblong, voids require negative correlation. To investigate the
effect of fibre orientation on the correlation between adjacent free-fiber-
lengths, we ran our simulator for processes of 1000 lines in the unit square but
with the orientation of lines, θ, distributed according to the one-parameter
cosine distribution:

The correlations computed for these networks with orientation determined
by the free parameter ε in Equation (4) is shown in Figure 4, where error bars
represent 95% confidence intervals on the data. Although there is a system-
atic decrease in correlation with increasing orientation, the effect is extremely
weak; indeed the minimum correlation observed over all our simulations was

Figure 3. Correlation plotted against process intensity. Data represent the means of
10 simulations; error bars represent 95% confidence intervals. Inset diagram shows

data for the 10 simulations.
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0.602 (when ε = 0.3) and the maximum was 0.619 (when ε = 0). Thus we have
stable positive correlation for all orientations likely to be observed in a
papermaking process and accordingly we expect pores to be more ‘roundish’
than ‘slit-shaped’ regardless of fibre orientation.

To identify the influence of clustering on the correlation between adjacent
polygon sides, we used the simulator described earlier to generate clusters of
points within circular regions of radius rf, the number of points occurring
within each circular region having a Poisson distribution with mean deter-
mined by the diameter of the circles and the intensity factor, Ic. Lines with a
uniform distribution of orientations were generated to pass through these
points and the correlation between adjacent sides computed. The influence of
clustering is shown in Figure 5. Whereas the influence of orientation was to
decrease the correlation, we now observe that clustering increases correlation
and this increases with cluster radius but it is insensitive to the intensity of
clustering. Importantly, although the influence of clustering on correlation is
greater than that of orientation, it is not strong. Accordingly, we expect the
influence of clustering on pore statistics to be correspondingly weak.

Figure 4. Correlation plotted against eccentricity for oriented networks of 1000
lines.
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FORMATION SIMULATOR

To date, no analytic model provides the variance of local grammage for floc-
culated structures in terms of fibre dimensions, though an approximation is
provided by Farnood et al. who gave expressions for the distribution of mass
of a Poisson process of sparse disks [8, 26]. Importantly, Farnood et al. found
that the decay of variance of local grammage of a structure of uniform sized
disks could not describe fully the behaviour observed in measurements of real
samples, whereas structures of sparse disks with uniform grammage and a
lognormal distribution of diameters gave excellent agreement with experi-
mental data, though in many cases the mean disk diameters required for the
model to give good agreement with experimental data were unrealistically
small.

Although relationships exist between the formation number at different
scales and the crowding number of the fibre suspension from which the sheet
is formed [27], the hydrodynamics of sheet forming processes are sufficiently
complex that variables such as jet-to-wire speed ratio, foil angles, etc., will
influence the size and intensity of flocculation. It is easy to characterize the
resulting structures qualitatively as being ‘cloudy’ or ‘grainy’, though in a
practical setting, it is difficult to isolate the influence of intensity and scale of

Figure 5. Correlation plotted against cluster radius for networks of 1000 lines.
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a flocculation process. To address this issue and to probe further the depend-
ence of formation on the scale and intensity of fibre clustering processes, we
have written a simulator that generates density maps of fibre networks where
the scale and intensity of flocs may be varied independently.

Our simulator generates a 4 cm × 4 cm grammage map as an array of
400 × 400 square inspection zones, which can be considered to
correspond to the pixels obtained from a calibrated scanned image of a con-
tact β-radiograph. The code works by dropping clusters of fibres within a
circular region where the centre of each cluster is distributed as a point
Poisson process in the plane and the number of fibres per cluster, nc, is a
Poisson distributed random variable. The size of each cluster is determined
by an intensity parameter such that the mean mass per unit area of the cluster
is constant and less than the grammage of a fibre. The simulator does not
incorporate the influence of fine particles or that of hydrodynamic smoothing
since these will inevitably reduce the observed variability. We seek instead to
quantify the scale-dependence of variability arising from a well-characterized
process of fibre clustering.

