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The measurement of wood mechanical properties is important for 
engineering design and applications. This study investigated near-
infrared (NIR) spectroscopy coupled with particle filter (PF) and partial 
least-squares (PLS) methods to predict wood compression strength. 
Three structural timbers (Acer mono, birch, and toothed oak) were 
studied. The NIR spectra were collected from 900 to 1700 cm-1 and 
preprocessed by a standard normal variate transformation combined with 
Savitzky-Golay filtering. The prediction model coefficient matrix and 
standard variance were obtained by a PF iterative process, and their ratio 
was used to select the NIR feature wavelength points. A PLS prediction 
model based on NIR spectroscopy was established to predict the wood 
compression strength. Compared with the successive projection 
algorithm (SPA) and Kalman filtering (KF), the PF-PLS prediction model 
outperformed the other models in all three wood samples, resulting in a 
high correlation coefficient (r) of 0.89, 0.92, and 0.90, a low root-mean-
square error of prediction (RMSEP) of 6.30, 10.60, and 9.71, and a fast 
average detection speed of 0.28 s, 0.46 s, and 0.33 s, respectively. The 
optimal PF selection can effectively reduce the redundant information of 
the NIR matrix and improve the accuracy and efficiency of the prediction 
model. 
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INTRODUCTION 
 

Compression strength is an important mechanical indicator for structural timber. 

Qualified compression strength ensures that wood materials have a high degree of structural 

performance and reliability. The traditional method used to measure timber compression 

strength requires small, standard, flawless samples. Measurements are carried out on a 

universal testing machine according to the national standard. This approach is harsh, time-

consuming, laborious, and destructive (Tsuchikawa 2007). Moreover, it cannot meet the 

current requirements of wood processing (Rakotovololonalimanana et al. 2015).  

           Near-infrared (NIR) spectroscopy is a fast, easy, and nondestructive analysis method 

that is being used to evaluate various properties of organic materials. The wavelength range 

of the NIR spectral area is 770 to 2500 nm. The spectral response provides vibration 

information associated with functions groups comprising carbon, oxygen, and hydrogen, and 

is also related to their structural information. The NIR spectral absorption peaks of various 

molecular hydrogen groups are clearly different. These spectra allow the analyses of 

chemical, physical, and biological information associated with complex materials. In recent 

years, researchers have extensively used NIR spectroscopy to detect the mechanical properties 

of wood. For instance, Watanabe et al. (2012) used NIR spectroscopy to detect the 
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longitudinal growth strain of three Sugi green logs, based on which they constructed a partial-

least-squares (PLS) regression model. The average coefficient of determination was 0.61, and 

NIR spectroscopy was capable of evaluating the magnitude of longitudinal growth stresses 

on green logs. Schimleck et al. (2018) established a PLS regression model to predict several 

types of pine moduli of elasticity and moduli of rupture coupled with the sample raw NIR 

spectra. This model yielded a good performance and the coefficient of determination of 0.64 

to 0.81. Watanabe et al. (2014) established an ANN prediction model to predict the timber 

surface drying stress with NIR spectroscopy, which yielded a coefficient of determination of 

0.79. 

However, NIR spectra have the characteristics of “high-dimensional, overlap, 

nonlinearity, and redundancy.” In the processing and analysis of the NIR spectra, the effective 

spectral information is weak, and it can be easily drowned out by a large amount of raw 

spectral noise. Accordingly, the accuracy of modeling is reduced when redundant information 

between the spectral bands is accounted for (Watanabe et al. 2014). Various feature selection 

methods have been used to reduce the dimensions of the NIR spectra. Commonly used feature 

selection methods include the correlation coefficient method, genetic algorithm (GA), 

simulated annealing algorithm (SAA), uninformative variable elimination (UVE), and the 

successive projection algorithm (SPA). The correlation coefficient method is mainly based 

on subjective threshold selection (Bin et al. 2017). For a small sample size and high-

dimensional datasets, GA and SAA are subject to poor reliability and long operation times 

