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Agricultural residues are among the most important and abundant 
biomass resources in the world. This study aimed to highlight the 
characterization of common agricultural residues in China. Six indicators, 
including biomass, cellulose, hemicelluloses, lignin, caloric value, and 
ash, were selected to evaluate agricultural residue for its potential energy 
utilization using grey relational analysis. The results showed that 
residues of grain crops, including corn (439.1 million tons, 46.6%), rice 
(207.1 million tons, 21.5%), and wheat (150.7 million tons, 16.0%) were 
the top three agricultural residues, accounting for 84.1% of total Chinese 
agricultural residues. Among the agricultural residue samples, rice, 
wheat, and corn exhibited relatively low ash content; and sugarcane, 
cotton, and rape residue exhibited low lignin content. Rape, corn, and 
hemp showed higher cellulose content; and rice, wheat, and corn 
exhibited higher hemicellulose content. Among the agricultural residues, 
hemp, corn, and sugarcane showed higher caloric value compared to 
other residues. According to the grey relational analysis, these combined 
properties have shown that corn, rice, and wheat can act as potential 
candidates for energy utilization. The evaluation results were essentially 
identical to the performance of agricultural residues. Therefore, the 
comprehensive evaluation of agricultural residues provides sound 
scientific evidence for their use in energy production. 
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INTRODUCTION 
 

Given the shortage of fossil fuels and related environmental problems, the 

Chinese government has promulgated a series of policies and documents to bolster and 

encourage the development of renewable energy during the past few decades, such as the 

medium- and long-term development plans for renewable energy in China over the next 

15 years released by the National Development and Reform Commission in 2007, the 

13th Five-Year Energy Development Plan including a series of energy of development 

paths in 2016, and a plan to expand the production of bioethanol and promote the use 

ethanol as a combustion source for motor vehicles jointly issued by 15 departments in 

2017 (Ji 2015;  Zhu 2017). These policy documents above all emphasized the important 

role and status of biomass energy in China's future energy development.  

Agricultural residues constitute one of the important biomass feedstock in China, 

due to their vast agricultural base. As the largest agricultural producer with the third 

largest land territory in the world, China has abundant agricultural residue resources. 
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Agricultural residue often refers to the residues or by-product of agriculture (Perera et al. 

2005). The traditional uses for agricultural residues are as follows: as animal feed, soil 

amendment, and fuel materials (Zeng et al. 2007). However, most agricultural residues in 

China either are left in the wild or are directly combusted, which leads to many problems, 

including resource waste and environmental pollution (Wang et al. 2013b). Therefore, 

there is increasing attention towards a more rational and efficient use of the residue 

resources in China (Chen et al. 2017). Utilizing agricultural residues would allow for a 

successful transition from traditional fossil fuels to clean energy. This transition would 

not only reduce carbon dioxide emissions, but also mitigate resource shortages. 

Different types of agricultural residues are abundant and widely distributed in 

China. It is necessary to evaluate the type, quantity, location, and potential for energy 

utilization of the different kinds of agricultural residues. Many studies have assessed the 

amount and distribution of agricultural residue for use as a biomass energy source. For 

instance, Zeng et al. (2017) reviewed the present utilized technologies of straw in 

biomass energy. Ji (2015) also used an artificial neural network approach to assess the 

use of agricultural residue resources in China for liquid biofuel production. However, 

these studies were narrow in scope, assessing a particular resource at an economy-wide 

level or various resources in a small study area. A comprehensive and detailed 

assessment of agricultural residue for energy utilization is still missing.  

Grey relational analysis (GRA) is a subset of grey system theory, as proposed by 

Julong Deng in 1982 (Deng 1993). It is used to transform several response variables into 

a single response function, which means that the multi-objective problem can be 

converted into a single objective optimization system (Deng 1989). Compared with other 

mathematical statistics, the GRA technique has a proficient control on the uncertain, 

incomplete, and multiple information, and it also is unstrained by the distribution of 

mathematical theory and the sample’s capacity (Manikandan et al. 2017; Wang et al. 

2013a; Wang et al. 2016a). Grey relational analysis has been widely used for comparing 

variety, evaluating yield and quality, and screening a diverse set of resources over recent 

years (Li 2001; Li et al. 2001; Niu et al. 2017; Yang et al. 2017; Jiang et al. 2018). 

There are currently few reports regarding an evaluation of agricultural residues 

for energy utilization using grey relational analysis. Given this, the aims of this paper 

were three-fold: (1) to select the agricultural residues in China and characterize them; (2) 

to develop a systematic indicator of agricultural residues for energy utilization in China; 

and (3) to present a GRA method to analyze and evaluate the potential of agricultural 

residues as feedstock for energy utilization in China. It is hoped that the results presented 

here will provide a theoretical basis and basic data for the government to formulate and 

implement relevant policies or strategies of straw energy utilization. Meanwhile, the 

biomass energy utilization potential evaluation method established in this study will also 

provide a reference method and basis for other countries or regions to evaluate biomass 

resources and energy utilization potential. 

