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Rubberwood, which can be regarded as a natural polymer composite, 
presents many difficulties in the process of material modification. In this 
study, a convenient method was developed to impart superhydrophobicity 
to the rubberwood surface. SiO2-PS composite film was formed on 
rubberwood surface by simple short-term impregnation. The obtained 
superhydrophobic rubberwood exhibited a water contact angle (WCA) of 
~155.6° at room temperature. The superhydrophobic coating surface 
provides the abilities of self-cleaning and anti-bacteria for rubberwood. 
Combined with a small amount of 3-iodo-2-propyl-butyl carbamate (IPBC), 
the control effect of the four fungi reached 75% (Botryodiplodia 
theobromae), 100% (Trichoderma viride), 95% (Penicillium citrinum), and 
100% (Aspergillus niger), respectively. The developed method herein 
features environment-friendly raw materials, facile processing, and large-
scale fabrication. It provides a new solution for long- term timber protection 
processing. 
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INTRODUCTION 
 

The rubber tree (Hevea brasiliensis) is widely planted in subtropical regions, such 

as Thailand, Malaysia, and Indonesia, as an economic tree species (Sik et al. 2010). Rubber 

plantations account for about 18% of global forest plantations (ITTO 2009). However, the 

use of rubberwood is limited because the wood is readily deteriorated by mold fungi, decay 

fungi, and insects (Ratnasingam et al. 2012). In order to expand the application range of 

rubber wood, it is important to protect the wood from degradation, mildew, and insects. 

For instance, studies have been conducted on utilizing essential oils to provide protection 

of rubberwood against decay (Matan 2012; Jantamas et al. 2016). To protect wood from 

mold fungi, many methods have been applied to deal with mold attack. At present, the anti-

mold treatment of wood is mostly carried out together with the wood anti-degradation 

treatment, because moldy wood is often also susceptible to fungal attack. In the past, one 

such method for treating wood used chromated copper arsenate (CAA), which belongs to 

a group of inorganic waterborne preservatives. According to the relative proportions of 

metals, three CCA formulations are designated as three types A, B, and C. Though CCA 

was widely considered as the most effective wood protectant (Hingston et al. 2001), it has 

been banned all over the world due to its harm to humans and the environment (Balasoiu 

et al. 2001; Zagury et al. 2003).  
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As a substitute for CAA, the preservatives of copper as the main agent, including 

ammoniacal copper quaternary (ACQ), copper azole (CA), and copper dimethyldithio-

carbamate (CDDC), show good protective effects on wood. Copper-based preservatives 

have been widely studied (Chung et al. 2005; Ye et al. 2015). However, copper ions will 

be gradually lost during the process, which will also cause serious pollution to the 

environment. Analogously, antiseptic boron compounds have not been shown to 

significantly affect the decay resistance of wood, and they present favorable environmental 

characteristics (Nami et al. 2007). However, borates are easily leached when treated woods 

are located in a relatively high humidity environment (Baysal et al. 2006). Several 

strategies have been proposed to resolve the above leaching problem of inorganic 

preservatives (Ratajczak and Mazela 2007; Obanda et al. 2008; Thévenon et al. 2010), 

such as micronized copper (McIntyre and Freeman 2009) and boron fixative agent 

(Mohareb et al. 2011). Although a large number of organic mold inhibitors, such as 4,5-

dichloro-2-octyl-isothiazo-lone (DCOIT) (Feng et al. 2017), tebuconazole 3-iodo-2-

propyl-butyl carbamate (IPBC) (Muin and Tsunoda 2003), etc. (Sun et al. 2012), have been 

developed, they have problems of being degraded by microorganisms (Wallace et al. 

2008). Meanwhile, they could also be decomposed under high humidity conditions 

(Schultz et al. 2007). 

Wood has a strong hydrophilic nature, which not only leads to the size change of 

wood after exposure to water, but it also makes wood more susceptible to degradation by 

fungi and decay fungi (Kocaefe et al. 2015). In recent years, research on preparation of 

superhydrophobic structures has been widely carried out (Liu et al. 2015; Rao et al. 2016; 

Jia et al. 2018; Tu et al. 2018).  

The superhydrophobic interface not only has the functions of water repellency, self-

cleaning, anti-freezing, but also has certain antibacterial function. Superhydrophobic 

surfaces showing high resistance to bacterial contamination have been studied by many 

researchers (Heinonen et al. 2014; Feng et al. 2015). Superhydrophobic interfaces do not 

contain germicidal materials that destroy microorganisms. Instead, they prevent bacterial 

growth by reducing adhesion. Superhydrophobicity reduces adhesion between bacteria and 

a solid surface, making it easier to remove bacteria before they form a thick biofilm on the 

surface (Kartal et al. 2007; Zhang et al. 2013). In addition, superhydrophobic surfaces are 

found to have low protein adsorption and easy deproteinized properties (Koc et al. 2008). 