(Tripathi and Mishra 2009; Mahesh et al. 2015; Xu et al. 2016; Liang et al. 2016; Zareef et 

al. 2018). The uniformative variable elimination (UVE) is a wavelength selection algorithm 

based on partial least-squares regression coefficients, and it is used to eliminate variables that 

do not provide information (Liu et al. 2017). The successive projection analysis method 

(SPA) is a new variable extraction method. It can use vectorial projection analyses to identify 

a set of variables with minimum redundant information and minimize the collinearity between 

the variables (Liang et al. 2018).  

Particle filter is a process of approximating a probability density function by finding 

a group of random samples propagating in the state space coupled with the Successive Monte 

Carlo simulation method, and replacing integral operation with a sample mean to obtain the 

minimum variance distribution of the state of a nonlinear dynamic system (Wang and Lu 

2014). The random samples are referred to as "particles" vividly, so the algorithm is usually 

named as particle filtering. Because of the superiority of the particle filter technology in non-

linear and non-Gaussian systems, its application range is very wide, such as visual tracking, 

object location, and nuclear medical imaging (Wang et al. 2011; Rahni et al. 2011; Yin and 

Zhu 2015). In this paper, wood NIR spectra features of compression strength and spectral 

processing method was studied. The PF-PLS prediction model was established for predicting 

the compression strength of wood, and three commonly used structural timbers (Acer mono, 

birch, and toothed oak) were evaluated. During the successive PF iterations, the contribution 

rate of each NIR wavelength point was calculated. Along with the rank of contribution rate 

of each NIR wavelength point, optimal NIR spectral feature wavelength points were selected. 

The prediction model was optimized and had a high predictive accuracy. 

  

 
EXPERIMENTAL 
 
Material Preparation and Compression Strength Measurement 

Three commonly used structural timber types, i.e., Acer mono, birch, and toothed oak, 

were selected as experimental materials. Six logs of Acer mono, birch, and toothed oak were 
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collected from the Dailing Forestry Bureau in the Heilongjiang Province, China. The logs 

were 1.3 m in height, and several discs had a thickness of 50 cm. According to the GB/T1928 

(2009) standard, the discs were cut into qualified compression strength samples with the 

dimensions of 30 mm (L) × 20 mm (T) × 20 mm (R). After processing, 107 qualified Acer 

mono samples, 80 qualified birch samples, and 102 qualified toothed oak samples were 

obtained. The samples were placed in a thermostat box, and the temperature and relative 

humidity were recorded at 22 °C and at a relative humidity of 65% in an air-dry station. The 

rate of water content of the samples was maintained at 12%.  

In accordance with standard GB/T 1935 (2009), the compression strength of the 

samples was tested on a universal strength testing machine. Each sample type was randomly 

divided into a calibration set and a test set according to the ratio of 2:1. The calibration set 

was used to select the feature variables and train the prediction model. The test set was used 

to assess the testing model performance. 

 

NIR Spectral Measurements and Preprocessing 
An NIR Quest (512) spectrometer was used to measure the sample surface in the 

wavelength range of 900 to 1700 nm at 3-nm intervals. The spectral content has been used to 

analyze the properties of wood in the wavelength range of 1100 to 1700 nm (Schimleck et al. 

2003a; Todorović et al. 2015). A stable, 512-pixel, indium gallium arsenide array detector 

was located on a compact light pedestal with two-stage thermoelectric coolers and low-noise 

electronic components, and it was used to scan the surface of samples so that the errors 

attributed to improper operations could be eliminated effectively. After a 10-min preheating 

period, a calibration scan was executed on the polytetrafluoroethylene reference tile based on 

the LY/T 2053 (2012) standard. As the detector scanned the surface of the samples, the 

sample’s NIR spectral data were obtained with the software SPEC view 7.1 (Parr Instrument 

Company, Moline, IL, USA). The data were exported in Microsoft Excel software. Each 

sample was scanned 30 times, but one averaged NIR spectrum dataset was obtained. 