The number of fibres required to generate a structure with mean grammage
β̄ is determined from the length, λ, and linear density (coarseness) δ of the
fibres:

where, for our simulator, A = 16 cm2 and n is rounded to take an integer
value.

For fibres of width ω, the grammage of a fibre is given by

We define a flocculation intensity 0 < I ≤ 1 such that the grammage of a
cluster, corresponding to the disk grammage considered by Farnood et al. is
given by

So, 0 < G ≤ βfib. The expected number of fibres per cluster nc is specified as an
input to our simulation and the number of clusters required to form the
network is computed as
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and rounded to the nearest integer. The code proceeds to generate a list of
length ncluster where each entry represents the number of fibre centres per
cluster and is distributed according to a Poisson distribution with mean nc.
The grammage of a cluster of radius r containing nc fibre centres is

We have assumed the grammage of a cluster to be constant and given by
Equation (7), so the radius of such a cluster is given by

We proceed to generate the coordinates of the centres of each cluster, (x,y) by
selecting independent and identically distributed x and y from a uniform
distribution. For each cluster we use the coordinates of the cluster centre to
determine the area within which exist the nc fibre centres associated with that
cluster. These coordinates are then generated with uniform probability dens-
ity within this area. Given the location of fibre centres, a uniformly distrib-
uted orientation is generated for each fibre and the coordinates of its ends are
computed. For each fibre, the fraction of the fibre length that passes through
each inspection zone is computed. When this has been done for every fibre,
the resultant output is an array containing the total fibre length per unit area
in each inspection zone; this number is multiplied by the fibre linear density
to obtain the local average grammage in each zone.

Examples of density maps generated by the simulator are shown in Figure
6. We observe textures that increase in ‘cloudy-ness’ with nc and increase in
‘graininess’ with Ic.

SCALE DEPENDENCE OF FORMATION DATA

In the Introduction, we noted that plots of the formation number, nf against
inspection zone size are approximately linear for scales of inspection less than
about 4 mm. The classical approach to obtaining the variance of local gram-
mage at different scales, from which the formation number is computed, uses
complete sampling by partitioning two dimensional data into contiguous
non-overlapping square inspection zones. Inevitably, as larger inspection
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zones are considered, the number of data available for calculation of the
variance decreases.

An alternative approach is to sample the two dimensional data into over-
lapping square inspection zones in order that the variance may be computed
for all possible arrays of contiguous square inspection zones of a given size,
thus maximising the amount of data and providing a better estimate of the
variance within the array at a given inspection zone size. With I’Anson, one
of us has demonstrated that this approach provides the same information as
the power spectrum [28], which is often used to present variance data in the
frequency domain [29–31].

The use of non-overlapping inspection zones is more easily justifiable from
a statistical perspective: the grammage of zones at the smallest inspection
zone size is used only once to generate the distribution of local grammages at
larger zone sizes. A typical grammage map obtained by calibrated contact β
radiography is a square of side about 4 cm which may be scanned at a reso-
lution of 100 μm. So at the 100 μm scale of inspection we determine the

Figure 6. Simulated grammage maps each representing a 4 cm × 4 cm region with
mean grammage 60 g m−2 formed from fibres with length λ = 1 mm, linear density

