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This work physically, mechanically, and chemically characterized the 
composites produced from Portland CP II-E32 cement and fresh Indian 
cedar wood particles previously treated by immersion in hot and cold 
water. Density values for wood particulate composites were around 50% 
lower compared with the wood-free control treatment, from 0.88 to 1.78 
g/cm³. A larger swelling was observed for the composite material. The 
results of compressive strength and stiffness indicated that there is no 
need for particle treatment for composite production. Hot and cold water 
immersion treatments reduced the total Indian cedar wood extractives by 
33% and 42%, respectively. Optical microscopy analysis was used to 
identify adhesion failures between the cement/wood interface of the 
composite produced with fresh particles, which presented a higher 
percentage of extractives. This result indicated that the greater 
concentration of total extractives partially inhibits the matrix-matrix 
interaction reinforcement. Despite the reduction in total extractives caused 
by the treatments, this process is not necessary for the composite 
production because there is no statistical difference between the 
treatments. The values obtained for the composite indicate the possibility 
of application in sealing blocks in light construction systems. 
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INTRODUCTION 

 

Acrocarpus fraxinifolius Wight ex Arn., popularly known as Indian cedar, is a 

species of the Fabaceae family, native to tropical Asian regions such as India, Myanmar 

(Burma) and Bangladesh; it is a fast growing wood having a productivity between 30 and 

45 m3/ha.year (Prado et al. 2003). Brought to Brazil in the 1990s, the species adapted to 

Brazilian soil (Higa and Prado 1998) and has been indicated for reforestation in the 

northern regions of Paraná, the Southeast and the Midwest of Brazil (Carvalho 1998). 

This wood is currently used for construction, furniture, and caskets (Prado et al. 

2003). However, it is practically unknown in Brazil, and studies involving this species are 

still related to physical, chemical, and mechanical characterization (Venturin et al. 2014). 

The production of cement-wood composite is a possible destination for Indian cedar 

wood, since the particles used in the production can be obtained from small diameter trees 

or waste disposed in the sawmills. 

Due to the growing demand for environmentally friendly products, the use of waste 
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in composite materials has increased and presents promising and attractive technology 

(Hamouda et al. 2019). Also, the use of alternative materials as building materials 

contributes to reducing environmental impact (Wang et al. 2016). 

 The wood cement composite has properties for use in construction, for applications 

in form of sealing blocks, slabs, slab and mortar fillers (Pimentel et al. 2006; Moslemi 

1999), and as an alternative to replacement of asbestos fibers (Ashori et al. 2011; Bertolini 

et al. 2014; Silva et al. 2016, 2019). 

With the incorporation of cement, plant residues previously vulnerable to biological 

degradation and environmental weather gain strength and durability (Naghizadeh et al. 

2012; Faria et al. 2013), and the presence of air pores in wood-cement panels contributes 

to improve the thermal and acoustic insulation properties (Branco and Godinho 2013; 

Berardi and Iannace 2015; Wang et al. 2016). 

One of the main difficulties in this industry is the selectivity of the wood species 

used (Moslemi and Pfister 1987; Castro and Iwakiri 2014). Theoretically, most 

lignocellulosic products can be used as raw material for the manufacture of mineral matrix 

composites (Latorraca and Iwakiri 2001). However, some chemical substances (phenolic 

compounds, acids, and sugars) present in wood may slow and in some cases prevent cement 

solidification due to incompatibility between the matrix and the dispersed phase, causing 

the use of certain species to eventually be limited (Del Menezzi et al. 2007; Ashori et al. 

2011). 

Reforestation wood species are widely used for this purpose, mainly coniferous 

woods, due to their more compatible chemical properties, which do not affect the cure and 

hardening of ceramic material (Latorraca and Iwakiri 2001). The use of previous treatments 

performed on wood represents a way to improve its compatibility with cement and enable 

the use of certain species that have high levels of extractives (Moslemi et al. 1983; 

Latorraca and Iwakiri 2000; Fan et al. 2012). 

Treatment possibilities for wood particles include soaking in hot water for 6 h, 

soaking in cold water for 24 h, soaking in sodium or calcium hydroxide solution (Fan et al. 

2012; Castro et al. 2014), immersion of magnesium chloride solution (Frybort et al. 2008), 

and mineralization through cement coating (Frybort et al. 2008; Garcez et al. 2016). 

Additionally, there exists the possibility of using the core-shell technique which involves 

coating with nanoparticles (Libor et al. 2009; Tessaro et al. 2015). The effectiveness of 

treatments can be analyzed by possible changes in the mechanical behavior of these 

composites (Fan et al. 2012). 