For reducing the negative effects in the raw NIR spectrum collecting process, this 

study used a standard normal variate transformation (SNV) and a Savitzky-Golay (SG) 

smoothing filter to preprocess the raw NIR spectrum. SNV could improve the light scattering, 

and the Savitzky-Golay (SG) smoothing filter could improve the high-frequency noise and 

the spectral baseline drift problem. The SNV process was executed as follows, 

i
i
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Z






                                         (1) 

where Xi is the original spectrum, μ is the mean value of the original spectrum, and σ is the 

standard deviation of the original spectrum. 

The SG smoothing filter utilized a polynomial approach to construct a least-squares 

fitting methodology for use in moving windows. This indicated that the total number of 

wavelength points per spectrum was D, the wavelength point sequence number was j (j=1, 2, 

..., D), the width of the moving windows was 2m+1 (-m, -m+1, ...m-1, m), and aj={a0, a1, ... 

ak} was the weight coefficient, which describe a k-order polynomial, 

0
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where λ is the point absorbance of the moving window’s NIR wavelength. 

In the moving window, the minimized error between the fitted (based on the use of 

polynomials) and the original NIR spectra was as follows, 

https://www.baidu.com/link?url=HCedX66Nbu5mPoeb140k7oDu7OROlXPLNa-PKdDpK9XySsA0Ip1kpDqX2APw0Bxc2MFLizmUYLMQEpBCNHqh8xD_blLd_lVV-9svAfeTiwIPsxVXMkBqcHVaQdMiMzIf&wd=&eqid=d2bb94a70006e4bf000000035d090a93
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where 0
ja





. The corresponding weight coefficient combination was calculated to yield the 

smallest error for windows with different sizes. 

 
Feature Wavelength Point Selection Based on PF 

The PF estimates the current state of the dynamic system by combining the previously 

estimated system state with the observed value of the system (Yang et al. 2015). In this study, 

the sample NIR spectra and the corresponding compression strength were regarded as a 

nonlinear dynamic system. The PLS was selected as the prediction model. The PLS 

coefficients matrix was regarded as the system state, while the compression strength was 

regarded as the observed value. In the iterative PF process, the coefficient matrix was 

continually updated. The coefficient matrix of the PLS was denoted as b, x as the NIR spectral 

data, and y as the corresponding compression strength value. The wood NIR spectroscopy 

compression strength dynamic system model function was denoted as follows, 

State function: bk + 1 = bk + wk                               (4) 

Observation function: yk = xkbk + vk                   (5) 

where k is the iteration number, and random signal wk and random signal vk are the process 

incentive and observation noise, respectively. 

Bn is the entire set of all the goal state sequences 
1

{ }
n

i
i

x


. Similarly, Yn represents the 

observation sequence 
1

{ }
n

n
i

Y


. Accordingly, when Yn is known, all the goal state sequence 

joint posterior distribution can be denoted as shown in Eq. 6. 

( | )n np B Y                                                             (6) 

Given that a dynamic system state changes follow to a Markov process (Yang et al. 

2016), h(bn) denoted a random function of state Bn. Accordingly, the universal mean of  h(bn) 

can be denoted as nh , while nh  represents the signal character of the goal state sequences Bn. 

Based on the Bayesian estimation, 

  [ ( )] ( ) ( | )n n n n n nh p h b h b p b Y db                      (7) 

where Ep is the desired value of the posterior distribution ( | )n np B Y . Because Bn could not be 

observed, it was not feasible to sample randomly from posterior distribution directly. 

Accordingly, a new distribution was set and denoted as the instrumental distribution. 

