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Methods suitable for the determination and classification of green timber 
mix (western hemlock and amabilis fir), with respect to species and 
moisture content, were developed and tested using near infrared 
spectroscopy and chemometrics. One thousand two hundred samples 
were distributed into a calibration set (720 samples) and a prediction set 
(480 samples). Partial least squares (PLS) and least squares-support 
vector machines (LS-SVM) for both regression (PLSR and LS-SVR) and 
classification (PLS-DA and LS-SVC) with different spectral preprocessing 
methods were implemented. LS-SVM outperformed PLS models for both 
regression and classification. The coefficient of determination (R2

p) and 
root mean square error (RMSEP) of prediction  for the best LS-SVR model 
with spectra pretreated by smooth and first derivative were 0.9824 and 
8.7%, respectively, for wood moisture content prediction in the range of 
30% to 253%. The best classification model was LS-SVC with spectra 
pretreated by smooth and second derivative, with overall accuracies of 
99.8% in the prediction set, when the samples were divided into four 
classes. NIRS combined with LS-SVM can be used as a rapid alternative 
method for qualitative and quantitative analysis of green hem-fir mix before 
kiln drying. The results could be helpful for sorting green hem-fir mixes 
with an on-line application. 
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INTRODUCTION 
 

Pacific Coast hemlock, commonly known as “hem-fir,” is a mixture of two species, 

namely western hemlock (Tsuga heterophylla (Raf.) Sarg.) and amabilis fir (Abies amabilis 

(Dougl.) Forbes). These two species are nearly identical in visual appearance and physical 

properties and are harvested, processed, and marketed as a species group in lumber 

packages containing both species (Teal-Jones Group 2019). Due to the high variation in 

green moisture content (Mg) and basic density (ρb), drying hem-fir timber to a uniform final 

moisture content (Mf) has been recognized by the industry as a key problem (Zhang et al. 

1996). Species- and/or moisture-based presorting aims to decrease moisture variability 

between the timber and kiln stacks, thus elevating quality, lowering Mf variation, and 

reducing drying times. It has been shown to be a viable strategy (Zhang et al. 1996; 

Avramidis et al. 2004; Shahverdi et al. 2017). Presorting based on species, moisture 

content, wood zones (heartwood and sapwood), density, or a combination of these 
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parameters is feasible (Defo et al. 2007). 

Currently, presorting based on visual, chemical, or mechanical means, such as 

green weight, density, and timber dimension, has been reported (Defo et al. 2007; McClure 

et al. 2015; Deklerck et al. 2019). Species-based presorting includes chemical colorimetric 

methods, electronic nose sensors, DNA markers, and chemical isotopes (Keppler et al. 

2007; Degen and  Fladung 2008; Dawson-Andoh and Adedipe 2012; Yang et al. 2015). 

Presorting based on Mg includes electrical resistance or capacitance, lasers, infrared 

radiation, and microwaves (Defo et al. 2007). Regardless, all options are limited to 

measuring only a few properties, and some are often laborious, time-consuming, require 

specialized personnel, or are sometimes hazardous to personnel and the environment (Defo 

et al. 2007; Dawson-Andoh and Adedipe 2012; Yang et al. 2015).  

Recently, near infrared spectroscopy (NIRS) has been used as a rapid non-

destructive technique for qualitative and quantitative analysis of wood and wood by-

products (Leblon et al. 2013; Tsuchikawa and Kobori 2015). In the field of wood species 

classification, Adedipe et al. (2008) used NIRS and soft independent modelling of class 

analogy (SIMCA) to separate red (Quercus rubra) and white oak (Quercus alba) and 

Dawson-Andoh and Adedipe (2012) used NIRS to separate balsam fir, western hemlock, 

and white spruce. Yang et al. (2012; 2015) tried to classify softwood and hardwood, and 

wood species from different locations using NIRS and partial least squares discriminant 

analysis (PLS-DA). Cooper et al. (2011) evaluated NIRS with SIMCA and PLS-DA for 

the separation of the fir from eastern and western spruce-pine-fir (SPF) mix. Sohi et al. 