However, the existing methods of constructing hydrophobic structures are complex. In 

addition, there are no reports about the use of hydrophobic structures in conjunction with 

other antifungal agents. 

Herein, we report a simple method to fabricate mechanically durable, self-cleaning, 

and multifunctional superhydrophobic surfaces on rubberwood by impregnating the 

specimens in the PS/THF solution and SiO2/acetone emulsion (Fig. 1). Superhydrophobic 

rubberwood is fabricated by nano-/micron- composite structure, which is combined with 

organic mildew inhibitor (IPBC) to improve its mildew resistance. Hydrophobic silica 

nanoparticles were partially embedded into PS micro-protrusion to construct robust 

superhydrophobic surfaces on the wood through a simple dissolution and resolidification 

method, which improved its water repellency and anti-biodeterioration performance. In 

addition, there is a process of simulating the loss process of mold inhibitor to demonstrate 

the auxiliary role of superhydrophobic interface in preventing wood. The film prevents 

moisture from contacting the wood while reducing the loss of fungicide in order to improve 

the wood’s anti-degradation and anti-bacteria performances. 
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Fig. 1. Schematic diagram of super hydrophobic coating structure on rubber wood 

 

 

EXPERIMENTAL 
 
Materials 

Rubber wood was purchased from Dongguan Jilong timber market. 3-iodo-2-

propynyI butylcarbamabte (IPBC, MW=281.09), polystyrene (PS, MW=104.14), and nano 

fumed silica (SiO2, hydrophobic type-260, MW=60.08, ≥99.8%, particle size: 7-40 nm) 

were purchased from Aladdin Chemical Reagent Co. (Shanghai, China). Tetrahydrofuran 

(THF,≥99%) and acetone (≥99.5%) were purchased from Guangzhou chemical reagent 

factory (Guangzhou, China). 

 

Fabrication of nanocomposite surfaces on wood substrates 

Rubber wood samples (20x20x20 mm) were dipped in the IPBC-EtOH solution, 

which was stirred for 2 h at a solid/liquid (g/mL) ratio of 1:1000, for 10 min at room 

temperature and pressure. Five grams PS and 50 mL THF were mixed in a 100 mL glass 

beaker for 20 min to form a homogeneous solution. Then the wood samples were dipped 

in the pre-PS solution for 5 s and kept at room temperature for 3 h to evaporate THF. SiO2 

and acetone were stirred with a magnetic stirrer for 2 h. The emulsion was, respectively, 

divided into five different concentrations of 0.4, 0.8, 1.2, 1.6, and 2.0 wt%. The above 

wood samples were soaked in the emulsion again. Finally, the above samples were soaked 

in the emulsion for 5 s and then placed at room temperature for 3 h to obtain a nano-micro 

hierarchical structure. 

 

Characterization 

The water contact angle (WCA) on the surface was measured using a contact angle 

system OCA (Dataphysics, OCA20, Germany) at ambient temperature. The WCA was 

recorded 10 s after a droplet of deionized water (5 μL) was placed on the surface. The 

microscopic morphology of the superhydrophobic surfaces was observed using filed-

emission scanning electron microscopy (FE-SEM, Hitachi SU-70, Japan) in high vacuum 

mode at a working voltage of 2.0 kV. Prior to the observation, thin aurum films were 
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sputtered on all samples by using a low-conductivity sputtering coater (Hitachi E-1010, 

Japan) to improve conductivity. 

 

Anti-mold test 

In order to investigate the anti-mold performance of superhydrophobic rubberwood 

and the protective effect of superhydrophobic layer on IPBC, four groups of specimens, 

including control group (RW), superhydrophobic rubberwood (SRW), IPBC-treated 

rubberwood (IRW), and IPBC-treated superhydrophobic rubberwood (SIRW), were tested. 

Six wood samples of each type were used. Malt extract agar was used as the culture media 

for growing mold captured from air. Deionized water-mold solution was sprayed on the 

surface of specimens. In addition, IRW and SIRW primarily underwent a 72-h high 

humidity environment process (UVTest, ATLAS, Chicago, IL, USA), which was designed 

to spray pure water on the specimen surface for 5 min and then for the surface to be dried 

at 40 ℃ for 120 min. The proportion of the growth area of the mold on the surface of 

specimens was calculated as the criterion after 4 weeks. 

