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The kinetics of pyrolysis of apricot stone and its main components, i.e., 
lignin, cellulose, and hemicellulose, were investigated via distributed 
activation energy mode. Experiments were done in a thermogravimetric 

analyzer at heating rates of 10, 20, 30, and 40 K·min1 under nitrogen. The 
activation energy distribution peaks for the apricot stone, lignin, cellulose, 

and hemicellulose were centered at 246, 318, 364, and 170 kJ·mol1, 
respectively. The activation energy distribution for the apricot stone slightly 
changed; lignin exhibited the widest distribution; and cellulose exhibited 
the highest activation energy at a conversion degree (α) of less than 0.75. 
At low pyrolysis temperatures (400 K to 600 K), the pyrolysis of 
hemicellulose was the main pyrolysis reaction. The apparent activation 
energy for the apricot stone mainly depended on the pyrolysis of 
hemicellulose and a small amount of lignin, and the activation energy was 
low in the early stage of pyrolysis. With the continuous increase in the 
pyrolysis temperatures (600 K to 660 K), the thermal weight loss of 
cellulose and lignin was intense. The apparent activation energy for the 
apricot stone mainly resulted from the pyrolysis of cellulose and lignin, and 
a higher activation energy was observed in the later stage of pyrolysis.  
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INTRODUCTION 
 

With the gradual substitution of conventional fossils, increased importance has 

been placed on the production of carbon-neutral, low-emission fuels from biomass 

renewable resources, which is a significant feedstock for the renewable production of fuels 

and chemicals (Gaurav et al. 2017; Akhtar et al. 2018). As the only renewable 

carbonaceous resource, biomass demonstrates the potential to produce heat, electricity, 

fuel, chemicals, and other products, and the utilization of biomass resources has attracted 

increasing attention (Tan et al. 2019; Usman et al. 2019). 

Thermochemical conversion technology is regarded as a key technology that 

enables the conversion of biomass into high value-added chemicals and fuels. The main 

thermochemical processes include pyrolysis (Xu et al. 2019), combustion (Dorez et al. 

2014), gasification (Li et al. 2018), liquefaction (Wang et al. 2018), and carbonization (Li 

et al. 2008). Among these thermochemical pathways, pyrolysis, which involves the thermal 

decomposition of organics in the absence of oxygen, has been extensively developed as a 

promising platform to produce fuels and chemicals from various types of biomass (Cai et 
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al. 2014). Lignocellulosic biomass is mainly composed of lignin, cellulose, and 

hemicellulose (Wang et al. 2016c). Lignin is typically composed of methoxylated 

phenylpropane units, which are polymerized by monolignols (p-hydroxyphenyl, guaiacyl, 

and syringyl units), and different ether bonds and carbon–carbon bonds (Jiang et al. 2010). 

In contrast to lignin, cellulose and hemicellulose exhibit relatively simple structures, only 

containing sugar units (such as pentoses and hexoses) and glycosidic bonds (Shen et al. 

2010a).  

Due to the complexity of the biomass pyrolysis reaction, it is extremely difficult to 

describe the entire reaction process and its interaction from the perspective of a 

microscopic process (Ranzi et al. 2008; Chen et al. 2014). To obtain relatively simple 

models to guide the process design, the laws of pyrolysis are typically explained by 

epigenetic characteristics. Pyrolysis kinetics is an important method used by graduate 

students to examine the pyrolysis characteristics and mechanism of solid substances such 

as biomass (Hu et al. 2016), coal (Bhagavatula et al. 2016; Coimbra et al. 2019), and other 

solid combustibles (Bartocci et al. 2019; Song et al. 2019). Thermal analysis serves as a 

high-precision analysis method for examining reaction kinetics, reflecting the rules and 

characteristics of pyrolysis from the perspective of solid biofuels (Ma et al. 2015; Carvalho 

and Tannous 2017; Zhou et al. 2018). The Kissinger–Akahira–Sunose method (Slopiecka 

et al. 2012; Ali et al. 2018), Flynn–Wall–Ozawa method ( Damartzis et al. 2011; Carvalho 

and Tannous 2017), Kissinger method (Viottoa et al. 2018), and distributed activation 

energy mode (DAEM) method (Zhang et al. 2014; De Caprariis et al. 2015) are widely 

employed for the kinetics analysis of the pyrolysis of biomass. 

