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Bio-oil upgrading via microwave-assisted pyrolysis of corncob over CaO 
and HZSM-5 mixed catalysts to promote the formation of aromatic 
hydrocarbon was investigated in this study. Results showed that with an 
increased ratio of HZSM-5 catalyst, the bio-oil yield was decreased; 
however, the proportion of aromatic hydrocarbons increased at first and 
then decreased. The maximum proportion of aromatic hydrocarbons was 
35.8%, which was obtained with an optimal ratio of CaO to HZSM-5 of 1:2. 
This study showed the effects of CaO and HZSM-5 mixed catalysts under 
microwave-assisted pyrolysis in terms of improving the formation of 
aromatic hydrocarbons in bio-oil. 
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INTRODUCTION 
 

Considering its prominent contribution to reducing the dependence on fossil fuels 

and decreasing serious environmental effects, biomass is one of the most promising 

alternatives. It is the only renewable and clean energy source that can be converted into 

several types of fuels, such as bio-oil, char, and gas (Wang et al. 2016). Fast pyrolysis is 

considered as one of the most promising ways to utilize biomass, which converts the 

biomass to bio-oil (Bridgwater 2012). Bio-oil is considered to be a low quality liquid 

product due to its high oxygen content from oxygenated compounds such as carboxylic 

acids, aldehydes, and ketones, which results in acidic, corrosive, and unstable 

characteristics (Czernik and Bridgwater 2004). These disadvantages of bio-oil significantly 

restrict its applications. Catalytic pyrolysis of biomass is the most effective way to upgrade 

the bio-oil (Koike et al. 2016). During catalytic pyrolysis process, the primary pyrolysis 

organic vapors in the presence of catalysts can further react by cracking, reforming, 

isomerization, and aromatization to reduce or eliminate non-target products and increase 

selectively target products in bio-oil (Bridgwater 1994). Aromatic hydrocarbons are 

important chemical platform compounds. The production of aromatic hydrocarbon-rich 

bio-oil by catalytic pyrolysis of biomass can effectively overcome the existing 

shortcomings of bio-oil. Many kinds of catalysts have been tested for use in the fast 

pyrolysis of biomass. These catalysts include microporous (HZSM-5, LOSA-1, etc.) 

(Zhang et al. 2009, 2013; Likun et al. 2018), mesoporous (MCM-41, SBA-15, Gamma-

Al2O3, etc.) (Adam et al. 2005, 2006; Ates and Isikdag 2009), and macroporous catalysts 

(CaO, MgO, etc.) (Lin et al. 2010; Lu et al. 2010; Zhang et al. 2013, 2014). Microporous 
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zeolite catalysts, such as HZSM-5, have been widely used for the catalytic upgrading of 

pyrolysis bio-oil due to its deoxygenating capacity and its pronounced performance of 

shape selectivity for aromatics (Zhang et al. 2009; Likun et al. 2018). However, 

microporous HZSM-5 catalysts are deactivated by coking, which results in lower aromatic 

product yields. On the other hand, macroporous catalysts with strong cracking 

characteristics are used in biomass pyrolysis for cracking heavy compounds. Results by 

Lin et al. (2010) showed that macroporous catalysts cracked heavy compounds into smaller 

oxygenates. However, these catalysts had no shape-selective catalytic characteristics for 

aromatic hydrocarbons. A method of using macroporous catalysts to crack the heavy 

compounds into smaller oxygenates, followed by the microporous catalyst to catalytically 

convert the small oxygenates into aromatic hydrocarbons has been proposed by Zhang et 

al. (2014). They investigated pine wood catalytic pyrolysis with two mixed catalysts (the 

microporous catalyst is ZSM-5 and the macroporous catalysts are CaO and MgO) analyzed 

using thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR) and 

pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The TG-FTIR results 

show that CaO and ZSM-5 mixed catalysts produced more aromatic rings than pure ZSM-

5. The Py-GC/MS results show that CaO and MgO mixed with ZSM-5 improved the 

aromatic yield significantly. The maximum aromatic yield that boosted 30% of that with 

pure ZSM-5 was obtained with CaO as the additive. 

Microwave irradiation heat is a novel biomass pyrolysis method (Miura et al. 2004).  

Compared with convectional heating processes where heat is transferred from the surface 

to the inside of the material through conduction driven by temperature gradient, 

microwaves irradiation heat is induced at the molecular level by direct conversion of the 

electromagnetic energy into heat (Xie et al. 2018). Therefore, microwaves pyrolysis can 

provide uniform internal heating for material particles. However, biomass is a poor 

microwave absorber. Research by Mamaeva et al. (2016), presented the concept of biomass 

fast microwave-assisted pyrolysis with microwave absorbents. Studies by Wang et al. 