 

 

RESULTS AND DISCUSSION 
 
Hydrophobicity 

As shown in Fig. 2, the average water contact angle (WCA) of the samples treated 

with PS was 126.1°, while that of the samples treated with 0.8% SiO2-acetone emulsion 

was 149.3°. When the concentration of silica was 1.6%, the WCA reached 155.6°. 

Therefore, the solid-liquid ratio of silicon dioxide particles to acetone is the key to 

controlling the microstructure and roughness of the hydrophobic surface, which is the basis 

for obtaining adjustable water repellency of treated wood. 

 

  
Fig. 2. Variations of WCAs with silica nanoparticle contents in the acetone-SiO2 emulsion 

 

The prepared wood surface not only exhibited superhydrophobicity, but also had 

self-cleaning properties. As shown in Fig. 3, carbon-powder contaminates on the surface 

could be easily removed by dripping water onto the wood surface. When water droplets 

fell onto a slightly sloping surface, they rapidly rolled off the superhydrophobic wood 

surface because of the small sliding angle of the surface and removed surface contaminants. 
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Fig. 3. Snapshots of the self-cleaning process on the superhydrophobic wood surfaces 

 

Microstructure and Surface Morphology 
Figure 4a presents the morphology of the wood substrate after the evaporation 

process using only PS-THF solution, and the image was shot by FE-SEM. The figure shows 

that a honeycomb membrane was formed on the surface of specimen, which constitutes a 

coarse structure of micron size, after the evaporation process. The micro-scale roughness 

of the wood substrate was increased by PS-THF. The parenchyma cells were concealed by 

the PS layer (~130°), which provides a degree of hydrophobicity. The wood substrate, 

however, was not thoroughly covered due to void structure. One serious drawback of this 

structure is that there are many pores in the membrane, which are the most likely locations 

for microorganisms to hide. Hence, the less soluble solvent acetone was used to redissolve 

the PS layer fixed on rubberwood surface to form a continuous dense film. Even at higher 

magnification, it is difficult to detect structural defects in the newly formed coating surface 

(Fig. 4b).  

The contact angle of the coated rubberwood was 100°. Compared with PS-THF 

coating, this contact angle eliminates the pore structure, thereby reducing the probability 

of microbial adsorption. Although the pores of PS coating modified by acetone were 

reduced, their properties were also reduced accordingly. Therefore, nano-silica was 

embedded in PS coatings as an auxiliary, forming a new rough structure. In the process of 

acetone dissolving PS, the interface between the polymer and solvent behaved as a kind of 

viscous liquid. Thus, the silica nanoparticles added to acetone could be embedded in the 

interface overall or partially (Figs. 3c and 3d). A hierarchical structure was formed by 

reason of the partially-embedded nano-silica in relatively neater PS layer while the 

interface was resolidificated again. The addition of nanoparticles dramatically increased 

the roughness of specimens. Figures 4c and 4d show the morphology of the wood substrate 

subjected to the second dissolution-solidification using acetone. When the concentration 

of acetone-silicon suspension reached 1.6%, it can be seen that the rubberwood surface was 

covered almost completely with silica particles. This structure not only had good 

hydrophobicity, but also provided a more complete protection of the wood surface. A 

microscale obvious protuberance with multitude tiny peaks and valleys around it can be 

seen in Fig. 3d. The entire superhydrophobic layer was like a hill covered with trees, which 

provided an excellent multiple spatial structure, resulting in eminent hydrophobicity. 

Therefore, two times shaping treatment with PS-THF and silicon-acetone resulted in the 

formation of both micro- and nanohierarchical structures. Under the rough structure created 

in this study, water droplets in contact with the surface should be blocked by air retained 

in nano-grooves and particles, which prevents penetration of the water droplets into the 

wood surface. In addition, due to the absence of large-scale pores, microorganisms on the 

surface are easily carried away by water flow, making it difficult for them to reproduce and 

grow on the wood. 
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Fig. 4. FE-SEM images of (a) wood coated with PS, (b) PS-covered wood treated with acetone, 
and (c, d) modified wood with SiO2/acetone solid liquid ratio: 1.6 wt% 

 

Mechanical Durability of the Superhydrophobic Surface 
The main problem in the practical application of superhydrophobic wood is that the 

rough microstructure of the membrane is easily damaged by mechanical abrasion. 