Apricot (Prunus armeniaca L.) is an important econo-ecological tree species in 

semi-arid areas of northern China, and the deep processing of its fruits affords its stone as 

the waste product, with an annual output of 400,000 to 500,000 tons. Apricot stone is an 

important raw material for preparing activated carbon (Jia et al. 2013; Yang et al. 2015; 

Marzbali et al. 2016), which is mainly composed of lignin, cellulose, hemicellulose, and 

other organic macromolecular components (Ali et al. 2011; Corbett et al. 2015). The 

chemical structures of these three components are different. The pyrolysis of apricot stone 

can be considered as the comprehensive performance of the pyrolysis reactions of the three 

components, and the pyrolysis process is relatively complex (Yang et al. 2007; Demiral 

and Kul 2014). Therefore, in the basic research of biomass pyrolysis, it is crucial to conduct 

in-depth research on the pyrolysis mechanism of raw materials and major components (Yan 

et al. 2019). Many previous studies on biomass components have been based on different 

model compounds, lignin, cellulose and hemicellulose isolated from biomass are closer to 

the natural form. In this study, the heat reaction of an apricot stone, as well as its 

components of lignin, cellulose, and hemicellulose, were examined by the DAEM, and the 

relationship between the pyrolysis activation energy and conversion degree was discussed. 

The results provided basic data and a theoretical basis for the efficient utilization of apricot 

stone biomass and research of the thermal reaction mechanism. 

 

 

EXPERIMENTAL 
 

Materials 
Apricot stone raw material 

Apricot stone was collected from the Hebei Province (China), milled, and screened 

to obtain a particle size of 100-mesh. Proximate analysis was tested according to ASTM 
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D1102-84 (2013), ASTM E872-82 (2013), ASTM E871-82 (2013). The ultimate analysis 

was performed under the C, H, N, and S models using an elemental analyzer (Vario EL III; 

Elementar, Hanau, Germany), and oxygen was estimated by the difference method: O (%) 

= 100%  C (%)  H (%)  N (%)  S (%)  Ash (%). Table 1 summarizes the results 

obtained. 

 

Table 1. Proximate and Ultimate Analyses of the Apricot Stone (Dry Basis) 

Proximate Analysis (wt%) Ultimate Analysis (wt%) 
Fixed carbon 17.41 Carbon (C) 50.66 

Ash 0.64 Nitrogen (N) 0.12 
Volatile matter 81.85 Hydrogen (H) 5.45 

Moisture 7.76 Sulfur (S) 0.08 
  Oxygen (O) 43.05 

 

The pretreated raw material of the apricot stone was extracted using a benzene–

ethanol mixture (2/1, v/v) for 6 h. Next, this extracted material was subjected to vacuum 

drying in an oven at 50 C for 12 h, followed by grinding until all of the raw material was 

screened through a 140-mesh to extract lignin, cellulose, and hemicellulose. 

 

Extraction of lignin 

A 72% sulfuric acid solution was added to the pretreated raw material and it was 

stirred sufficiently at 20 C for 2.5 h. The solution was filtered, and the filtrate liquor was 

boiled and subjected to reflux conditions with distilled water for 4 h. The liquor was left to 

stand for 30 min before filtering, and the filtered residue was repeatedly washed with hot 

water until a neutral pH was attained. The sample obtained after drying was the apricot 

stone lignin according to TAPPI T222 (2002), also referred to as Klason lignin (30.42% 

yield). 

 

Extraction of cellulose 

First, 260 mL of distilled water, 3 g of sodium chlorite, and 2 mL of acetic acid 

were added into 8 g of the pretreated raw material and subjected to oscillation twice at 75 

C for 1 h. After the reaction was completed, the reaction was immediately placed in ice 

water, followed by filtration. Then, the residue was washed with distilled water until a 

neutral pH was attained. Next, the residue was washed thrice with acetone, air-dried in a 

fume hood, and dried in a drying oven at 50 C for 12 h. The sample obtained was apricot 

stone holocellulose. 