(2017) and Zhou et al. (2017) showed that HZSM-5 catalyst in a microwave-assisted 

pyrolysis of biomass system significantly increased the proportion of aromatics and 

decreased the oxygen content in bio-oil. Some studies have researched the fast microwave-

assisted catalytic co-pyrolysis of biomass with CaO and HZSM-5 or ZSM-5 mixed 

catalysts. Liu et al. (2016) investigated fast microwave-assisted catalytic co-pyrolysis of 

corn stover and scum for bio-oil production with  mixed CaO and HZSM catalysts. Results 

showed that the maximum yield of aromatic hydrocarbons was obtained when co-pyrolysis 

temperature, CaO to HZSM-5 ratio, and corn stover to scum ratio were 550 °C, 1:4, and 

1:2, respectively. Zhang et al. (2017) investigated microwave-assisted catalytic fast co-

pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5 catalysts and studied 

the effects of reaction temperature and overall effective hydrogen index (EHI) of feedstock. 

Results showed that the carbon yield of petrochemicals  (aromatics + C2-C4 olefins + C5 

compounds) from co-feeding Ageratina adenophora with kerogen was higher than that of 

two feedstocks under their respective optimal reaction temperatures of  600 °C when EHI 

is at the range 0f 0.4 to 1.0. Ageratina adenophora with kerogen can facilitate aromatics 

hydrocarbons production. Additionally, it was observed that co-feeding Ageratina 

adenophora with kerogen can facilitate hydrocarbon production. However, a study on the 

microwave-assisted pyrolysis of biomass over CaO and HZSM-5 mixed catalysts to 

promote the formation of aromatic hydrocarbons has not been reported. In this study, the 

upgrading of bio-oil via microwave-assisted pyrolysis of corncob using CaO and HZSM-

5 mixed catalysts to promote the formation of aromatic hydrocarbons was investigated. 
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EXPERIMENTAL 
 
Biomass Materials and Reagents 

The corncob biomass sample was collected from the Panji District, Huainan (2008). 

The ultimate analysis of the corncob sample was determined via an elemental analyzer 

(Vario ELIII, Elementar, Langenselbold, Hesse, Germany). The caloric value of the corn 

cob was measured in an adiabatic bomb calorimeter (C6000, IKA Works Guangzhou, 

China). Table 1 shows the results of proximate and ultimate analyses of the sample.  

 
 Table 1.  Ultimate and Proximate Analysis of the Corncob Sample 

Ultimate Analysis (ad, wt%) Proximate Analysis (ad, wt%) 
Heating Value 

(ad, MJ kg−1) C H N S O Moisture Volatile Ash 
Fixed 

Carbon 

48.85 6.17 0.17 0.09 38.95 7.93 71.72 5.77 14.58 17.86 

Note: ad = air dry basis 

 
The CaO catalyst was purchased from Shanghai Jiuyi Chemical Reagent Co., Ltd., 

Nanjing, Jiangsu, China. The HZSM-5 catalyst (Si/Al = 46, Surface Area = 350 m2 g-1) 

was purchased from Nankai University Catalyst Co., Ltd., Wuqing, Tianjin, China. Prior 

to use, the catalysts were calcined in a muffle furnace at 500 °C under air atmosphere for 

5 h. The microwave absorbent, SiC, was purchased from the Shanghai Milling Material & 

Tool Co. Ltd., Shanghai, China. The particle size of the SiC was approximately 1 mm. 

 

Experimental Procedure 
A uniform mixture of 10 g of the corncob and 10 g of SiC with a particle size of 

0.5 mm to 1 mm was placed into the lower zone of the quartz reactor (13 cm height and 12 

cm inside diameter). A quartz wool was placed into the middle zone of the quartz reactor. 

The mass ratio of catalyst to biomass was maintained at a constant 1:2 in order to ensure 

complete pyrolysis of biomass. The total mass of catalyst was set at 20 g. A certain amount 

of CaO was evenly spread on the quartz wool. Then second layer of quartz wool was placed 

on the CaO layer. A certain amount of HZSM was placed on the second quartz wool layer, 

and a third quartz wool layer was placed on top of the HZSM layer. The CaO and HZSM-

5 catalysts were used at various mass ratios (CaO only, 2:1, 1:1, 1:2, and HZSM-5 only). 