In this work, the interaction between Portland cement and in natura Indian cedar 

wood particles treated by immersion in hot or cold water was analyzed by evaluating the 

effects of pretreatments on the physical, chemical, and mechanical properties of the 

composite. 

 
 
EXPERIMENTAL 
 

The wood species used in this research was the 9-year-old Indian cedar with a 

specific mass of 0.431 g/cm³. This wood was chosen for this study because it’s a fast-

growing specimen, widely available in the region of São Paulo-Brazil that still is little used 

in the country. 

The wood was chopped using a knife chipper (Model 685/5, MARCONI) and 

reduced to particle size in a hammer mill (Model 680, MARCONI). The particles were 
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classified by an electric stirrer with sieves of different openings. For the composite 

production the particles with thicknesses of 0.25 to 4 mm were used. The binder used was 

Cauê InterCement® Portland cement, type CP II E32 (São Paulo, Brazil). 

 

Wood Particle Treatment 
Two treatments were performed on the particles, according to the methodologies 

studied by Fan et al. (2012) and Castro et al. (2014), aiming at the removal of extractives 

that could inhibit cement curing: immersion in hot water and immersion in cold water.  

For the pretreatment consisting of immersion in hot water, the particles were 

submerged in distilled water at 60 °C for 6 h using a thermal bath with 3 cycles of 2 h, 

changing treatment water to wash the particles. In the pre-treatment with cold water 

immersion, the particles were submerged in cold distilled water for 24 h, and the water was 

changed every 6 h. 

After pretreatment, the particles were washed in distilled water and dried in a 

laboratory oven at 103 ± 2 °C for 24 h, reaching a moisture content of 3%. This drying was 

performed to homogenize the moisture of the particles, allowing the quantification of water 

necessary for cement hydration in the composite production.  

 

Production of Cement-Wood Composite 
The treatments to which the particles were subjected and the proportions of 

materials for the production of composites are expressed in Table 1. 

 

Table 1. Experimental Plan 

Composite Treatment Cement : Wood : Water ratio 

T1 Control sample (only cement and water) 1.00 : 0.00 : 0.40 

T2 Untreated wood particles 1.00 : 0.36 : 0.75 

T3 60 ºC water for 6 hours 1.00 : 0.36 : 0.75 

T4 Cold water (room temperature) for 24 hours 1.00 : 0.36 : 0.75 

 

First, the water and cement were mixed until a homogeneous mass was obtained; 

then the wood particles were added. The particles were added later to avoid water 

absorption that would impair the homogenization of the composite. 

For the axial compression test, the mixture was molded into a 50 mm diameter and 

100 mm long PVC pipe (Fig. 1a). For the analysis of thickness swelling and optical 

microscopy, specimens of 50 x 50 x 10 mm were produced (Fig. 1b). The ABNT NBR 

7215 (1996) standard was used as the basis for molding. 

 

 
 

Fig. 1.  Wood-cement composite for: axial compression test (a) and thickness swelling and optical 
microscopy test (b) 
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Characterization Tests 
The tests described below were performed in the laboratories of UNESP Itapeva, 

São Paulo, Brazil, after 28 days of drying of the composites, which is the period indicated 

by the manufacturer Cauê InterCement® for cement curing. 

The compressive strength and axial stiffness test was performed according to the 

Brazilian standard ABNT NBR 7215 (1996), using the universal EMIC test machine with 

capacity of 300 kN. Axial compression is assessed by applying a pressure load to the axial 

cross-section of the specimen at a controlled speed of 0.25 ± 0.05 MPa/s. The strength 

value is the maximum value supported by the specimen and the stiffness is obtained by the 

stress x strain curve generated by the machine software (TESC, Instron, Brazil). 

The density and 24-h swelling tests were performed according to ABNT NBR 

14810-2 (2018) standard. The density of the specimens was defined by Eq. 1, where D is 

the density (g/cm³), M is the mass (g) and V is the volume (cm³) of the specimen. To 

determine the 24-hours swelling, the specimens were measured and completely submerged 

in deionized water at 20 °C for 24 h ± 36 min. After the immersion period, the specimen 

was measured again. The swelling is calculated by Eq. 2, where I is the swelling in 

specimen thickness (%), E1 is the thickness after immersion (mm) and E0 is the thickness 

before immersion (mm). 