First, 24 wt% of KOH and 2 wt% of H3BO3 at a solid–liquid ratio of 1:20 were 

added into 10 g of holocellulose, followed by vibration in a constant-temperature water 

bath at 20 C for 2 h. After the reaction was completed, it was filtered, and the residue was 

washed with distilled water until a neutral pH was attained (Stefanidis et al. 2014). The 

sample obtained after freeze-drying the residue was apricot stone cellulose (24.6% yield). 

 

Extraction of hemicellulose 

First, a 17 wt% NaOH solution was used to extract apricot stone holocellulose at 

20 C for 2 h before filtration. The filtered liquor was neutralized by 6 mol·L1 acetic acid 

until its pH was 5.5, followed by the addition of a 95 wt% ethanol solution to allow for the 

complete precipitation of hemicellulose, followed by centrifugation, filtration, and freeze-
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drying (Stefanidis et al. 2014). The sample obtained after freeze-drying the residue was 

apricot stone hemicellulose (29.4% yield). 

 

Methods 
The thermal properties of the apricot stone and its main components were examined 

using a thermal gravimetric analyzer (TGA Q5000; TA Instruments, New Castle, DE, 

USA). All samples were individually heated from room temperature to 1073 K at different 

heating rates of 10, 20, 30, and 40 K·min1. The weight of each experimental sample was 

15 mg, the carrier gas was high-purity nitrogen, and the flow rate was 70 mL·min1. 

 

Kinetic Studies 
The DAEM was first proposed in 1942 (Vand 1943), and was gradually applied for 

the pyrolysis of fossil fuels. The DAEM is applied based on the hypothesis of an infinite 

parallel reaction and activation energy distribution. It has been widely applied to the 

kinetics analysis of some complex reaction systems (Lin et al. 2018; Ren et al. 2018). 

Biomass pyrolysis comprises multiple reactions. Let the total volatilization of the i of the 

reaction be Vi
* and the volatilization amount up to time t be Vi. According to the two 

assumptions of the DAEM model, the kinetics equation of reaction i is expressed as 

follows, where k represents kinetic constant (mol·s1), A represents the pre-exponential 

factor, R represents universal gas constant (8.314 J·mol1·K1), and T is absolute 

temperature (K): 

 
d𝑉𝑖

d𝑡
=  𝑘𝑖(𝑉𝑖

∗ − 𝑉𝑖)        (1) 
 

𝑘𝑖 = 𝐴𝑖𝑒−𝐸𝑖/𝑅𝑇
        (2) 

By integrating both sides of the transformation Eq. 1, 

 
𝑉𝑖

𝑉𝑖
∗ = exp [− ∫ 𝐴𝑖𝑒

−
𝐸𝑖
𝑅𝑇]

1

0
 

       (3)

 

when the reaction number of the system is 1, the above model is a first-order model 

reaction. In fact, the composition of biomass, such as an apricot stone, is extremely 

complex, and many reactions are possible during pyrolysis. The corresponding reaction 

quantities in the DAEM model can be expressed by differential calculus; namely, dV 

replaces Vi, dV* replaces Vi
*, and dV* depends on the activation energy distribution: 

𝑑𝑉∗ = 𝑉∗𝑔(𝐸)d𝐸                                (4) 

According to the above equation, the distributed activation energy function satisfies  

∫ 𝑔(𝐸)d𝐸 = 0
∞

0
        (5) 

The differential transformation of Eq. 4 is carried out, and Eqs. 6 and 7 are as follows: 

 d𝑉 = 𝑑𝑉∗(1 − 𝑒− ∫ 𝐴𝑖𝑒
−

𝐸𝑖
𝑅𝑇

𝑡
0 )       (6) 

 

 
𝑉𝑖

𝑉𝑖
∗ = ∫ (1 − 𝑒− ∫ 𝐴𝑖𝑒

−
𝐸𝑖
𝑅𝑇

𝑡
0 ) 𝑔(𝐸)d𝐸

∞

0
      (7) 
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Non-isothermal thermal analysis is adopted, and Eq. 8 is characterized by the mass 

fraction of the residual matter analyzed by TGA and the mass fraction of the residual matter 

at the end of pyrolysis, in which w represents the initial mass (mass%), and wf represents 

the final residual mass (mass%): 
 

𝑉∗−𝑉

𝑉∗ =
𝑤−𝑤𝑓

1−𝑤𝑓
  

       

(8) 

The Miura integral method was employed to examine the activation energy 

distribution characteristics of the apricot stone, lignin, cellulose, and hemicellulose. 