(2017) successfully determined that NIRS combined with PLS-DA can be used to identify 

sub-alpine fir from SPF lumber mix in the green chain of sawmills. Lazarescu et al. (2017) 

developed models based on NIRS with PLS-DA and artificial neural networks (ANN) to 

separate western hemlock from amabilis fir. 

The NIRS has also been used to evaluate the moisture content (M) of wood. 

Hoffmeyer and Pedersen (1995) developed calibrations for the prediction of M below the 

fiber saturation point (Mfsp) in Norway spruce (Picea abies) with a coefficient of 

determination (R²) higher than 0.90. Cooper et al. (2011) predicted the M of western red 

cedar (Thuja plicata Donn ex D. Don). The prediction error for heartwood (M = 0% to 30%) 

and sapwood (M = 0% to 250%) were approximately ± 2% to 5%, and approximately ± 

30%, respectively. Karttunen et al. (2008) determined the moisture distribution of Scots 

pine (Pinus sylvestris) green logs via NIRS. The models developed by PLS were evaluated 

using root mean square error of prediction (RMSEP) and found values of 0.8% for 

heartwood and 10% for sapwood. Adedipe and Dawson-Andoh (2008) examined the 

feasibility of using NIRS to predict moisture in the range of 0.3% to 80% in yellow poplar 

(Liriodendron tulipifera L.) veneer sheets. The PLS veneer M predictive models showed 

correlation coefficients of 0.986. Defo et al. (2007) evaluated the effects of grain 

orientation on predicting the moisture content in the range of 68.4% to 99.6% in red oak 

(Quercus spp.). The spectra collected from the transverse and radial surfaces provided 

better predictions than those collected from the tangential surfaces, with an RMSEP of less 

than 3.6%. Han et al. (2013) successfully estimated the M of frozen and unfrozen logs of 

black spruce using NIRS. The PLS models showed that the range of correlation coefficients 

and RMSEP for prediction sets were 0.70 to 0.93 and 7.7% to 16%, respectively, according 

to log conditions (frozen and unfrozen), wood zones (heartwood and sapwood), and wood 

surfaces (tangential and transverse). Watanabe et al. (2010) used NIRS to detect wet-

pockets on the surface of kiln-dried western hemlock (Tsuga heterophylla). They also 

predicted the moisture content of western hemlock with M ranging from 35% to 105% and 
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subalpine fir (Abies lasiocarpa) with M ranging from 7% to 210% (Watanabe et al. 2011; 

2012). Nascimbem et al. (2013) used NIRS and chemometrics for classification of the level 

of moisture in moist wood chips. Four levels of samples with natural moisture (5%), 

sprinkling (8% to 10%), immersion in water (approximately 50% to 60%), and 

vaporization of water (approximately 70%) were prepared. A PLS-DA model was 

developed with a correct rate of 96.6% for the prediction set. 

However, there have been few reports on presorting a timber mix with respect to 

wood species and M using NIRS, which combines different chemometrics. In addition, due 

to spectral variations among wood surfaces and zones (Leblon et al. 2013), most of the 

studies mentioned acquired spectra from specific surfaces and zones. Building a mixed 

model irrespective of the surface or zone might make the model more robust and reliable. 

Moreover, the calibration methods for both classification and regression in the literature 

stated above were either based on PLS or another linear analysis (e.g., SIMCA and PCR). 

The PLS model only considers the linear relationship between the spectra and wood 

properties, whereas there might be latent nonlinear information related to wood properties. 

Only a few previous studies have sought to apply nonlinear analysis for the classification 

or prediction of the Mg.  

Herein, the objectives of this study were (1) to study the ability of NIRS to predict 

the Mg of hem-fir timber, (2) to sort green hem-fir timber into several classes with respect 

to species and moisture level, and (3) to obtain the optimal calibration models in 

comparison with spectral pretreatment methods and calibration methods (partial least 

squares analysis for regression and classification, and least squares support vector machine 

for regression and classification). 