( | )n nq B Y                                          (8) 

where 

( | ) ( | )n n n np B Y q B Y .                                  (9) 

N statistically independent samples were randomly sampled from the instrumental 

distribution ( | )n nq B Y . The acquired sample set at time n is denoted as follows. 

( ) ,  1,2,...,i

nb i N                                  (10) 
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These samples are acquired from the initial time to time n in a step-by-step manner and 

tracked a trajectory based on every observation at each iteration. These samples are also called 

particles. We can express the important function based on Eq. 8 as follows. 

( | )
( | )

( | )

n n
n n

n n

p B Y
r B Y

q B Y
                                    (11) 

Substituting Eq. 11 in Eq. 7 leads to 

( | )
( ) ( | )

( | )
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n n n n n

n n
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q B Y
                         (12) 

Using the sampling method for the Bayesian estimator of Eq. 12, the corresponding Monte 

Carlo estimator is as follows, 
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where 
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n  denotes the importance weight and can be expressed as 
( )

( ) ( )

( )

( | )
( | ) , 1,2,...,

( | )

i
nni i

nnn i
nn

p YB
r Y i NB

q YB
                     (14) 

According to the iterations of the observed values, the weights of the particles were 

changed, the particles with large weights were retained, and the particles with minimum 

weight were eliminated. To supplement new particles, the sampling importance resampling 

(SIR) method was used to resample particles from the retained particles (Arulampalam et al. 

2002). PF reproduced particles from the remaining particles according to their weight ratio. 

At the end of the iteration, the optimal estimation of the system state at the current time was 

described according to the trajectories of the remaining particles.  

This PF-PLS prediction model allowed the estimation of the model coefficient matrix 

b and the estimation error covariance matrix P. The ratio of the model coefficient matrix and 

standard deviation of the posterior estimation error was denoted as Rpf, where 

/pfR b p                                       (15) 

A higher correlation degree of wavelength points resulted in a larger the corresponding 

weight of the model coefficient matrix b. As the standard deviation of the posterior estimation 

error p  decreases, the corresponding weights of the model coefficient matrix b become more 

accurate. According to the value of each NIR spectral feature wavelength point Rpf, ranked 

from high to low values, different numbers of wavelength points were selected and input to 

the prediction model.  

When the PLS prediction model yielded the best performance, the desired wavelength 

points were selected, and the PF-PLS prediction was established. Figure 1 shows the 

workflow of the PF-PLS prediction model for the compression strength of wood.  

 
Model Evaluation Standard 

The model’s predictive performance was assessed using several common statistical 

measures (Schimleck et al. 2003b), including the root-mean-square error of prediction 

(RMSEP) and the correlation coefficient (r). In general, a good model has high r and low 

RMSEP values. Furthermore, the detected efficiency is also of interest. The average detection 

time for each sample was also recorded. 
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Fig. 1. Flow chart of the PF-PLS prediction model 
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RESULTS AND DISCUSSION 
 

In this study, Acer mono was used as an example to introduce the method in detail, 

and the simulation environment was based on the use of dedicated hardware (Intel(R) 

Core(TM) i5-8265U CPU @ 1.60 GHz 1.8 GHz) and specific software (Matlab R2018a).  

 

Wood Compression Strength Determination 
Samples were divided into the calibration and test sets in the ratio of 2:1. The sample 

compression strengths are listed in Table 1. 

 
Table 1. Statistics of Compression Strength Based on the Calibration and Test Sets 

Sample set Quantity Maximum 
(MPa) 

Minimum 
(MPa) 

Mean 
(MPa) 

Standard 
deviations (MPa) 

Calibration set 72 96.68 25.64 78.77 9.67 

Test set 35 97.19 47.02 79.77 10.18 

 

Near-infrared Spectra of Samples and Spectral Preprocessing 
The raw NIR spectra of samples were collected in the range of 899.77 to 1720.81 nm. 