According to the Miura integral principle, the Arrhenius equation is expressed as follows: 
 

ln (
𝛽

𝑇2) = ln(
𝑘𝑅

𝐸
) − 𝑙𝑛 {− ln (1 −

𝑉𝑖

𝑉𝑖
∗)} −

𝐸

𝑅𝑇
     (9) 

 

The TGA method was employed to measure the relationship between the 

conversion degree α (V/V*) and T at different heating rates β (i.e., 10, 20, 30, and 40 

K·min1), and, by using the TGA curve data, ln(β/T2) was plotted as a function of 1/T. The 

Arrhenius line was plotted using the same α value at different heating rates through the 

Origin software (Origin, OriginLab, 8.5, Massachusetts, USA); according to the slope of 

the line, the activation energy E under the conversion rate can be calculated (Wang et al. 

2012). 

 

 

RESULTS AND DISCUSSION 
 

TGA of the Apricot Stone  
The TG and DTG curves of the apricot stone exhibited the same change trends at 

different heating rates (Fig. 1). The main pyrolysis temperature range was 475 K to 775 K, 

and the weight loss was ~76%. The heating rates were 10, 20, 30, and 40 K·min1 and the 

pyrolysis temperature was 1075 K; the pyrolysis yields of solid products were 18.4%, 

18.2%, 18.2%, and 17.1%, respectively.  

With the increase in the heating rate, the TG curves shifted to the right, indicating 

that instantaneous pyrolysis weightlessness decreased at the same pyrolysis temperature. It 

was mainly affected by the heat and mass transfer. From the DTG curves of the apricot 

stone, the pyrolysis interval consisted of two peaks. The temperatures associated with the 

first peak were 551.5 K, 564.2 K, 571.1 K, and 573.1 K, and their corresponding weight 

loss rates were 5.26 wt%·min1, 10.69 wt%·min1, 15.85 wt%·min1, and 20.22 

wt%·min1 at heating rates of 10 K·min1, 20 K·min1, 30 K·min1, and 40 K·min1, 

respectively. The temperatures associated with the second peak were 620.3 K, 630.1 K, 

635.5 K, and 638.1 K, respectively, and their corresponding weight loss rates were 7.50 

wt%·min1, 14.57 wt%·min1, 21.54 wt%·min1, and 27.76 wt%·min1 at heating rates 

of 10 K·min1, 20 K·min1, 30 K·min1, and 40 K·min1, respectively.  

As the heating rate increased, the temperature of the two positions of peaks 

increased, and the maximum weight loss rate increased dramatically (Ahmad et al. 2018; 

Saikia et al. 2018). 
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Fig. 1. TG (a) and DTG (b) curves of the apricot stone 

 

TGA of Apricot Stone Lignin 
The TG and DTG curves of the apricot stone lignin exhibited the same change 

trends at different heating rates (Fig. 2). The main pyrolysis temperature range was 

relatively wide (500 K to 1000 K), and the weight loss was 60% to 66%. The heating rates 

were 10 K·min1, 20 K·min1, 30 K·min1, and 40 K·min1; the pyrolysis temperature was 

1075 K, and the pyrolysis yields of solid products were 38.5%, 37.0%, 35.7%, and 32.2%, 

respectively. The peak temperatures corresponding to the DTG curve moved to the high-

temperature direction; the maximum weightlessness temperatures were 624.9 K, 641.5 K, 

654.2 K, and 661.1 K, and the maximum weightlessness rates were 5.33 wt%·min1, 

9.59 wt%·min1, 14.18 wt%·min1, and 20.75 wt%·min1, respectively. The maximum 

weightlessness temperatures of the apricot stone lignin were greater than those of the 

A 
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apricot stone, while the maximum weightlessness rates were lower (Shen et al. 2010b; 

Stefanidis et al. 2014). 