 

 
EXPERIMENTAL 
 
Materials 
China’s administrative regions  

There are 22 provinces, four municipalities, and five autonomous regions in 

Mainland China. Due to a lack of data, Hong Kong, Macao, and Taiwan will not be 

included in this analysis. Given its regional differences, Mainland China is further 

divided into the following six areas: North China, Northeast China, East China, 

Southcentral China, Southwest China, and Northwest China (Ji 2015), which is the most 
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common method dividing administrative region in China to facilitate data statistics and 

understand the quantity of straw resources in each region. 

 

Agricultural residue samples 

Agricultural residue generally refers to the residues remaining after wheat, rice, 

maize, rape, cotton, and other crops have been harvested (Wang et al. 2013b). The 

agricultural residues selected for this study are presented in Fig. 1. These residues are 

representative, and the most common types of residue with relatively large quantities, 

account for more than 90% of the total resources in China. All agricultural residues were 

collected during 2015 near the area of Chengdu, China (30.67 °N, 104.06 °E). All residue 

samples were stored at room temperature to allow for natural drying until constant 

weights were recorded. The dried biomass samples were ground to a particle size of 1 to 

3 mm using a pulverizer and then passed through a standard testing sieve (aperture size, 

1.40 mm).   

 

Major Agricultural Crops

Grain Crops Oil CropsCotton Sugar Crops Hemp
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Fig. 1. Major agricultural residues used in this study 

 

Methods 
Total output of agricultural residues in China  

There are no direct statistics regarding the total output of agricultural residues in 

China, but it can be estimated from the ratio of crop residue to crop yield, namely 

residue-to-grain ratio (Table 1) (Ji 2015). The yield of each crop in 2016 was obtained 

from the Web of China statistical yearbook (National Bureau of Statistics of China 2017). 

The total output of major agricultural residues was thus obtained using the following 

equation (Ji 2015): Output of agricultural residue (P) = Crop yield (Y) × Residue-to-grain 

ratio (I). 

 
Composition content of cellulose biomass of agricultural residue 

The contents of cellulose, hemicellulose, and lignin in selected agricultural 

residues were determined using an FIBERTEC 2010 semi-automatic fiber analyzer 

(Tecator, Tecator Kjeltec Systems, Hoganas, Sweden), operated according to the 

manufacturer’s instructions and reference (Liu et al. 2013).  
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Table 1. Residue-to-grain Ratios of Various Crops 

Major Agricultural Crop Residue-to-grain Ratio 

Grain crops Cereal Rice 1.0 

Wheat 1.17 

Corn 2.0 

Legumes Soybean 1.5 
Pea 1.5 

Broad bean 1.5 

Tubers Sweet potato 0.5 

Potato 0.71 

Cotton   2.91 

Oil crops  Peanut 1.14 

 Rape 2.87 

 Sesame 2.01 

Sugar crops  Sugarcane 0.2 
Hemp  Ramee 1.9 

 Kenaf 1.9 

 Flax 1.9 

 

Proximate analysis 

Levels of moisture, volatile matter, as well as ash and fixed carbon content were 

determined using an automatic industrial analyzer (Titen Electronic Co., Ltd., Changsha, 

China) according to the manufacturer’s instructions. Briefly, each sample was placed into 

the automatic industrial analyzer and measured in triplicate.  

 

Caloric value 

The caloric values for each agricultural residue sample were determined using an 

oxygen bomb calorimeter IKA C200 (IKA GmbH & Co. KG, Staufen, Germany), in 

accordance with the test method ASTM D5865-13 (2013). Briefly, a sample pellet of 1.0 

g was used for each analysis. A cotton thread was attached to the platinum ignition wire 

and placed in contact with the pellet. The bomb head (with sample) was then inserted into 

the bomb cylinder, and then the screw cap was screwed firmly to a solid stop. The bomb 

was filled with oxygen to a pressure of 30 bars. When the bomb was ready, it was placed 

into the calorimeter. The bomb was carefully handled to ensure that the sample was not 

disturbed. Distilled water was filled to the mark into the calorimeter. The calorimeter was 

then started and run for approximately 26 min. The measured data were displayed 

through the computer.  

 

CHNSO analysis 

The common organic elements (C, H, N, S, and O) were analyzed using a 

PerkinElmer CHNSO analyzer (PerkinElmer, Inc., Waltham, MA, USA). The sample 

(1.0 mg) was used in a tin boat assortment to determine the percentage composition of C, 

H, N, and S; the percentage of O was determined by means of the difference of C, H, N, 

and S. 

 

Grey relational analysis method 

According to the method of GRA, 11 agricultural residues were regarded as a 

grey system, with each agricultural residue being a grey system factor and the included 

traits being biomass, cellulose, hemicellulose, lignin, caloric value, and ash. The 

following steps were applied to determine grey relational grade (GRG) values: 

 

Suppose there was an i data sequence that forms the following matrix: 
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where k is the sample of the indicator and n is the evaluation object. 