 

 

EXPERIMENTAL 
 

Materials 
Two green bolts (1.2 m long) of western hemlock (Tsuga heterophylla (Raf.) Sarg.) 

and amabilis fir (Abies amabilis (Dougl.) Forbes) were procured from a local mill in 

Vancouver, BC, Canada. They were transformed into slabs with a Wood-Mizer sawmilling 

system (LT15; Wood-Mizer World Headquarters, Indianapolis, IN, USA) and further cut 

into smaller samples of 100 mm × 100 mm × 10 mm by a sliding table saw (T75; Martin 

Woodworking Machines Corp., Charlotte, NC, USA).  

Each sample was then sectioned into different wood zones, namely sapwood and 

heartwood, and three wood surfaces (tangential, transverse, and radial) were prepared. The 

sampling format resulted in 12 combinations (two species by two wood zones by three 

wood surfaces) and 100 replications of each combination. Therefore, a total of 1200 

samples were prepared. Thereafter, all samples were sealed in Ziploc® plastic bags and 

placed into a cold room at 3 °C to eliminate moisture losses. The samples were left to warm 

up at room temperature and weighed prior to spectra collection. 

After spectra collection, the samples were oven-dried at 102 °C for 24 h and their 

moisture content levels were gravimetrically calculated. Consequently, the Mg of the 

samples ranged from 30% to 253%, with an average of 100.2%. 

Samples of each combination were divided into two datasets according to the 

sample set partitioning based on the joint x-y distance (SPXY) algorithm (Galvão et al. 

2005). Sixty samples in each combination were used as a calibration set, and the remaining 

40 samples were used as a prediction set. Thereafter, the samples in the calibration and 
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prediction sets of each combination were merged into the final calibration (720 samples) 

and prediction (480 samples) sets. They were sorted into four classes of two Mg levels, 

namely fir with low Mg (30% to 100%) (FL), hemlock with low Mg (30% to 100%) (HL), 

fir with high Mg (100% to 260%) (FH), and hemlock with high Mg (100% to 260%) (HH), 

according to the average Mg of all the samples. 

 

Spectral Acquisition 
The NIR spectra of the wood samples were acquired by a NIR system that consisted 

of a light source, an optic fiber, a fiber spectrometer (Quality Spec® Pro; Analytical 

Spectral Devices Inc., Boulder, CO, USA), sample holder, and a computer, as shown in 

Fig. 1. The optic fiber, which was connected to the spectrometer, was oriented at 62º above 

the sample surface. The samples were illuminated with a tungsten halogen bulb (ASD Pro 

Lamp) oriented perpendicular to the sample surface. The distance between the sample 

surface and the bulb was 155 mm, resulting in NIR spot areas that were approximately 25 

mm in diameter. All samples were scanned in the wavelength range of 350 nm to 2500 nm 

at intervals of 1 nm. A piece of commercial micro-porous Teflon was chosen as the 

reference material, and the reference spectra were measured and stored prior to spectra 

collection. The spectrometer parameters’ settings, and spectra data collection and storage 

were recorded via RS3 software (Analytical Spectral Devices Inc., Boulder, CO, USA). 

Two spectra were collected from both the upper and lower surface of each sample, and 

they were averaged into a single spectrum. 
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Fig. 1. Schematic diagram of the NIRS system 

 

Multivariate Analysis 
Partial least squares regression (PLSR) and least squares-support vector machine 

for regression (LS-SVR) were utilized to construct calibration models for Mg prediction. 

Partial least squares-discriminant analysis and least squares-support vector machine for 

classification (LS-SVC) were employed to develop classification models with respect to 
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the species and Mg level. The principles of the mentioned approaches can be found 

elsewhere in the literature (Liang and Kvalheim 1996; Suykens and Vandewalle 1999). For 

PLSR and PLS-DA, leave one out cross validation was used to determine the optimum 

number of latent variables (LVs). For LS-SVR and LS-SVC, all of the 1000 variables (800 

nm to 1800 nm) were used as input, and a radial basis function (RBF) kernel was used as 

the kernel function. Gridsearch technique and leave one out cross validation were used to 

find the optimal parameter values including the regularization parameter gamma (γ) and 

the RBF kernel function parameter sig2 (σ2).  