 

 

 
 

Fig. 2. TG (a) and DTG (b) curves of the apricot stone lignin 

 

TGA of Apricot Stone Cellulose 
A narrow pyrolysis temperature range for apricot stone cellulose (520 K to 775 K) 

was observed (Fig. 3). With the increase in the heating rate, due to the effect of heat-transfer 

hysteresis, the positions of the TG curve and maximum weight loss rate shifted to the high-

temperature side. With the increase in the heating rate from 10 K·min1 to 40 K·min1, the 

maximum weight loss temperature gradually increased from 623.17 K to 648.39 K, and the 

weight loss rate increased from 14.04 wt%·min1 to 41.11 wt%·min1. The 

macromolecule chain of apricot stone cellulose was neat, which meant that the polymer 

chains break first (Soni et al. 2015). The dissociation energy of glycosides that were 

A 
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between the adjacent ring bonds was similar, and as the initial pyrolysis temperature of 

weightlessness gradually increased, the DTG curve exhibits sharp weightlessness peaks 

(Burhenne et al. 2013). 

 

 

 
 
Fig. 3. TG (a) and DTG (b) curves of apricot stone cellulose 

 
TGA of Apricot Stone Hemicellulose 

The pyrolysis temperature range of apricot stone hemicellulose was 475 K to 700 

K (Fig. 4). With the increase in the heating rate, the starting and ending temperatures of 

each stage slightly shifted to the high-temperature side, and the main reaction interval also 

slightly increased because of the presence of side chains in the molecular structure of 

apricot stone hemicellulose, which were easily broken at lower temperature. After the 

decomposition of the side chain, the main reaction tended to be polymer-chain 

depolymerization and intramolecular dehydration condensation. The heating rates were 10 

A 

B 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Ma et al. (2020). “Kinetics of apricot stone pyrolysis,” BioResources 15(1), 1187-1204.  1195 

K·min1, 20 K·min1, 30 K·min1, and 40 K·min1, and the weight loss rate extremum 

positions were 568.7 K, 581.7 K, 587.9 K, and 592.6 K, respectively, in the DTG curve. 

These temperatures were the minimum temperatures of the maximum weight loss 

temperature for the pyrolysis of apricot stone and its components in different heating rates, 

suggesting that apricot stone hemicellulose was the most unstable component (Wang et al. 

2016b). 

 

 

 
 

Fig. 4. TG (a) and DTG (b) curves of apricot stone hemicelluloses 

A 
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Kinetics Analysis 
Arrhenius line 

The DAEM method was employed to understand the relationship between T and α 

at different temperature increase rates during pyrolysis. According to the TG curve data, ln 

(β/T2) was plotted as a function of 1/T, and the Arrhenius line was fitted with the same α 

value at different heating rates. According to the slope of the line fitting equation, the 

activation energy (E) that corresponded to the conversion rate was obtained. Figure 5 

shows the Arrhenius plots of the apricot stone, lignin, cellulose, and hemicellulose at 

heating rates of 10 K·min1, 20 K·min1, 30 K·min1, and 40 K·min1 as a function of α. 

 

 

 

A 
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Fig. 5. Arrhenius plots of ln(β/T2) as a function of 1/T at a selected α for the apricot stone (a), 
lignin (b), cellulose (c), and hemicellulose (d) 

 

The α values used for kinetics analysis were in the range of 0.10 to 0.75. Table 2 

summarizes the kinetics parameters for the pyrolysis decomposition of apricot stone, 

lignin, cellulose, and hemicellulose at distinct heating rates. The R2 data for various 

pyrolysis decomposition were in the range of 0.9080 to 0.9992, indicating that the 

mechanism models selected for kinetics analysis were reliable. 