 

Step 1: Determine the reference sequence. 

The reference sequence should be an ideal comparison standard, so it is necessary 

to determine the corresponding traits for the “ideal species” (X0). Generally, energy 

production requires lignocellulosic materials with higher biomass, cellulose, 

hemicellulose, caloric value, and lower lignin and ash, so six factors for the ideal 

agricultural residue are given the optimal value (best or worst). Other reference data may 

be used that are based on the evaluation target (Luo et al. 2015; Wang et al. 2016b). It is 

defined as:  

 

Step 2: Normalize the raw data. 

The raw data must be processed into quantitative indices prior to GRA. Thus, 

normalizing the raw data from zero to one is indispensable. It is worth noting that a 

positive indicator occurs when the expected value of the data sequence conforms to the 

rule “the higher, the better”. Similarly, a negative indicator occurs when it conforms to 

the rule “the smaller, the better”. Normalizing can be achieved using Eqs. 1 and 2 

(Nelabhotla et al. 2016; Wang et al. 2016b. 

Positive indicator:  
   

   

X k - minX k' i i
X k =i

X k - minX ki imax
                                                   (1)   

Negative indicator:  
   

   
' X k X ki iX ki

X k minX ki i

max

max





                                                     (2)   

where  is the raw data sequence,  is the normalized data sequence, 

is the maximum of , and  is the minimum of the . 

 

Step 3: Individually calculate the absolute difference ( ) between each reference 

sequence and the comparison sequence using Eq. 3: 

                (3)   

 

Step 4: Confirm the specific values of M and m, 

 
 

Step 5: Calculate GRC using Eq. 4, 

                         (4) 

where β is the distinguishing coefficient . The smaller the distinguishing 

coefficient is, the greater the difference between the GRC. To this end, 0.5 is the most 

widely used and accepted value. Accordingly, the authors have used β = 0.5. 

 

Step 6: Compute the GRG ƍ using Eq. 5, 
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                       (5) 

where is the GRG that reflects the relational degree between the reference sequence 

and comparison sequence. The larger the value of GRG, the nearer the parameter is to the 

most favorable optimal setting. 

 

 

RESULTS AND DISCUSSION 
 

Total Quantity and Distribution of Major Agricultural Residues in China 
The distribution of crops is distinct in different regions of China. The reason is 

that the country has a complex physical geography and social economy. This distribution 

is an important factor for energy policy framing and efficient utilization of agricultural 

residues. Information on the total output and geographical distribution of each type of 

agricultural residue are shown in Fig. 2 and Table 2. The total output of agricultural 

residues was 941.5 million tons and ranged between 0.5 million tons (0.1%) and 439.1 

million tons (46.6%) among rice, wheat, corn, legumes, tubers, hemp, sugarcane, cotton, 

and other oil crops. Residues of grain crops, including corn (439.1 million tons, 46.6%), 

rice (207.1 million tons, 21.5%), and wheat (150.7 million tons, 16.0%) were the top 

three crop residues, accounting for 84.1% of the total selected Chinese agricultural 

residues. As shown in Fig. 2, the descending order of the total output of agricultural 

residues was: Corn (439.1 million tons, 46.6%), rice (207.1 million tons, 21.5%), wheat 

(150.7 million tons, 16.0%), rape (41.7 million tons, 4.4%), legumes (26.0 million tons, 

2.8%), sugarcane bagasse (22.8 million tons, 2.4%), peanut (19.7 million tons, 2.1%), 

tubers (16.8 million tons, 1.8%), cotton (15.4 million tons, 1.6%), sesame (1.3 million 

tons, 0.1%), and hemp (0.5 million tons, 0.1%).  

From Table 2, the total agricultural residue output ranged from 0.5 million tons 

(Tibet) to 94.0 million tons (Heilongjiang) among the 31 provinces. According to 

previously defined geographic locations, the 31 provinces were subdivided into six 

different regions. Here, the largest amount of agricultural residues came from South 

Central China (220.7 million tons, approximately 23.4%), followed by East China (205.5 

million tons, approximately 21.8%), Northeast China (195.0 million tons, approximately 

20.7%), North China (131.3 million tons, approximately 14.0%), and Southwest China 

(111.2 million tons, approximately 11.8%). The three provinces comprising the most 

abundant agricultural residues are Heilongjiang (94.0 million tons), Henan (91.4 million 

tons), and Shandong (76.3 million tons), respectively. The corn and wheat residue are the 

main constituents in Shandong and Henan, which account for about 90% and 82.6% of 

their total productions. The rice residue mainly came from Northeast (Heilongjiang, 22.6 

million tons), Central south (Jiangsu, 19.3 million tons; Jiangxi, 20.1 million tons), and 

Southwest (Hunan, 26.0 million tons; Hubei, 16.9 million tons). The lowest agricultural 

residue output was from Northwest China, which only produced 77.8 million tons 

(approximately 8.3%). This low value was likely due to the region’s sparse population 

and agriculturally degraded lands. Given the regionally rainy weather, sugarcane bagasse 

was primarily found in South Central and Southeast China. The amount of cotton straw in 

Northwest China was 10.6 million tons, accounting for 68.8% of the total output of 

cotton residue. The output of cotton residue was especially rich in the Xinjiang area and 

likely due to its special geographical location. 