Accordingly, 512 NIR spectral wavelength points were obtained. The raw NIR spectra of 

Acer mono samples are shown in Fig. 2.  

 
 
Fig. 2. Raw NIR spectra of tested samples 

 
 
 
Fig. 3. Preprocessed spectra: (a) Pretreated by SNV, (b) preprocessing by SNV combined with the 
SG convolution smoothing filter 
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The raw NIR spectral data were preprocessed by SNV and by an SG smoothing filter. 

When the order of the SG smoothing polynomial was equal to seven, and the width of the 

window was equal to nine, the absorption peak was concentrated, and the spectrum was 

smooth. The preprocessing results are shown in Fig. 3. Based on the comparison of Figs. 2 

and 3, the light scattering weakened, and the change was more uniform after SNV processing. 

In contrast, the main absorption peaks of the spectrum were more evident, and the spectral 

profiles were smoother after SG filtering. 

 

NIR Spectral Feature Points Selected Based on PF 
After preprocessing, the 512 NIR spectral wavelength points of the calibration set 

were considered as optimized targets, and the compression strength values of the 72 Acer 

mono samples were considered as the iteration samples. The number of particles was set to 

be in the range of 5 to 80 according to the best performance of the PLS model. The variance 

of the system state noise was set to 10%, and the system measurement noise variance was set 

to 300%.  

 
 

Fig. 4. PF-PLS prediction model performance as a function of the number of particles 

 
 

Fig. 5. Feature selection result based on PF 
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feature wavelength points in the model’s establishment. Figure 4 shows that when the number 

of particles is equal to five, PF yields the best performance. Figure 5 shows the Rpf values of 

all the feature wavelength points. Table 2 lists the top 12 most important feature wavelength 

points. 

 
Table 2. Near-infrared (NIR) Feature Wavelength Points Ranked According to their 
Degree of Influence Based on Rpf 

Sequence Number Rpf NIR Feature Wavelength Points 

1 67.62 1606.17 

2 65.27 1639.27 

3 60.20 1484.04 

4 57.53 1640.84 

5 56.73 1472.88 

6 55.51 1670.70 

7 54.28 1655.00 

8 52.20 1598.27 

9 51.22 1128.11 

10 49.06 1661.28 

11 48.05 1193.02 

12 47.80 1386.52 

 

Model Establishment and Performance Comparison 
Different numbers of wavelength points were input to the PLS prediction model 

according to their pfR  values. The root-mean-square error of the prediction was used to 

evaluate the prediction performance of PLS. Figure 6 shows the variation of RMSEP as a 

function of the number of variables. When the number of variables increased, the predicted 

RMSEP values of the PLS model gradually reduced. When the number of variables was equal 

to 11, the model’s RMSEP value attained its minimum value. Thus, the top 11 wavelength 

points in Table 2 were selected as the feature wavelengths. In addition, the PF-PLS 

compression strength prediction model for Acer mono yielded RMSEP = 6.30, a correlation 

coefficient r = 0.89, and an average detection speed for each sample of 0.28 s. In Fig. 7, the 

squares mark the variable positions of the selected wavelength points. Figure 8 presents the 

fitting degree between the predicted value and the real value. 

 
 

Fig. 6. Predicted errors as a function of the number of variables based on PF-PLS 
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Fig. 7. Variable positions of the selected wavelength points 

 
 

Fig. 8. Actual and predicted values of the compressive strength of the Acer mono prediction set 
based on PF-PLS 

 

The performances of the successive projection algorithm (SPA) and Kalman filtering 

(KF) for the extraction of the NIR spectral feature wavelength points were compared for the 

tested samples. SPA aims to identity the least information variable group from the spectral 

variables, and to reduce the collinearity between the variables of the variable group. Figure 9 

shows the variation of RMSEP of the SPA-PLS model after the selection of the SPA variables 

for different numbers of feature wavelength points. When 13 variables were used, the RMSEP 

value of the SPA-PLS reached its minimum value. The SPA-PLS prediction model yielded 

RMSEP = 10.05 and r = 0.65, and an average detection speed for the samples of 8.21 s. Figure 

10 presents the fitting degree between the predicted and the real values of the SPA-PLS 

prediction model.  