δ = 2 × 10−7 kg m−1 and width ω = 20 μm.
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variance of 160,000 inspection zones, at a scale of 0.4 mm we determine the
variance of 10,000 inspection zones and at a scale of inspection of 4 mm we
determine the variance of 100 and at a scale of 8 mm only 25 zones are
available to calculate the variance. To determine the influence of the amount
of available data on our calculation of the variance of local grammage, we
simulated grammage maps for random fibre networks with mean grammage
60 g m−2 formed from fibres with linear density 2 × 10−7 kg m−1 and width 20
μm and varied the fibre length between 1 and 4 mm. From these simulated
grammage maps we computed the variance of local grammage using non-
overlapping inspection zones and overlapping inspection zones. Plots of the
variance of local grammage obtained at different scales of inspection
obtained using non-overlapping square zones are shown in Figure 7 and
those obtained using overlapping square zones are shown in Figure 8. For
each fibre length we computed also the theoretical variance of local gram-
mage using the equations of Dodson [4]; these values are plotted as broken
lines in Figures 7 and 8. For each method of partitioning the grammage map,
the variance of the simulated structures agrees very well with theory for scales
of inspection up to about 4 mm. As expected, sampling into non-overlapping
zones results in more scatter in the observed variance as the inspection zone
size increases, and hence the number of inspection zones decreases, whereas

Figure 7. Variance of local grammage for non-overlapping square zones plotted
against inspection zone size. Dashed lines represent theoretical variance of local

grammage calculated using the theory of Dodson [4].
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sampling by overlapping zones considerably reduces the scatter but results in
an underestimation of the variance at larger zone sizes.

Dividing the calculated variance by the theoretical value obtained for a
random network formed from the same fibres provides a measure of the
quality of the sampling scheme. Of course, this statistic is the formation
number, so for all our simulated random networks it should be very close to 1.
Figures 9 and 10 show the formation number, nf plotted against inspection
zone size for non-overlapping and overlapping zones respectively. For the
non-overlapping case, there is considerable scatter in the data and this
increases with inspection zone size; the scatter is greatly reduced in the over-
lapping case, though the agreement between theory and simulation decreases
at scales above 4 mm.

These results are important because they reveal that quantification of vari-
ability at large scales will always be limited by the total area of sample avail-
able for analysis. The conventional, and statistically more justifiable approach
of complete sampling by contiguous non-overlapping zones provides rather a
good measure of the variance at all scales, though with some scatter at larger
scales. Although the absolute error is small, when the variance is divided by
the theoretical variance of a random network, this can lead to very large
relative errors, as evidenced by Figure 9. At scales of inspection below 4 mm,

Figure 8. Variance of local grammage for overlapping square zones plotted against
inspection zone size. Dashed lines represent theoretical variance of local grammage

calculated using the theory of Dodson [4].
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the error can be reduced by sampling with overlapping inspection zones,
though at larger scales this will typically underestimate the true variance. For
the simulated structures that we have considered here, 4 mm represents 10%
of the sample size, so at this scale the variance is calculated for 100 inspection
zones. Naturally, estimates of variance are improved as the amount of data
used to compute the variance increase. This is illustrated in Figure 11 which
shows the dependence of variance on sample size for three sets of random
data drawn from the standard normal distribution; in each case the variance
approaches that of the population from which the random numbers were
drawn only when the sample size is greater than 100. In the context of analyz-
ing paper structures, this suggests that quantitative comparison with theory,
as provided by the formation number or by comparison of the power spectra
with that for random networks, is only valid for scales of inspection up to
10% of the size of the sample and that above these scales we are likely to under-
estimate or over-estimate the formation number and this will manifest itself
in spurious non-linearity of a plot of formation number against inspection
zone size.

To verify this observation, we simulated a grammage map for an 8 cm ×
8 cm sample formed from 2 mm fibres with the same width and linear density
as used so far. The formation number of this whole region at different scales

Figure 9. Formation number for non-overlapping square zones plotted against
inspection zone size.

C.T.J. Dodson and W.W. Sampson

680 Session 5: Structure and Analysis



Figure 10. Formation number for overlapping square zones plotted against
inspection zone size.