During the process of energy production, economic performance is also an 

important factor in biofuel production. Yield and distribution have been considered to be 

the potential cause behind rising raw material cost because of its transportation costs. 

Thus, residues with a relatively concentrated distribution and higher yield show a better 
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potentiality in energy utilization. Moreover, transportation and harvesting factors should 

be taken into account. However, in the present study, the data on the distribution is too 

large. Therefore, it’s difficult to take these factors into full account. If the transportation 

and cost of residue are to be taken into account, more detailed regional distribution 

characteristics should be studied, such as the theoretical quantity of residues, collectable 

quantity and usable quantity of residues specific to the city, county or even town level. 

According to the characteristics and distribution of straw in each town of each county, a 

relatively concentrated straw collection center should be established in a certain area, and 

processing enterprises should be reasonably distributed. For example, a radius of 20 to 30 

km should be selected as a reasonable area.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Major Chinese agricultural residues output by crop category in 2016 (million tons) 

 

Chemical Composition of Major Agricultural Residues  
The cellulose, hemicellulose, and lignin contents of all sampled residues ranged 

from 13.2% to 50.2%, 12.5% to 27.6%, and 1.9% to 13.6%, respectively (Table 3). 

Regarding cellulose content, the rape, corn and hemp residue contained relatively high 

levels. These were followed by cotton, rice, legumes, and wheat residue. The cellulose 

content of tubers and peanut residue were relatively lower when compared with other 

sampled residues. The wheat, rice, corn residues, and sugarcane bagasse contained higher 

hemicellulose content, all of which were greater than 20%. The other residues contained 

lower hemicellulose contents (less than 20%). Because of the high degrees of 

lignification, the lignin content of hemp residue and sugarcane bagasse ranked first and 

second, respectively, followed by sesame and rape. The lignin content of rice and wheat 

residue were lower than those of other residues (1.9% and 3.4%, respectively). It is 

widely known that greater cellulose and hemicellulose content within crop residue results 

in a greater benefit to biological fermentation (Pan 2009). Meanwhile, past work has 

shown that lower lignin content in cellulosic biomass is beneficial to ethanol fermentation 

and lowering pretreatment costs (Chapple et al. 2007). Moreover, the higher lignin 

contents in agricultural residue result in a greater thermal value. However, higher lignin 

content is simultaneously bad for gasification (Thomsen et al. 2014). Among the sampled 

residues, the residues of rice, wheat, and corn showed favorable performance, as they had 

a high content of cellulose ( 30%), hemicellulose ( 20%), and low lignin content ( 

6%). 
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Ultimate Analysis of Major Agricultural Residues 
An ultimate analysis of selected agricultural residues was performed using a 

PerkinElmer (Waltham, MA, USA) CHNSO analyzer and in conjunction with the ASTM 

D5291-10 (2015) standard.  

All results are reported in Table 4; there were no marked differences in C, H, or O 

content in most samples. This finding underscored the homogeneity in crop residue 

physicochemical characteristics. All agricultural residues were mainly composed of C 

and O. It is noteworthy that hemp residue and sugarcane bagasse contained relatively 

high levels of C and H. Because of the characteristics of the element composition of the 

structural substance of plants, elements of N and S maintained a low content in all kinds 

of agricultural residues and it gently fluctuated, ranging from 0.2% to 2.4% and 0.1% to 

0.9%, respectively. The organic elemental compositions of wheat, cotton, sesame, and 

hemp residue, as well as sugarcane were nearly identical. The tubers, peanut, and 

legumes residue contained slightly higher percentages of N.  

The main components of solid fuel are C, H, O, N, and S. In particular, C, H, and 

O mainly produce CO2 and H2O through the exothermic reaction that occurs during 

combustion. Given this, C, H, and O positively contribute to the energy utilization of 

agricultural residue. High S content in biomass residue may result in sulfation and the 

release of Cl (Garcia et al. 2012; Telmo et al. 2010). Because pollution gases such as 

NOX and SOX are easily produced when burned, the N and S contents in straw biomass 

are critically important (Vassilev et al. 2012; Xiao and Liu 2012). With this in mind, the 

lower N and S content in straw biomass relative to fossil fuels would be beneficial from 

an environmental perspective. 

  

Proximate Analysis of Major Agricultural Residues 
The results of proximate composition analysis are also shown in Table 4. Both 

proximate and ultimate analyses served as the basis for a first estimation concerning 

biomass suitability for exploitation via gasification. According to Table 4, the proximate 

composition of these residues covered a wide range. However, these changes were mostly 

due to their respective moisture and ash contents. Sesame, peanut, tuber, and rape straws 

had higher moisture content (> 10.00%) when compared with those of other residues (< 

10.00%). Separating the residues from the crop product is closely linked to the moisture 

contents of agricultural residues (Werther et al. 2000).  