Therefore, wear tests of super hydrophobic coatings on wood surface were carried out. As 

shown in Fig. 5a, a 500 g weight (5 kPa) was loaded on the resultant surface, facing 1500-

mesh sandpaper as an abrading surface, and moved a distance of 15 cm along the ruler, 

which was applied to test the anti-abrasion ability. Figure 5b shows the change in CAs as 

a function of abrasion cycles for the prepared wood surface. It could be seen that the CAs 

of the treated wood decreased and remained at about 130° after being abraded over and 

over again (~1 to 9 times). After many times of wear, the microstructure of the hydrophobic 

layer was destroyed. As shown in Figure 5c and 5d, the "peak" of the film was severely 

depleted by mechanical friction, and the silica particles embedded therein was also lost. As 

a result, the surface was reduced to a similar topography of the micron structure built with 

a single PS. Nevertheless, it can still provide a hydrophobic function to prevent water from 

touching the following wood. 

 

Inhibition effect of superhydrophobic rubberwood on mold 
Four kinds of molds were used in the mold proof experiment, namely 

Botryodiplodia theobromae (Fig. 6a and 6e), Trichoderma viride (Fig. 6b and 6f), 

Penicillium citrinum (Fig. 6c and 6g), and Aspergillus niger (Fig. 6d and 6h). The samples 

treated with IPBC-ethanol solution with concentration of 0.3% and 1.6% SiO2-acetone 

emulsion with concentration of 2.0% achieved the best mildew resistance, and the control 

efficacy of the four fungi reached 75%, 100%, 95%, and 100%, respectively.  
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Fig. 5. (a) the setup used to test the mechanical stability of the prepared superhydrophobic wood 
against abrasion; (b) CAs as a function of number of abrasion cycles for the superhydrophobic 
wood surfaces; (c) SEM images of the rubber wood surface after 9 abrasion cycles; (d) schematic 
diagram of the abrasion-induced damage to the membrane on the wood surface 

 

 
Fig. 6. Photograph of moldproof specimen, (a-d) RW, (e-h) SIRW 

 

Figure 7a shows the condition of the test pieces in a mold environment. It can be 

seen that the surface of the superhydrophobic specimens remain dry due to the existence 

of a hydrophobic layer, which helps prevent the continuous growth of mold. Figure 7b and 

7c show the internal conditions of the four specimens, respectively. There is no evidence 

of mold growth in the interior of SIRW (lower part of Fig. 7b). The diffusion of mold was 

inhibited on the surface of the specimen treated with IPBC only (upper part of Fig. 7b); 
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however, the mold gradually invaded the interior of the wood. This is mainly due to the 

fact that IPBC cannot enter the depth of the specimen only by soaking at normal 

temperature and pressure, and could only stay at a depth of about 6 mm. Without the 

protection of a superhydrophobic layer, organic fungicides would gradually leak out in the 

humid environment, leading to the possibility of mold invading the wood interior. 

Similarly, the specimen treated only by superhydrophobic treatment (upper part of Fig. 7c) 

also does not show a large number of mold on the surface, while a large number of mold 

appears inside. Although the superhydrophobic layer effectively inhibits the spread of mold 

on the surface, once mold spores reach the wood through the membrane, they begin to 

multiply inside. The control group (lower part of Fig. 7c) without any treatment was 

covered with mold inside and outside. 

 

  
Fig. 7. Photograph of moldproof specimen, (a) the surface image of SIRW, (b) the internal image 
of IRW and SIRW (c) the internal image of SRW and RW 

 

 
CONCLUSIONS 
 
1. Superhydrophobic films on rubberwood were prepared from polystyrene-tetrahydro-

furan (PS-THF) solution and SiO2-acetone emulsion. Rubberwood with high 

hydrophilicity was transformed into superhydrophobic material has been developed by 

forming SiO2-PS composite film on rubberwood surface by simple short-term 

impregnation. The water contact angle (WCA) of the modified rubberwood reached 

155.6°. 

2. The samples treated with 3-iodo-2-propyl-butyl carbamate (IPBC)-ethanol solution 

with concentration of 0.3% and SiO2-acetone emulsion with concentration of 2.0% 

achieved the best test results., and the control efficacy of four fungi was 75% 

(Botryodiplodia theobromae), 100% (Trichoderma viride), 95% (Penicillium 

citrinum), and 100% (Aspergillus niger), respectively.  

3. The treated rubberwood had excellent hydrophobicity, self-cleaning ability, and 

antibacterial properties, and presents broad application prospects in the field of outdoor 

wood materials. 
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