KF is a recursive linear filter. In the estimation of the system state, KF assumes that 

both the system and the observation noise follow the Gauss distribution. Because the KF is 

easily calculated, it is often used in engineering practice.  
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Fig. 9. Variation of RMSEP of PLS as a function of the number of variables based on SPA 

 
 
Fig. 10. Actual and predicted values of the compressive strength of the Acer mono prediction set 
based on SPA-PLS 

 
 
Fig. 11. Variation of RMSEP of PLS as a function of the number of variables based on KF 
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Figure 11 shows the KF wavelength point selection results. Thirty-five feature 

wavelength points were selected by KF. Figure 12 shows the actual and predicted values of 

the KF-PLS prediction model. The KF-PLS model yielded RMSEP = 9.70, r = 0.76, and an 

average detection speed for the samples of 0.40 s. 

 
 

Fig. 12. Actual value and predicted values of the compressive strength of the Acer mono prediction 
set based on KF-PLS 

 

Table 3 lists the outcomes of the three aforementioned feature wavelength point 

methods and their effects on the PLS prediction models. Similarly, Tables 4 and 5 list the 

comparison outcomes for the compression strengths of the birch and toothed oak samples 

according to the predictive performance of the PLS model based on the three feature 

wavelength-point selection method. 

 

Table 3. Comparison of Prediction Performances of Different PLS Models for the 
Compression Strength of Acer mono 

Method Number of variables RMSEP r Per sample average detection time/s 

SPA-PLS 13 10.05 0.65 8.21 

KF-PLS 35 9.70 0.76 0.40 

PF-PLS 11 6.30 0.89 0.28 

 

Table 4. Comparison of Different Birch Compression Strengths Based on the 
Prediction Performance of the PLS Model 

Method  Number of variables RMSEP r Per sample average detecting time/s 

SPA-PLS 10 12.12 0.66 7.65 

KF-PLS 26 11.35 0.81 0.73 

PF-PLS 16 10.60 0.92 0.46 

 

Table 5. Comparisons of Different Toothed Oak Compression Strengths Based on 
the Predictive Performance of the PLS Model 

Method  Number of variables RMSEP r Per sample average detecting time/s 

SPA-PLS 15 12.14 0.66 10.32 

KF-PLS 20 11.73 0.78 0.77 

PF-PLS 13 9.71 0.90 0.33 
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Based on the comparison of the SPA with PF and KF, the solution of the dynamic 

system optimization problem of the NIR spectral wavelength point selection process is 

efficient. The comparison of KF with PF shows that the nonlinear optimization process of PF 

is more effective in the selection of useful feature wavelength points because the distribution 

of redundant NIR wavelength points is scattered, and it does not follow the Gaussian 

distribution. The selection of NIR spectral wavelength points based on PF, and the PLS 

prediction model for the compression strength of wood yielded fast and accurate 

performances.  

 
 
CONCLUSIONS 
 
1. Since the relationship between wood compression strength and its corresponding NIR 

spectra is not a simple linear function, a nonlinear dynamic system that used partial filter 

and PLS algorithms was established to fit this relationship. The experiment results shows 

that this nonlinear algorithm could optimize the performance of the prediction model. 

2. The correlation coefficient, RMSEP and predictive time of three woods (Acer mono, birch, 

and toothed oak) by PF-PLS prediction model were 0.89, 0.92, 0.90; 6.30, 10.60, 9.71; 

and 0.28s, 0.46s, 0.33s, respectively, which shows that this PF NIR spectral feature 

wavelength points optimal selection methodology possesses a wide adaptation range in 

wood compression strength prediction.  
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