Significant differences were observed in moisture content of different agricultural 

residues. Generally the lowest possible moisture content is desirable. Excessive moisture 

poses problems in firing, such as reducing the combustion temperature, hindering the 

combustion of reaction products, and consequently damaging the quality of combustion 

(Chen et al. 2009).  

According to this study, the ash content of peanut residue was the highest of all 

the agricultural residues. Rice and tubers had the next highest ash content, while 

sugarcane bagasse, cotton, and rape residue had the lowest (< 5.00%). Ash is composed 

of inorganic and mineral elements that crops absorb from the soil, and its content are 

closely related to combustion characteristics of residue. Leaves generally contain more 

mineral elements and ash than stalks and other organs, almost twice as much as stalks, so 

the high ash content in peanuts, rice and tubers residue may be due to the relatively large 

number of leaves.  

It is well known that the presence of ash, especially at high levels, can adversely 

affect certain processes, such as incineration to generate heat and steam. For residues 

with high ash content, the ash should be handled in a timely manner as soon as the 

residues are completely burned. In the process of energy utilization, the residue with high 

ash content should be expected to a somewhat lower price. 
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Table 2. Total Output of Major Agricultural Residues in Regions of China in 2016 (10,000 tons) 

Region Rice Wheat Corn Legumes Tubers Cotton Peanut Rape Sesame Hemp Sugarcane Total 
North China 13130.42 

Beijing 0.12 10.00 86.38 0.76 0.44 0.02 0.51 0.00 0.01 0.00 0.00 98.22 

Tianjin 13.36 71.24 236.20 1.79 0.47 6.78 0.64 0.06 0.01 0.00 0.00 330.55 

Hebei 54.72 1676.90 3507.28 48.06 53.17 87.15 147.87 8.89 1.55 0.03 0.00 5585.63 

Shanxi 0.49 319.89 1777.78 55.40 24.34 3.00 1.52 2.38 0.44 0.00 0.00 2185.23 

Inner Mongolia 63.15 198.78 4279.60 180.00 84.00 0.06 5.58 119.00 0.30 0.31 0.00 4930.79 

Northeast China 19497.27 

Liaoning 484.59 2.57 2931.28 46.05 26.40 0.04 88.63 0.41 0.02 1.89 0.00 3581.88 

Jilin 654.10 0.12 5666.00 93.75 26.56 0.00 76.16 0.00 1.36 0.00 0.00 6518.04 
Heilongjiang 2255.30 33.95 6254.80 783.78 50.39 0.00 5.43 0.15 0.16 13.38 0.00 9397.35 

East China 22041.32 

Shanghai 81.81 14.15 4.18 0.75 0.05 0.10 0.22 1.99 0.03 0.00 0.11 103.38 

Jiangsu 1931.39 1309.88 467.82 108.95 16.40 21.49 41.84 268.64 3.25 0.16 1.80 4171.61 

Zhejiang 593.75 29.71 60.90 49.13 31.73 4.81 5.98 65.82 1.83 0.04 12.42 856.11 

Anhui 1401.80 1621.50 924.00 202.50 14.95 53.73 103.44 335.30 14.45 4.18 4.05 4679.89 

Fujian 471.47 0.64 43.53 36.00 65.41 0.02 32.93 5.59 0.36 0.06 7.40 663.42 

Jiangxi 2012.60 3.04 26.00 50.67 37.24 21.33 53.01 206.11 7.44 1.19 13.15 2431.78 

Shandong 88.08 2743.17 4129.90 57.56 78.58 159.54 366.57 6.60 0.25 0.08 0.00 7630.32 

South Central China 22068.99 

Henan 542.15 4055.22 3491.84 84.83 56.54 28.37 580.48 234.39 54.73 5.15 4.69 9138.38 

Hubei 1693.52 501.02 593.22 43.41 48.36 54.84 81.77 693.48 28.98 3.93 7.47 3749.99 

Hunan 2602.30 6.90 377.40 54.75 55.75 35.71 34.88 604.34 3.15 2.57 13.24 3791.00 
Guangdong 1087.06 0.35 161.92 33.38 83.61 0.00 127.60 2.55 0.95 0.04 295.86 1793.31 

Guangxi 1137.25 1.23 557.14 36.99 38.03 0.74 73.94 8.01 1.53 2.12 1492.26 3349.24 

Hainan 149.13 0.00 0.00 3.06 13.32 0.00 12.58 0.00 0.29 0.10 40.92 219.40 
Southwest China 11120.76 

Chongqing 510.55 22.98 529.37 72.56 155.70 0.00 14.03 141.18 1.32 1.41 1.94 1451.05 