The performance of PLSR and LS-SVR models was assessed with the coefficient 

of determination in the calibration (R2
c), the coefficient of determination in the prediction 

(R2
p), the root mean squared error of calibration (RMSEC), and the root mean squared error 

of prediction (RMSEP). The performance of PLS-LDA and LS-SVC models were 

evaluated by classification accuracy, which is defined as the percentage of the correct 

numbers to the total numbers of calibration set or prediction set. 

Prior to modelling, all spectra were preprocessed. The smoothing (SM) method of 

Savitzky-Golay with a segment size of seven and a default polynomial order of zero was 

first used to decrease the noise; then, three classical spectral methods including first 

derivative (FD), second derivative (SD), and standard normal variate transformation (SNV) 

were used to remove undesirable systematic noise (Chu et al. 2004). Both FD and SD can 

remove baseline shifts and superposed peaks (Nicolaï et al. 2007). A SNV can eliminate 

the multiplicative interferences, such as scatter, particle size, and the change of light 

distance, by correcting both additive and multiplicative scatter effects (Barnes et al. 1989). 

All algorithms were implemented with MATLAB R2010a software (MathWorks, 

Natick, MA, USA) and toolboxes including the LS-SVM toolbox (v.1.7), and PLS Toolbox 

(v.7.8) (Eigenvector Research Inc., Wenatchee, WA, USA). 

  

 
RESULTS AND DISCUSSION 
 

Moisture Content Distribution 
The statistic values of Mg based on SPXY in the calibration and prediction sets for 

each combination are presented in Table 1. Regardless of the wood surface, the Mg ranged 

between 30.1% and 59.9%, and between 30.5% and 94.7% in the heartwood of fir and 

hemlock, respectively. The Mg varied between 99.4% and 253.4%, and between 56.0% and 

158.0% in the sapwood of fir and hemlock, respectively. It was evident that the sapwood 

had a higher Mg compared to heartwood in both species. The Mg ranged from 30.1% to 

253.4%, with the average of 99.7% and standard deviation of 62.6%, in the final calibration 

set, and from 30.8% to 244.6%, with the average of 100.9% and standard deviation of 

65.5%, in the final prediction set. This indicated that both covered a large enough range. 

From Table 1, it can be observed that the moisture range of the final calibration set was 

bigger than the corresponding prediction set, and the differences between the means and 

standard deviations of the two sets were minimal. These features were helpful to develop 

good models. 

The distributions of all samples sorted according to the average Mg are shown in 

Fig. 2. The numbers of FL, FH, HL, and HH were 182, 178, 194, and 166 in the calibration 

set and 120, 120, 126, and 114 in the prediction set, respectively. The numbers in each 

class were almost evenly distributed both in the calibration and prediction sets. 
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Table 1. Mg (%) for Each Combination 

Combination 
Calibration Set Prediction Set 

Min Max Mean SD Min Max Mean SD 

FHC 30.1  41.3  35.1  2.8  30.8  40.4  34.7  2.6  

FHR 31.6  42.5  36.1  2.7  33.1  42.5  36.4  2.4  

FHT 32.1  59.9  43.2  9.3  32.2  58.2  39.2  7.3  

FSC 149.8  213.1  180.3  10.8  175.6  186.5  180.8  2.7  

FSR 99.4  191.7  157.7  21.5  147.4  179.8  162.1  11.1  

FST 116.5  253.4  192.3  44.2  121.8  244.6  207.3  36.2  

HHC 30.9  42.0  36.1  2.7  31.0  41.8  35.1  2.6  

HHR 30.5  63.5  44.9  9.0  31.7  58.6  41.4  9.6  

HHT 36.4  111.6  65.2  20.3  36.8  86.2  54.3  11.2  

HSC 119.1  154.9  144.6  6.3  136.1  151.7  145.3  3.4  

HSR 97.8  158.0  129.9  16.2  111.6  157.2  131.2  11.0  

HST 56.0  174.5  131.0  39.6  60.7  172.5  142.5  31.9  

Total 30.1  253.4  99.7  62.6  30.8  244.6  100.9  65.5  

Note: FHC – Heartwood transverse for amabilis fir; FHR – Heartwood radial for amabilis fir; FHT 
– Heartwood tangential for amabilis fir; FSC – Sapwood transverse for amabilis fir; FSR –
Sapwood radial for amabilis fir; FST – Sapwood tangential for amabilis fir; HHC – Heartwood 
transverse for western hemlock; HHR – Heartwood radial for western hemlock; HHT – Heartwood 
tangential for western hemlock; HSC – Sapwood transverse for western hemlock; HSR – 
Sapwood radial for western hemlock; HST – Sapwood tangential for western hemlock 
 