 

C 
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Table 2. Slope and Correlation Coefficient R2 Obtained by the DEAM of the 
Apricot Stone, Lignin, Cellulose, and Hemicellulose 

Sample α Slope R2 Sample α Slope R2 
Apricot 
stone 

0.10 25188.08 0.9781 Apricot stone  
lignin 

0.10 9314.56 0.9882 

0.15 26107.14 0.9772 0.15 13299.47 0.9535 

0.20 26498.21 0.9720 0.20 12098.98 0.9751 

0.25 26737.91 0.9747 0.25 12394.21 0.9871 

0.30 27274.99 0.9744 0.30 13783.37 0.9802 

0.35 28568.38 0.9741 0.35 13822.36 0.9981 

0.40 29571.23 0.9652 0.40 14439.05 0.9947 

0.45 29474.40 0.9729 0.45 14766.21 0.9992 

0.50 29560.85 0.9707 0.50 15477.92 0.9922 

0.55 29199.44 0.9722 0.55 17190.33 0.9991 

0.60 29379.67 0.9768 0.60 19497.03 0.9902 

0.65 29141.24 0.9825 0.65 20933.2 0.9963 

0.70 28837.70 0.9863 0.70 31224.58 0.9821 

0.75 28699.90 0.9826 0.75 38189.44 0.9987 

Sample α Slope R2 Sample α Slope R2 

Apricot 
stone 

cellulose 

0.10 23578.29 0.9548 Apricot stone 
hemicellulose 

0.10 20437.28 0.9746 

0.15 20697.97 0.9914 0.15 17847.21 0.9936 

0.20 19085.91 0.9861 0.20 17657.22 0.9929 

0.25 18814.12 0.9889 0.25 17826.77 0.9958 

0.30 17354.84 0.9868 0.30 18523.23 0.9955 

0.35 17910.25 0.9854 0.35 18261.12 0.9978 

0.40 17364.68 0.9839 0.40 17954.34 0.9981 

0.45 17984.86 0.9849 0.45 17989.85 0.9968 

0.50 18094.87 0.9772 0.50 17689.76 0.9956 

0.55 17860.44 0.9750 0.55 17331.22 0.9928 

0.60 17842.76 0.9486 0.60 16922.87 0.9843 

0.65 20008.26 0.9352 0.65 15916.19 0.9735 

0.70 30778.61 0.9461 0.70 15229.85 0.9531 

0.75 43828.83 0.9080 0.75 14458.78 0.9384 

 

Pyrolysis Activation Energy 
In the DAEM, the activation energy values obtained for the apricot stone, lignin, 

cellulose, and hemicellulose were a function of α (Fig. 6). From the change in the activation 

energy for the pyrolysis of the apricot stone, the activation energy did not linearly increase 

with the progress of pyrolysis, but it increased from 209 kJ·mol1 to 245 kJ·mol1, 

representing an increase to a stable change trend (Shen et al. 2011). At an α value less than 

0.40, as α increased, the activation energy increased from 209 kJ·mol1 to the maximum of 

245.9 kJ·mol1. When α was between 0.40 and 0.60, E slightly fluctuated up and down 

near 245 kJ·mol1. At an α greater than 0.6, the activation energy slightly decreased. 

From Fig. 6, the activation energy for the pyrolysis of apricot stone lignin gradually 

increased with the progress of the reaction. At an α less than 0.55, the activation energy 

increased from 77.4 kJ·mol1 to 142.9 kJ·mol1 with the increase of α. At this stage, the 

activation energy for apricot stone lignin was less than those for the apricot stone and other 

components. At an α greater than 0.6, the activation energy suddenly increased, reaching 

317.5 kJ·mol1 at an α of 0.75 (Wang et al. 2016a). Ma et al. (2018) studied pyrolysis 

behavior of four types of lignin which were isolated from palm kernel shell with different 

severities: milled wood lignin (MWL), alkali lignin (AL), Klason lignin (KL), and 
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organosolv ethanol lignin (OEL). As the conversion rate increased from 0.1 to 0.8, the 

activation energy estimated from DAEM model of KL gradually increased from 170.8 to 

580.5 kJ·mol1. 