Figure 11. Dependence of variance on sample size for three sets of random data
drawn from the standard normal distribution.
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of inspection is shown in Figure 12 along with that computed for the
4 cm × 4 cm central region. Consistent with our earlier discussion, we observe
that the formation number, nf computed for the larger sample is close to 1 for
scales below about 8 mm, and for the smaller region deviation from unit value
occurs at around 4 mm, so in both cases we may consider our estimate of the
variance to be reliable for scales up to 10 % of the size of the sample. The
result has importance for the analysis of real samples where we expect nf > 1
for all but the smallest scales of inspection. We can be confident that the
roughly linear relationship between nf and inspection zone size up to scales of
4 mm or so is genuine, though the non-linearity observed at larger scales is
likely to arise partly as a consequence of the limited availability of data to
characterize the texture. Given the established relationship between spatial
domain and frequency domain measures of formation [28], the accuracy of
any measure of formation at scales more than 10% of the size of the sample is
questionable. A comprehensive analysis of these effects will be reported else-
where. For our subsequent analysis of simulated flocculated structures, we
will constrain our treatment to samples of size 4 cm × 4 cm and scales of
inspection up to 4 mm. Whereas larger sample areas can be generated using
our simulator, the computation time for a network of given grammage

Figure 12. Influence of sample size on formation number computed for an 8 cm ×
8 cm random network of 2 mm fibres with mean grammage 60 g m−2 and for the

4 cm × 4 cm central region.
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increases in proportion to sample area, so rapidly become impractical. We
bear in mind also that the sample area in laboratory analyses is constrained
by the size of the β-source, part of which is required for exposure of a calibra-
tion wedge.

The dependence of the formation number on zone size for simulated struc-
tures is shown in Figure 13 for networks with mean grammage 60 gm−2

formed from fibres with length 1 mm, linear density 2 × 10−7 kgm−1 and width
20 μm. Each plot represents a different flocculation intensity I and shows the
influence of changing the number of fibres per cluster, nc between 5 and 40.
As expected, the formation number increases with the number of fibres per
cluster and the flocculation intensity. In agreement with published data for
real structures, we observe also that the formation number initially increases
with inspection zone size [6, 7].

On first inspection of Figure 13 it is immediately apparent that the simula-
tor is not yielding the linear dependence of the formation number on inspec-
tion zone size reported in the literature [6, 32]. We note however that linear
regression on the data in Figure 13 yields coefficient of determination greater

Figure 13. Influence of number of fibre centres per cluster (nc) and flocculation
intensity (I) on formation number plotted against inspection zone size for simulated

structures. Mean grammage 60 g m−2, λ = 1 mm, δ = 2 × 10−7 kg m−1, ω = 20 μm.
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than 0.9 for all the curves computed for I = 0.05, 0.1 and for all cases except
nc = 5 when I = 0.2, so whereas curvature is readily observed, a linear
approximation would characterize the scale dependency reasonably well for
scales up to 4 mm. We note that the linear dependence of nf reported in the
literature [6, 7] arises from sparse data obtained at 10 or so scales of inspec-
tion only, too few to detect curvature of the type observed in Figure 13, and
need not result in a low coefficient of determination for a linear regression.
Similar behaviour is observed for networks of fibres with length 2 mm, as
shown in Figure 14. We observe that the curve shapes in Figure 14 are similar
to those at the same flocculation intensity shown in Figure 13. Although
regions of some curves do scale to each other, we have been unable to identify
a simple scaling law that applies over all the scales and curves plotted. One
reason for this can be observed by inspection of the data obtained when

Figure 14. Influence of number of fibre centres per cluster (nc) and flocculation
intensity (I) on formation number plotted against inspection zone size for simulated

structures. Mean grammage 60 g m−2, λ = 2 mm, δ = 2 × 10−7 kg m−1 ω = 20 μm.
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nc = 30 and 40 for the 1 mm fibres when I = 0.2 and 0.5 and for the 2 mm
fibres when I = 0.1. In these cases, the value of nf is very insensitive to nc over
most scales such that when a large number of fibre centres are clustered
within a small region, the formation number and its dependence on zone size
stabilizes.