Finally, the quartz reactor was placed into the microwave oven. The carrier gas (N2) with 

a flow rate of 0.5 L min-1 was introduced for 10 min and then was set to 0.3 L min-1. Then, 

the microwave oven with a maximum power of 2000 W and a frequency of 2450 MHz was 

turned on and set to 800 W. The pyrolysis reaction was ran for 12 min, then the microwave 

oven was turned off. After the microwave-assisted pyrolysis, the bio-oil was collected from 

three flasks, immersed in ice water to condense, and the solid char and SiC were separated 

via sieving based on the difference in their particle size. The bio-oil as well as the solid 

char yields were calculated from the weight of each fraction. In each experiment, the 

collected catalysts were calcined at 600 °C for 2 h under air atmosphere to obtain the yield 

of coke. The gas yield was calculated by the difference based on the mass balance. Each 

experiment was carried out at least twice in order to ensure its repeatability. The 

experimental equipment is exhibited in Fig. 1.  
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Fig. 1. Schematic diagram of the experimental apparatus: (1) N2 bottle; (2) flow meter; (3) control 
system of the microwave oven; (4) microwave oven; (5) quartz reactor; (6) catalysts; (7) condensate 
bottle; (8) ice water condenser; (9)  gas sample bag 

 

The computing formulas to determine the product yields are shown in Eq. 1, Eq. 2, 

Eq. 3, and Eq. 4, 
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where ηChar is the yield of the solid char, ηBio-oil is the yield of the bio-oil, ηCoke is the yield 

of the coke, ηGas is the yield of the gas, m0 is the weight of the biomass feedstock, m1 is the 

weight of the solid char, m2 is the weight of the bio-oil, and m3 is the weight of the coke. 

 

Bio-oil Characterization  
The analysis of the chemical components of the bio-oil product was performed 

using a gas chromatography-mass spectrometer (GC/MS-QP5050A, Shimadzu, Nakagyo-

ku, Kyoto, Japan) with a DB-5 capillary column (30 m × 0.25 mm i.d. × 0.25 μm) after 

dehydration using anhydrous sodium sulfate. Acetone was used as a solvent to dilute the 

dehydrated bio-oil. The solvent cut time was 2 min. Analytical grade Helium (99.999%) 

was employed as the carrier gas, at a flow rate of 1 mL/min-1. The initial temperature was 

set to 60 °C for 2 min, then increased to 200 °C at a heating rate of 5 °C/min-1 and held for 

5 min. After that, the temperature was raised to 280 °C at a heating rate of 10 °C/min-1 and 

held for 5 min. The injection size was 1 μL with a split ratio of 20:1. The interface 

temperature was set to 280 °C and the ion source temperature was set to 230 °C. The mass 

spectrometer was utilized for electron ionization (EI), with an ionizing energy of 70 eV 

mode and a scanning m/z range of 45 amu to 500 amu. The compounds of the bio-oil were 
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identified by comparing the respective mass spectra with those from the National Institute 

of Standards and Technology mass spectral database. A semi-quantitative method was used 

to determine the relative content of each component in the bio-oil via the calculation of the 

total ion chromatographic peak area percent. 

 

 

RESULTS AND DISCUSSION 
 

Effects of the CaO to HZSM-5 Ratio on the Product Yields 
The product yields from microwave-assisted pyrolysis with different ratios of CaO 

to HZSM-5 are given in Fig. 2. 

 
Fig. 2. Effects of the CaO to HZSM-5 ratio on the product yields 

 

The highest bio-oil yield (approximately 35 wt%) was obtained without catalyst. 

The addition of  catalysts decreased the bio-oil yield and increased the gas and coke yields, 

while the solid char yield had no major change.  Because CaO could crack the heavy 

oxygenated compounds into several light oxygenated compounds (Veses et al. 2014). As 

the microwave-assisted pyrolysis vapors passed through the CaO catalyst layer,  the heavy 

oxygenated were converted to light oxygenated compounds, which passed through the 

HZSM-5 catalyst layer and converted to light aromatic compounds, as well as light gases, 

such as CO and CO2 via catalytic cracking, deoxygenation, and aromatization reactions 

(Vichaphund et al. 2015). In terms of the product yields, the bio-oil yield decreased, and 

the yield of gas increased. However, with an increased ratio of HZSM-5, the coke yield 

decreased firstly and then increased. The coke yield coming from HZSM-5 catalyst was 

the higher compared to the other catalysts, which led to the deactivation of the HZSM-5 

catalyst due to pore blockage (Liu et al. 2016).  
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Effects of the CaO to HZSM-5 Ratio on the Bio-oil Components 
The bio-oil analyzed was a complex mixture of organic compounds. The main 

chemical compositions identified in the bio-oil mainly included alcohols, aldehydes, 

ketones, carboxylic acids, phenols, and aromatics. The main components of the bio-oil 

were classified into three groups: aromatic hydrocarbons (Aromatic H.), oxygen-

containing aliphatic compounds (Oxygen-cont. Aliphatic H.), and oxygen-containing 

aromatic compounds  (Oxygen-cont. Aromatic H.). The peak area percentages of the four 

main chemical components in the bio-oil with different CaO to HZSM-5 ratios are shown 

in Fig. 3.  