Sichuan 1558.20 483.68 1586.40 158.70 265.55 2.57 78.39 692.10 0.91 9.92 9.91 4846.33 

Guizhou 430.48 69.90 648.76 52.53 150.93 0.35 12.91 259.01 0.12 0.22 23.56 1648.77 

Yunnan 671.90 104.60 1513.00 207.99 98.27 0.03 9.38 168.34 0.04 0.09 347.68 3121.32 

Tibet 0.51 26.97 5.50 2.24 0.31 0.00 0.04 17.72 0.00 0.00 0.00 53.29 
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Northwest China 7781.48 

Shaanxi 91.93 520.69 1090.78 41.46 43.25 9.84 11.86 121.66 3.22 0.14 0.03 1934.85 

Gansu 3.12 313.29 1121.12 47.09 113.04 5.79 0.51 98.24 0.00 0.69 0.00 1702.89 

Qinghai  38.68 36.14 9.03 18.17 0.00 0.00 85.01 0.00 0.00 0.00 187.03 

Ningxia 63.00 47.84 432.32 5.13 17.70 0.00 0.00 0.73 0.00 0.00 0.00 566.73 

Xinjiang 59.68 845.98 1369.74 27.89 9.47 1045.80 2.34 26.92 0.09 2.07 0.00 3389.98 

 

Table 3. Chemical Composition of Sampled Major Agricultural Residues 

Residue Content (wt%) 

Cellulose Hemicellulose Lignin 

Rice 33.40 27.00 1.90 

Wheat 31.07 27.62 3.41 
Corn 44.92 24.56 5.29 

Legumes 33.40 18.00 8.70 

Tubers 16.78 14.15 7.92 

Cotton 38.14 13.40 7.96 

Peanut 13.18 12.60 11.81 

Rape 50.20 18.85 9.46 

Sesame 25.58 12.47 11.50 

Hemp 42.20 17.80 13.60 

Sugarcane 25.68 20.22 12.32 
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Table 4. Proximate, Ultimate, and Caloric Values of Sampled Major Agricultural Residues 

Residue Proximate Analysis (wt%) Ultimate Analysis (wt%) Caloric Value (MJ/kg) 

Moisture Ash Volatile Matter Fixed Carbon C H O N S  

Rice 5.60 14.35 66.94 13.11 38.80 5.46 40.65 0.25 0.36 17.19 

Wheat 8.79 8.75 69.24 13.22 42.20 5.57 38.64 0.60 0.36 15.94 

Corn 6.30 9.50 68.88 15.32 40.66 5.59 39.80 0.22 0.42 17.50 

Legumes 7.02 6.17 70.67 16.14 40.49 5.72 41.62 1.13 0.12 15.91 

Tubers 10.60 12.50 63.11 13.79 39.00 5.63 37.46 2.39 0.10 15.32 

Cotton 7.92 3.73 71.41 16.94 44.63 5.78 43.00 0.66 0.44 15.94 

Peanut 10.72 22.71 54.75 11.82 33.56 4.95 31.55 1.54 0.65 12.60 

Rape 10.49 4.52 71.16 13.83 43.82 5.97 44.17 0.82 0.85 16.49 

Sesame 11.23 6.42 67.89 14.47 41.70 5.78 42.85 0.54 0.52 15.27 
Hemp 9.80 6.89 74.30 9.01 45.82 5.92 42.1 0.68 0.11 18.23 

Sugarcane 9.06 2.26 74.25 14.43 45.38 5.92 43.73 0.41 0.16 17.46 
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The volatile matter found in biomass commonly includes CO, CO2, moisture, 

hydrocarbon, and tars. The volatile matter contents of all the sampled residues ranged 

from 54.8% to 74.3%, of which hemp showed the highest percentage of volatile matter 

and peanut showed the lowest. The fixed carbon content of all agricultural residues were 

in the range of 9.0% to 16.9%. Cotton, legume, and corn residues contained relatively 

high levels of fixed carbon (15.3% to 16.9%). These were followed by sesame, 

sugarcane, rape, tubers, wheat, and rice residues (13.1% to 14.5%). Both hemp and 

peanut residue had the lowest fixed carbon content. The volatile matter, ash, and fixed 

carbon contents of wood are approximately 74.7% to 87.1%, 0.3% to 1.5%, and 12.4 to 

22.5%, respectively (Telmo et al. 2010; Chandrasekaran et al. 2013). The respective 

contents of coal are 28.3% to 37.0%, 7.8 to 22.5%, and 41.0% to 53.5%, respectively 

(Kim et al. 2009; Akkaya 2013). Therefore, the volatile matter content of the sampled 

agricultural residues was lower than wood, but higher than coal; the ash content was 

higher than wood, but lower than coal. Finally, the fixed carbon content of the sampled 

agricultural residues was considerably lower than that of coal.  