 
Fig. 2. Distribution of all samples sorted by Mg 

 

Spectral Characteristics 

The average preprocessed spectra of the 12 combinations of samples are shown in 

Fig. 3a to 3d. Due to stationary noise and lack of relevant information in the full range, the 

wavelength range of the spectra was reduced from 350 nm to 2500 nm to 800 nm to 1800 

nm. In the smoothed spectral curve (Fig. 3a), there were some main features of the 

absorbance spectra around 1200 nm and 1460 nm, which were related to the second 

overtone of the C-H stretching vibration in cellulose or lignin and the first overtone of O-

H stretching in cellulose, hemicellulose, and water (Mehrotra et al. 2010). The small peak 
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centered near 980 nm is attributed to the second overtone of O-H stretch in water (Brøndum 

et al. 2000). The first (Fig. 3b) and second derivative (Fig. 3c) spectra after smooth 

pretreatment not only reduced the baseline shift but also introduced considerable noise at 

the beginning and the end of the wavelength range. The great jump and drop of the curves 

in Fig. 3b to 3c was due to the slope changes of the smoothed spectra. The SNV processing 

enhanced the features and characteristics of the smoothed spectra (seen in Fig. 3d). The 

peaks and valleys were almost at the same wavelengths as the smoothed spectra. 

 

 
 

  

  
 

Fig. 3. Mean spectra for each combination with pretreatment: smooth a), smooth + first derivative 
b), smooth + second derivative c), and smooth + SNV d) 

 

Regarding the wood surface, Fig. 3a shows that the absorbance was the highest in 

the transverse surface, followed by the tangential and then radial surface for both species. 

Some researchers reported similar variations and attributed these to the degree of 

absorption and reflection of NIR by the different wood surface orientations (Defo et al. 

2007; Adedipe et al. 2008). The relatively higher absorbance of the transverse surface may 

be attributed to the presence of open tracheids and fibers. Light may pass deeper into the 

transverse surface than the tangential and radial surfaces of wood, leading to less 

reflectance (Tsuchikawa et al. 1996; Defo et al. 2007; Adedipe et al. 2008). Compared to 
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radial surfaces, the presence of rays in the tangential surface may explain the relatively 

high absorbance (Tsuchikawa et al. 1996; Defo et al. 2007). 

 Moreover, Fig. 3a also shows that the spectra collected from the sapwood had a 

higher absorbance than those from the heartwood, irrespective of wood surfaces and 

species. This may have be explained by the fact that the Mg of the sapwood is usually much 

higher than that of the heartwood for softwood species (Hans et al. 2013). Table 1 shows 

that the average Mg for the two species heartwood was lower than 65.2%, whereas that of 

sapwood was higher than 129.9%. Therefore, the higher Mg of the sapwood resulted in a 

higher NIR absorbance. 

 

Wood Moisture Prediction 

Both PLSR and LS-SVR models were established to predict wood moisture content. 

The performance of the PLSR and LS-SVR models with different pretreatments are 

presented in Table 2.  