 
Fig. 3.  Effects of CaO to HZSM-5 ratio on chemical components proportion in bio-oil 

 

Bio-oil without catalyst mainly contained the oxygenated compounds (oxygen-

containing aliphatic compounds and oxygen-containing aromatic compounds), whose peak 

area percentages reached about 95%. The aromatic hydrocarbons were not detected The 

proportion of oxygen-containing compounds was reduced after the addition of the CaO 

catalyst alone, which showed that the CaO catalyst had a certain deoxygenating capacity. 

Because CaO catalyst has no shape-selective characteristics for aromatic hydrocarbons, the 

bio-oil with the CaO catalyst only did not contain aromatic hydrocarbon, while the 

proportion of oxygen-containing compounds decreased to 90%. The proportion of aromatic 

hydrocarbons increased with an increase in the ratio of HZSM-5 to CaO and reached a 

maximum value of 35.8% when the ratio of CaO to HZSM-5 was 1:2, which was 10.6% 

higher than the value with HZSM-5 only. When the ratio of HZSM-5 to CaO was further 

increased, the proportion of aromatic hydrocarbons decreased. In addition, the proportion 
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of oxygen-containing compounds decreased with the addition of the HZSM-5 catalyst and 

reached a minimum value of 46.5% when the CaO to HZSM-5 ratio was 1:2.  The reduction 

in oxygen-containing compounds has a positive effect on the quality of the bio-oil, since 

oxygen-containing compounds in the bio-oil would cause low heating value and thermal 

instability, which result in the increase of the viscosity. The peak area percents of the 

aromatic hydrocarbon are listed in Table 2. When the CaO to HZSM-5 ratio was 1:2, the 

peak area percents of benzene and toluene reached the maximum value. The xylene content 

was not  significantly changed.  

The possible reaction mechanism of the formation of aromatic hydrocarbons is as 

follows: when the pyrolysis vapors from the biomass microwave-assisted pyrolysis process 

passed through the mesoporous CaO catalyst, the heavy compounds, such as large phenols 

and anhydrosugars, were cracked into light oxygenated vapors and defused into the internal 

pores of the HZSM-5 catalyst, where they formed aromatics and olefins via a series of 

reactions such as dehydration, decarbonylation, decarboxylation, and aromatization 

reactions through the hydrocarbon pool (Zhang et al. 2017, 2018; Zheng et al. 2018; Zhu  

et al. 2018). A simplified schematic diagram of the reaction pathways of the formation of 

aromatic hydrocarbons from the microwave-assisted pyrolysis of biomass over CaO and 

HZSM-5 mixed catalysts is presented in Fig. 4.  

 

 
 
Fig. 4.  Reaction pathways of the formation of aromatic hydrocarbons from the microwave-
assisted pyrolysis of biomass over CaO and HZSM-5 mixed catalysts 
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Table 2.  Peak Area Percents of the Aromatic Hydrocarbons in Bio-oil 

Compound 
Name 

Peak Areas (%) 
CaO CaO/HZSM-5= 2:1 CaO/HZSM-5= 1:1 CaO/HZSM-5= 1:2 HZSM-5 

Benzene 0 3.4 10.9 10.6 7.9 

Toluene 0 4.5 9.1 20.2 12.8 

Xylene 0 3.9 3.4 3.3 3.8 

 

These results showed that the microwave-assisted pyrolysis of biomass over CaO 

and HZSM-5 mixed catalysts was an efficient method to increase the content of aromatic 

hydrocarbons in bio-oil while decreasing the content of oxygenated compounds for 

upgrading the bio-oil. 

 

 

CONCLUSIONS 
 

This study investigated the microwave-assisted pyrolysis of corncob over CaO and 

HZSM-5 mixed catalysts for improving the yield of aromatic hydrocarbon in bio-oil, and 

concluded the conclusions as follows:  

1. With an increased ratio of HZSM-5 to CaO, the bio-oil yield decreased, while the 

proportion of aromatic hydrocarbons increased firstly and then decreased.  

2.  The maximum content of 35.8% of aromatic hydrocarbons in bio-oil was obtained 

when the ratio of CaO to HZSM-5 was 1:2. 
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