 

Caloric Value 
An oxygen bomb calorimeter IKA C200 was used to estimate the caloric value of 

the sampled agricultural residues. The higher the caloric value is, the bigger the potential 

for the production of bio-energy. The caloric values of the selected residues were 

between 12.6 MJ/kg and 18.2 MJ/kg. According to Table 4, hemp had a higher heating 

value than the other crops. This was followed by corn, sugarcane bagasse, and rice. 

Moreover, wheat had comparable energy content with legumes, tubers, cotton, and 

sesame. Peanut had the lowest caloric value (12.6 MJ/kg). The caloric value and the 

contents of lignin and C were positively correlated relationships. The hemp residue had 

the highest lignin and C content, which may be the reason why the hemp residue has the 

highest caloric value (Akdenize et al. 2004). In general, agricultural residue with a high 

level of caloric value would be deemed as a better raw material for bioenergy production. 

 

Evaluation of the Potential of Agricultural Residues for Energy Utilization 
Using GRA 

In the current study, the biomass, cellulose, hemicellulose, lignin, caloric value, 

and ash were used as evaluation indicators. The evaluation sequence  was set up with k 

= 6 and i = 11. The raw data based on the matrix are shown in Table 5; the indicator 

matrix was established as follows: 

 

The reference sequence was as follows: 
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Table 5. Raw Data Evaluating the Energy Potential of Sampled Agricultural 
Residues 

Residue  
Biomass 

(104 t) 
Cellulose 

(%) 
Hemicellulose 

(%) 
Lignin 
(%) 

Ash 
(%) 

Caloric Value 
(MJ/kg) 

Rice 20707.51 33.40 27.00 1.90 14.35 17.19 

Wheat 15074.87 31.07 27.62 3.41 8.75 15.94 

Corn 43910.30 44.92 24.56 5.29 9.50 17.50 

Legumes 2596.19 33.40 18.00 8.70 6.17 15.91 

Tubers 1678.13 16.78 14.15 7.92 12.50 15.32 

Cotton 1542.11 38.14 13.40 7.96 3.73 15.94 

Peanut 1971.04 13.18 12.60 11.81 22.71 12.60 

Rape 4174.62 50.20 18.85 9.46 4.52 16.49 

Sesame 126.79 25.58 12.47 11.50 6.42 15.27 

Hemp 49.77 42.20 17.80 13.60 6.89 18.23 

Sugarcane 2276.49 25.68 20.22 12.32 2.26 17.46 

 

Table 6. Normalization Processed Data 

Residue Biomass Cellulose Hemicellulose Lignin Ash Caloric Value 

X1 0.4710 0.5462 0.9591 1 0.4088 0.8153 

X2 0.3426 0.4833 1 0.8709 0.6826 0.5933 

X3 1 0.8574 0.7980 0.7103 0.6460 0.8703 

X4 0.0581 0.5462 0.3650 0.4188 0.8088 0.5879 

X5 0.0371 0.0972 0.1109 0.4855 0.4993 0.4831 

X6 0.0340 0.6742 0.0614 0.4821 0.9281 0.5933 

X7 0.0438 0 0.0086 0.1530 0 0 

X8 0.0940 1 0.4211 0.3538 0.8895 0.6909 

X9 0.0018 0.3350 0 0.1795 0.7966 0.4742 

X10 0 0.7839 0.3518 0 0.7736 1 

X11 0.0508 0.3377 0.5116 0.1094 1 0.8632 

 

Table 7. Data of Absolute Difference Values 

Residue  Biomass Cellulose Hemicellulose Lignin Ash Caloric Value 

X1 0.5290 0.4538 0.0409 0 0.5912 0.1847 

X2 0.6574 0.5167 0.0000 0.1291 0.3174 0.4067 

X3 0 0.1426 0.2020 0.2897 0.3540 0.1297 

X4 0.9419 0.4538 0.6350 0.5812 0.1912 0.4121 

X5 0.9629 0.9028 0.8891 0.5145 0.5007 0.5169 

X6 0.9660 0.3258 0.9386 0.5179 0.0719 0.4067 

X7 0.9562 1 0.9914 0.8470 1 1 

X8 0.9060 0 0.5789 0.6462 0.1105 0.3091 

X9 0.9982 0.6650 1.0000 0.8205 0.2034 0.5258 

X10 1 0.2161 0.6482 1 0.2264 0 

X11 0.9492 0.6623 0.4884 0.8906 0 0.1368 
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Table 8. Grey Relational Coefficients 

Residue Biomass Cellulose Hemicellulose Lignin Ash Caloric Value 

X1 0.4859 0.5242 0.9243 1 0.4582 0.7302 

X2 0.4320 0.4918 1 0.7948 0.6117 0.5514 

X3 1 0.7781 0.7123 0.6331 0.5855 0.7941 

X4 0.3468 0.5242 0.4405 0.4625 0.7234 0.5482 

X5 0.3418 0.3564 0.3599 0.4928 0.4996 0.4917 

X6 0.3411 0.6055 0.3476 0.4912 0.8743 0.5514 

X7 0.3434 0.3333 0.3353 0.3712 0.3333 0.3333 

X8 0.3556 1 0.4634 0.4362 0.8190 0.6180 

X9 0.3337 0.4292 0.3333 0.3786 0.7108 0.4874 

X10 0.3333 0.6982 0.4355 0.3333 0.6883 1 

X11 0.3450 0.4302 0.5058 0.3596 1 0.7852 

 