ANALYTIC APPROXIMATION

The nonlinearity in the plots of nf against zone size shown in Figures 13 and
14 is characterized by a decreasing gradient of each curve as the inspection
zone size increases, this being a stronger effect and becoming significant at
smaller scales as the intensity of flocculation increases is associated with a
decrease in cluster radius. We can illustrate this behaviour by considering a
Poisson structure of sparse disks with uniform diameter D.

The autocorrelation function for disks with diameter D is [8]

and the variance of grammage at points of a structure with mean grammage
β̄ formed by the random deposition of disks with grammage G is

The variance of local grammage for square zones of side x is given by

where b(r,x) is the probability density of the separation of pairs of points by
a distance r as given by Equation (1). Note that here we use b(r,x) to represent
all possible pairs of points within a square zone, whereas earlier we used the
same probability density to characterize the distribution of distances between
fibre centres. Thus the integral term in Equation (13) is the fractional between
zones variance of a random structure of disks with diameter D, given by the
expected value of the autocorrelation function for all possible pairs of points
within a square zone.

The variance of local grammage of a random fibre network is [4, 6]
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where α(r,ω,λ) is the autocorrelation function for coverage at points
separated by a distance r for random rectangles (fibres) with width ω and
length λ.

Noting that the flocculation intensity used as a parameter in our simula-
tions is given by I = G/βfib, we obtain the formation number for our network
of disks as

Before tackling Equation 15 numerically, we can easily calculate analytically
for large inspection zones

since it is simply the ratio of variances of two Poisson processes—one for
fibres and one for clusters of nc fibres. Similarly, from the integrals we can
obtain the initial slope

so, for Poisson networks of clumps of fibres, we know how the formation
number starts and where it ends.

The influence of disk diameter on the formation number calculated for
fibres of different length by numerical integration of Equation (15), is shown
in Figure 15 for disks with I = 0.1 such that G = βfib/10. On first inspection, we
observe qualitative agreement with the data arising from our simulations and
shown in Figures 13 and 14. Weak maxima are observed for the unrealistic
cases when λ > D; for the more realistic cases with D > λ the nonlinearity for
large floc diameters is less pronounced. Some care is required in interpreting
the apparent asymptotic behaviour, since the variances observed at very large
scales of inspection are inevitably very small, so practical sampling schemes
may exhibit a maximum in a plot of nf against zone size with nf → 1 as x → ∞.

Both our simulator and our approximate analytic model show the forma-
tion number, nf to approach some asymptotic value depending on the scale
and intensity of the fibre clusters, so at small scales the structure is closer to
that of a random network than it is at large scales, cf. earlier discussion of
distances between fibre centres. For completeness, it is illustrative to consider
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the opposite process to clustering: a regular lattice spacing between adjacent
fibre centres. Figure 16 shows 4 cm × 4 cm grammage maps generated using
our simulator for regularly spaced fibre centres on a square lattice; the distri-
bution of fibre orientations is uniform. The linear density of the fibres was

Figure 15. The formation number nf(x) for Poisson networks of clumps of fibres,
from Equation (15).

Figure 16. Grammage maps of networks of fibres with uniformly distributed
orientation and with fibre centres spaced on a regular lattice.
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2 × 10−7 kg m−1, fibre width was 20 μm and fibre lengths of 1, 2 and 4 mm
were used such that the horizontal and vertical distances between fibres
increased in proportion to fibre length. The formation number computed for
these textures is shown in Figure 17. As anticipated, for these regular struc-
tures, the formation number is less than 1 at all scales, so they exhibit less
variability than the corresponding Poisson fibre network formed from the
same fibres. Importantly, the formation number for regular spacing between
adjacent fibre centres is asymptotic to nf = 0 as x increases, so again we have
the structure at small scales being closer to that of a random network than it
is at large scales, though now variability decreases with inspection zone size
more rapidly in the uniform case than for random networks.

SUMMARY

We have identified two primary factors that give rise to the narrow class of
structures that are realised in paper making processes:

• The distribution of distances between pairs of fibre centre points in the
plane is not strongly dependent on the extent of clustering in the under-
lying point process.