 

 
 

Fig. 6. Relationship of α as a function of E as estimated by the distributed activation energy 
for the apricot stone, lignin, cellulose, and hemicellulose 

 

As shown in the Fig. 6, the activation energy for the pyrolysis of apricot stone 

cellulose increased and then decreased with the pyrolysis reaction (Wang et al. 2017). At 

an α less than 0.45, the activation energy decreased from 196.0 kJ·mol1 to 144.4 kJ·mol1 

as α increased. At an α greater than 0.45, the activation energy increased from 149.5 

kJ·mol1 to the maximum of 364.4 kJ·mol1. At an α greater than 0.6, the activation energy 

suddenly increased, which was similar to the change trend observed for lignin. The 

activation energy for the pyrolysis of apricot stone cellulose at an α of 0.75 was greater 

than those observed for the apricot stone and other components. Cai et al. (2013) 

investigated the kinetic data of xylan and cellulose fitted to a distributed activation energy 

model (DAEM) where the activation energies for the pyrolysis of each reactant followed a 

Gaussian distribution. The activation energy distribution peaks were centered at 178.3 and 

210.0 kJ·mol1 for xylan and cellulose respectively. 

The activation energy for the pyrolysis of apricot stone hemicellulose exhibited a 

steady downward trend. At an α of less than 0.20, the activation energy decreased from 

171 kJ·mol1 to 148 kJ·mol1 with the increase of α. At an α between 0.20 and 0.35, the 

activation energy increased from 148 kJ·mol1 to 155 kJ·mol1. At an α greater than 0.6, 

the activation energy for the pyrolysis of apricot stone hemicellulose was less than those 

for the apricot stone and other components and then decreased to the lowest value of 120.2 

kJ·mol1 at an α of 0.75. Wang et al. (2015) investigated the distribution of activation 

energy for pyrolysis of hemicellulose polymers isolated from two agricultural straw 

samples by using a DAEM with a single Gaussian function, and obtained a mean activation 

energy of 150 kJ·mol1. 
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From the relationship between the activation energy for the pyrolysis of apricot 

stone and its components and the reaction conversion rate, α or E corresponded to the 

pyrolysis temperature. At low pyrolysis temperatures (400 K to 600 K), the pyrolysis of 

hemicellulose was the main pyrolysis reaction. With the continuous increase in the 

pyrolysis temperature (600 K to 660 K), cellulose in the raw material underwent 

considerable pyrolysis, and its activation energy was relatively high. At the start of 

pyrolysis, the activation energy for lignin was low, with the widest range of the pyrolysis 

temperature. In the early stage of pyrolysis, the apparent activation energy for the apricot 

stone mainly depended on the pyrolysis of hemicellulose and lignin; hence, the activation 

energy was low. At the later stage of pyrolysis, the apparent activation energy for the 

apricot stone mainly resulted from the pyrolysis of cellulose and lignin; hence, the 

activation energy was higher. Ren et al. (2018) studied the thermal oxidative degradation 

kinetics of peanut shell (PS) and sunflower shell (SS) by using distributed activation energy 

model (DAEM). The activation energy ranges calculated by the DAEM for the thermal 

oxidative degradation of PS and SS were 88.9 to 145.3 kJ·mol1 and 94.9 to 169.2 kJ·mol1, 

respectively. 

 

 

CONCLUSIONS 
 

1. The kinetics of the apricot stone, lignin, cellulose, and hemicellulose pyrolysis were 

analyzed from thermogravimetric data by the distributed activation energy mode. The 

correlation coefficient R2 indicated that the mechanism models selected for the kinetics 

analysis of the apricot stone and its components were reliable.  

2. The activation energy for the pyrolysis of the apricot stone was in the range from 209 

kJ·mol1 to 245 kJ·mol1. Lignin exhibited the widest range of activation energy values 

from 77.4 kJ·mol1 to 317.5 kJ·mol1. The activation energy for cellulose first 

decreased from 196.0 kJ·mol1 to 144.4 kJ·mol1 and increased to the maximum of 

364.4 kJ·mol1. The activation energy of hemicellulose exhibited a steady downward 

trend from 171 kJ·mol1 to 120.2 kJ·mol1. 
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