The raw data are shown in Table 5. Because each influencing factor had a 

different meaning and exerted different influence, the interval value transform method 

was applied to dispose the raw data. The normalization processed data and absolute 

difference values are presented in Tables 6 and 7, respectively. The GRC and GRG were 

then calculated using Eqs. 4 and 5 to evaluate the potential for agricultural residues 

energy utilization. The values of the GRC and GRG are presented in Tables 8 and 9, 

respectively. The complex process of converting the optimization of multiple processes’ 

variables into the optimization of a single GRG was simplified. According to the theory 

of GRA, a higher GRC represents a stronger degree between the reference sequence ( ) 

and the evaluation sequence ( ). 

According to the results shown in Table 9, corn stover was the most favorable 

crop according to the grey analysis. The grey relational grades of rice and wheat were 

0.6871 and 0.6470, respectively, which were the next best agricultural residues. These 

were followed by rape, hemp, sugarcane, cotton, legumes, sesame, tubers, and peanut. 

Although each indicator of the object was not simultaneously reflected to optimize the 

grey relational grade, the grey relational grade was the optimization of the overall level of 

the evaluation object. According to these results, corn, rice, and wheat residues had the 

greatest potential for energy utilization. This finding was based on the comprehensive 

analysis of all their indicators, which showed the best performance overall.  It is know 

that there are lots of kinds of agricultural crops. The agricultural crops listed in Table 1 

are representative, which are the most common crop residues with relatively large 

quantities, accounting for more than 90% of the total resources in China. Other crop 

residues represent small portions of the total agricultural crop residues and may not be 

suitable for energy utilization. 

In GRA, experimental data must be preprocessed into quantitative indices prior to 

use in grey analysis. It’s noticeable that the original data dimensionless processing 

methods depend on the reference sequence and comparison sequence, and the values of 

correlation degree and weight depend on the number of traits, so attention should be paid 

to their consistency when carrying out correlation analysis. Meanwhile, some indicators 

cannot be described quantitatively and there is no accepted standard to determine the 

optimal value of indicators in the world, which increase the difficulty determining the 

desirable solution and subjectivity of the comprehensive result. 
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Table 9. Grey Relational Grades of Sampled Major Agricultural Residues 

Residue Rice Wheat Corn Legumes Tubers Cotton Peanut Rape Sesame Hemp Sugarcane 

GRA 0.6871 0.6470 0.7505 0.5076 0.4237 0.5352 0.3416 0.6154 0.6154 0.4455 0.5710 

Rank 2 3 1 8 10 7 11 4 9 5 6 

 

China is a large agricultural country that is rich in agricultural residues. The 

annual crop yield of China is on the rise. Whether now or in the future, the energy 

contained in Chinese agricultural residue is huge. The conversion of low-cost, 

convenient, and huge amounts of agricultural residue into high value-added energy 

resources has profound significance for solving energy exhaustion and improving the 

ecological environment. Rice, wheat, and corn are the three main crops; given this, their 

residues accounted for 84.1% of the total agricultural residues in China in 2016. Different 

residues have their own, individual way of energy utilization due to their different 

characteristics. The Chinese government has attached high importance to the 

development and utilization of biomass as an energy resource. Remarkable results using 

residues as energy have been obtained in direct combustion, as well as in biochemical 

and physicochemical conversion. This has included improved stove, biogas, gasification, 

and briquette formulations (Zeng et al. 2007). The main challenge to agricultural residues 

use as biomass energy is how to develop and manage adequate, affordable, and reliable 

energy in a sustainable manner that both fuels social and economic development and 

encourages environmental protection. Different regions in China should be developing 

residue utilization strategies based on their individual situations and regional technologies 

to improve the efficient use of stalk resources. 

 

 

CONCLUSIONS 
 

1. Data obtained from the Web of China statistical yearbook indicated that the most 

abundant agricultural residue resource in China in 2016 was cereal agricultural 

residues, which includes corn, wheat, and rice. The lowest agricultural residue yield 

was hemp. However, there existed considerable differences in regional agricultural 

residue yields due to geographical differences and farmers’ planting habits.  

2. The grey relational analysis (GRA) method is suitable for dealing with the optimum 

solution when using many variables that depend on a desired multi-performance. The 

resulting GRA revealed that the ideal agricultural residue for energy utilization was 

corn, with a grey relational grade (GRG) of 0.7505, while the worst residue for 

energy utilization was peanut residue, with a GRG of 0.3416. 

3. The results of comprehensive evaluation on agricultural residues not only provide 

scientific evidence for their use in energy production, but also provide a reference for 

the government to further implement a straw utilization strategy.  
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