 

Table 2. Results of Moisture Models Developed by PLSR and LS-SVR 

Model  
Method 

Pretreatment 
Latent 

 Variables 

Calibration Set  Prediction Set 

R2
c RMSEC (%) R2

p RMSEP (%) 

PLSR 

SM 18 0.9524 13.6  0.9646 12.3  

SM + FD 20 0.9620 12.2  0.9628 12.7  

SM + SD 13 0.9596 12.6  0.9597 13.2  

SM + SNV 20 0.9591 12.6  0.9684 11.6  

LS-SVR 

SM -- 0.9906 6.1  0.9810 9.0  

SM + FD -- 0.9912 5.8  0.9824 8.7  

SM + SD -- 0.9842 7.9  0.9779 9.8  

SM + SNV -- 0.9909 6.0  0.9816 8.9  

 

 
 

Fig. 4. Scatter plots of measured versus predicted Mg by LS-SVR with SM + FD pretreatment: 
calibration set a) and prediction set b) 
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From Table 2, it can be observed that although the PLSR model calculated by 

smooth and first derivative spectra showed the lowest RMSEC value (12.2%) and the 

highest R2
c (0.9620), the PLSR model calculated by smooth and SNV spectra had the best 

predictive ability, given the lowest RMSEP (11.6%) and highest R2
p (0.9684). Conversely, 

the LS-SVR model with smooth and first derivative pretreatment performed better than the 

LS-SVR models with spectra pretreated by other ways in both calibration and prediction 

sets. The R2
c, RMSEC, R2

P, and RMSEP values of the LS-SVR model with the best 

performance were 0.9912, 5.8%, 0.9824, and 8.7%, respectively. The scatterplots of the 

predicted versus reference values for moisture content prediction by the LS-SVR model 

with spectra pretreated by smooth and first derivative are shown in Fig. 4a to 4b. 

Compared to the PLSR models shown in Table 3, the prediction results obtained by 

the LS-SVR models outperformed the PLSR models for both the calibration and prediction 

sets. The reason could have been that some latent nonlinear relationships existed between 

the spectra and Mg. The PLSR models can only deal with the linear relationships between 

them, while LS-SVR models could handle certain latent nonlinear information, and the 

nonlinear information was contributed to the better performance of the LS-SVR models. 

This result (the LS-SVR model outperforming the PLS model) was in agreement with 

relevant literature on the prediction of wood parameters, such as quantitative analysis of 

the density of Chinese Fir using visible/near infrared spectroscopy (Zhu et al. 2009), 

estimation of air-dry density, microfibril angle, stiffness, tracheid coarseness, and tracheid 

wall thickness in wood radial strip samples based on near infrared diffuse reflectance 

spectra (Mora and Schimleck 2010), the determination of the modulus of elasticity of 

Fraxinus mandschurica using NIRS (Yu et al. 2018), and the detection of microfibril angle 

using NIRS (Cogdill et al. 2004). 

Simultaneously, the prediction performance by LS-SVR was also comparable with 

the following similar studies using NIRS combined with PLSR for wood moisture 

detection. Cooper et al. (2011) predicted the Mg of western red cedar (Thuja plicata Donn 

ex D. Don) sapwood (transverse surface) in a range from 0% to 250% with an RMSEP of 

30%. Karttunen et al. (2008) determined the moisture content of Scots pine logs on 

sapwood (transverse surface) in an Mg range of 110% to 160% with an RMSEP of 10%. 

Han et al. (2013) monitored the moisture content in black spruce logs according to the log 

temperature condition (frozen and/or unfrozen), wood zone (sapwood or heartwood), and 

wood surface (transverse or tangential) in a Mg range of 9.0% to 132%, the ranges of R2
p, 

RMSEP for frozen and unfrozen samples were 0.78 to 0.93, 7.7 % to 3.4%, 0.70 to 0.87, 

and 10.6% to 16%, respectively. The NIR spectrum acquired in the sources cited above 

were restricted to the specific wood zone and/or surface, which can decrease the effect of 

spectra variation among different wood zones and surfaces and benefit the building of 

prediction models. Compared with the above studies, despite samples with three types of 

wood surfaces and the use of two types of wood zones, the authors’ models seemed to have 

good accuracy. An excellent moisture content prediction with an RMSEP of 5.70% in 

western hemlock (Tsuga heterophylla (Raf.) Sarg) lumber with an Mg ranging from 35% 

to 105% was obtained by Watanabe et al. (2011) using 72 samples with the same wood 

types as was used in the current study. However, considering the number of species 

(hemlock and fir) and samples (1200) and large Mg range (30% to 253%) analyzed, the 

authors’ models could be considered very good. Therefore, the results indicated that near 

infrared spectroscopy combined with LS-SVR could be utilized as a good prediction 

method for the determination of wood moisture content in the green state. 
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Performance of Species- and Moisture-based Sorting of Hem-Fir Timbers 
Mix 

The PLS-DA and LS-SVC models were established to classify specimens into 

different types of groups based on species and Mg level. The overall accuracies of the PLS-

DA and LS-SVC models with different pretreatments are shown in Fig. 5.  