• The correlation between the length of adjacent polygon sides arising from

Figure 17. Formation number against inspection zone size for grammage maps
shown in Figure 16.
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a stochastic line process in the plane is insensitive to fibre orientation and
clustering.

The latter observation has relevance to the shape of the in-plane voids in the
sheet and results in these being typically ‘roundish’ rather that ‘slit-shaped’.
The first observation has relevance to the distribution of mass density. From
our approximate analytic model we state that at small scales, the initial slope
of a plot of formation number against zone size is given by the flocculation
intensity; at large scales, the formation number is asymptotic to the expected
number of fibres per floc. Our analysis of simulated textures suggests that
detection of these asymptotes in practical sampling schemes is dependent on
their occurrence at scales less than one tenth that of the available sample.
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Bob Pelton McMaster University

A very nice talk, Kit. In the last talk, we heard about all those wonderful
imaging technologies, which I think is going to generate enormous data files,
describing the three-dimensional structure of paper. I would guess one of the
real values of the kind of work you are describing is that it gives some hints as
to what kind of simple numbers we could extract out of these huge data sets
to characterize the three-dimensional structure of paper. Have you thought
about that?

Kit Dodson

Yes, this is a fair point. We have always believed that the theoretical models
provide a probe that can go where the measurements have not yet gone. So,
they can provide a guide as to what would be good things to calculate. Now,
we are at the situation with the 3D imaging that we were at when, 50 years
ago, I started work and Derek Page was busy producing pictures of indi-
vidual fibres. This was terrifying to those of us who were trying to do stat-
istical geometry with little bits of straight lines. Now, Jean-Francis Bloch and
other experimental colleagues are producing beautiful 3D images of one
square millimeter. It is a challenge, what to look at, what to measure? The
surface images that we saw from the movie clearly illustrated the polygonal
areas bonded together, but we do know fluid gets through it!
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Jean-Claude Roux University of Grenoble.

I will try to keep to one question but I may not be able to because it was
an excellent presentation. In the paper industry, and in the study of the
pulp suspension analysis, we often speak of crowding factors as important
parameters. Can you consider these things as well?

Kit Dodson

I am sorry, could you repeat just one more time the first question?

Jean-Claude Roux

When we analyze the pulp suspension we can characterize flocculation inten-
sity by some factors such as the crowding factor. I was wondering if you have
calculated this quantity and how can it be related to your findings? Have you
been able to consider consistency?

Kit Dodson

Yes, to characterize a suspension, we have used the number of fibres in a fibre
length volume as a convenient measure. I recall that, with Dick Kerekes, we
did some relations between the crowding factor and formation data at differ-
ent scales, and it does what you would expect. The big problem is that, as we
saw from Daniel Söderberg’s presentation, it is a long way from the suspen-
sion to the piece of paper that we put in the radiography machine – that is
the problem and, you know, some of us are a little timid about joining the
points up.

As for the consistency, well, you can see it all happening in your mixing
jar. It is very hard to mix them when these guys put a lot of money into these
gap-former headboxes, and look what comes out. It is very hard to separate
fibres.

But one other point about the suspension; what I think has been neglected
is the variability. To take up Jean-Francis Bloch’s, point, it is the local vari-
ability in concentration that is fundamental, not just the average value, which
is given by the crowding factor. It is the variability that is important.
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Jean-Claude Roux

And I have, if you permit, a more philosophical question. How many
statistical rules should you consider in order to simulate a virtual structure
which is close to the real structure, according to your knowledge?

Kit Dodson

Oh no, we don’t attempt to simulate the real paper. We create a set of speci-
fied, well-understood idealizations, and say that this is what we will analyze.
And then we present it, and we say: we believe it bears relations to your
structure because these features are universal in such structures. We do not
say that we will make a copy of paper, that isn’t our business. Our business is
to say what the theory can tell you about the qualitative structural features,
and sometimes about the quantitative ones that are not obvious.
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