 

 
 

Fig. 5. Performance of sorting models developed by PLS-DA and LS-SVC based on species and 
Mg level 

 

When the samples were divided into two Mg levels, it was also observed that 

although the PLS-DA model calculated by smooth and second derivative spectra showed 

the highest overall accuracy (96.9%) in the calibration set, the PLS-DA model calculated 

by smooth and first derivative spectra had the best predictive ability given the highest 

overall accuracy (97.3%) in the prediction set.  

The LS-SVC models with smooth and first derivative pretreatment and with smooth 

and second derivative pretreatment outperformed the other LS-SVC models in the 

prediction set with an overall accuracy of 99.8%; however, the latter model showed the 

highest overall accuracy (99.6%) in the calibration set. 

Table 3 lists the classification results of the best PLS-DA and LS-SVC models. In 

both PLS-DA and LS-SVC classification, there was an overlapping classification, resulting 

in some samples not being uniquely classified, and in fact, some individual samples may 

have been classified into two or more classes. Therefore, each class has both its right and 

wrong classified number of samples presented in Table 3. The numbers of unclassified 

samples in the calibration and prediction sets for the PLS-DA model were 11 and 9, 

respectively, while there was no sample unclassified for the LS-SVC model. Moreover, 

only 3 and 1 samples were misclassified in the calibration and prediction sets, respectively. 
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Table 3. Classification Results of the Best PLSR and LS-SVR Models Based on 
Species and Mg level 

Model 
Method 

Pretreatment Class 
Calibration Set Prediction Set 

Right Wrong 
Not 

Classified 
Right Wrong 

Not 
Classified 

PLS-
DA 

SM + FD 

FL2 180 2 0 120 0 0 

FH2 175 0 3 115 1 4 

HL2 181 8 5 121 3 2 

HH2 160 3 3 111 0 3 

LS-
SVC 

SM + SD 

FL2 181 1 0 120 0 0 

FH2 178 0 0 120 0 0 

HL2 194 0 0 126 0 0 

HH2 164 2 0 113 1 0 

 

Compared to the PLS-DA model shown in Fig. 5 and Table 3, the LS-SVC models 

had a better capability than the PLS-DA models to classify samples based on wood species 

and Mg level. The probable reason might have been that the LS-SVC took advantage of the 

latent nonlinear information (wood surfaces, wood zones, etc.) of the spectra data, which 

contributed better results, whereas PLS-DA only dealt with the linear relationship between 

the spectra and the different wood species and Mg levels. Therefore, the results indicated 

that near infrared spectroscopy together with LS-SVC could be utilized as a good method 

for the classification of green hem-fir timber mix based on species and Mg level. 

 

 
CONCLUSIONS 
 

1. Near infrared spectroscopy combined with chemometrics of PLSR, LS-SVR, PLS-DA, 

and LS-SVC models was found to be an efficient technique for predicting the moisture 

content of green hem-fir timber mix and classifying green hem-fir timber mix with 

respect to species and Mg level in the wavelength range of 800 nm to 1800 nm. 

2. The LS-SVR models performed better than PLSR models for the prediction of Mg. The 

best model for Mg prediction was LS-SVR with spectra pretreated by smooth and first 

derivative. The R2
p and RMSEP were 0.9824 and 8.7%, respectively, in the Mg range 

of 30% to 253%. 

3. The LS-SVC models performed better than the PLS-DA models for the classification 

of green hem-fir timber mix. The best model for classification was LS-SVC with 

spectra pretreated by smooth and second derivative with an overall accuracy of 99.8% 

in the prediction set. 
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