𝐷 =  
𝑀

𝑉
                                                                                                (1) 

𝐼 =  
𝐸1− 𝐸0

𝐸0
𝑥 100                                                                                 (2) 

The extraction and determination of the content of hot and cold water soluble 

extractives and determination of the total extractives present in the fresh material were 

performed based on the TAPPI T204 cm-97 (1997) standard. For extraction, a Soxhlet 

extraction apparatus coupled to an extraction flask, a siphon, a Graham condenser, and a 

heating blanket were used. Three repetitions were performed for each composite. 

For the optical microscopy analysis of the composites a magnifying glass with 

incident light and camera (model LEICA DFC295, Wetzlar, Germany) coupled to a 

computer with the software Leica QWin Standard (V 3.5.1, 2008) were used. Images were 

collected from the composites surface and along the thickness. Increases from 10X to 60X 

were used according to the need of the element being analyzed.  

The obtained data was statistically analyzed by analysis of variance (ANOVA) and 

Tukey test to evaluate the effect of treatments and interactions at 5% probability. The 

analysis was performed with the software R (R Core Team 2018, version 3.5.1). 

 
 

RESULTS AND DISCUSSION 
 

Physical and Mechanical Properties of Composite 
Table 2 shows the values of density, strength, and stiffness due to axial 

compression, and the results of swelling analysis of specimen thickness for the four 

treatments studied. Standard deviation values are shown in parentheses, and variance 

analysis results are shown as letters. The density was significantly reduced with the 

incorporation of wood particles.  

The values obtained for the composites were about 50% lower than those obtained 

by the control sample. The lower density of the composites occurred, consequently, due to 
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the replacement of part of the cement volume by wood particles that have lower density. 

 

Table 2. Density, Swelling, Strength, and Stiffness Values 
 

Composite 
Density 
(g/cm³) 

Swelling 
(%) 

Axial Compression 

Strength (fc0)  
(MPa) 

Stiffness (Em0) 
(MPa) 

T1 1.78 (0.014) A 0.34 (0.18) A 17.74 (2.14) A 1356.80 (101) A 

T2 0.88 (0.012) C 1.79 (0.32) A 3.57 (0.10) B 141.26 (9) B 

T3 0.93 (0.004) B 1.31 (0.33) A 3.68 (0.17) B 205.13 (24) B 

T4 0.85 (0.009) C 2.23 (0.71) A 3.53 (0.11) B 252.84 (7) B 

* Six specimens were used for each test. 
** Averages followed by the same letter mean that they do not differ statistically at 5% probability 
by Tukey's test. 
*** Values in parentheses refer to the coefficient of variation. 

 

The treatments influenced the density of the composite, and the composite made 

with the particles treated in hot water presented higher density and differed statistically 

from the other treatments.  

The density values were lower than those obtained by Iwakiri and Prata (2008), 

who used the same trait of the present study, and obtained densities ranging from 1.05 to 

1.17 g/cm³. It is noteworthy that in the aforementioned study, particles of Eucalyptus 

grandis and Eucalyptus dunnii with densities of 0.64 and 0.69 kg/m3 respectively according 

to Annex B of ABNT NBR 7190:1997 were used, which are higher than the density of the 

Indian Cedar wood used in this study. 

The composite density values determined in this work were close to those obtained 

by Castro et al (2014), from 0.75 to 0.88 g/cm³; the cited authors used Eucalyptus benthamii 

particles with a density of 0.47 g/cm³. This value is close to the average density of cedar 

wood. 

The average thickness swelling values after 24 h of water immersion obtained with 

the Indian cedar cement-wood composite were close to the 1.64 to 2.12% range obtained 

by Latorraca (2000) for cementitious composites produced with species of eucaliptus. 

The Bison-Wood Cement Board process (1978) provides values between 1.2 to 

1.8% after 24 h of soaking the composite in water. The composites produced with the fresh 

water treated particles met the stipulated values; however, the composite produced with the 

cold water treated particles exceeded the limit established by this process. Specimens 

produced with fresh particles and previously treated showed no statistically significant 

differences by Tukey test at 5% significance, which can be justified by the high standard 

deviation observed in treatment T4. 

Due to the reduction in density, the compressive strength and stiffness of the 

cement-wood composites were inferior to the control sample. The treatments had no 

influence on the variation of strength and stiffness in the axial compression of the 

composite. Therefore, the treatments studied to improve this property were not different. 

 

Composite Chemical Properties 
The solvents used in this study for the analysis of total extractives are capable of 

dissolving various types of water-insoluble lipophilic (resinous acids and fatty acids) and 

water-soluble extractives (salts, simple sugars, polysaccharides and some phenolic 

substances) (Sarto and Sansigolo 2010; Sheshmani et al. 2012). 

The extraction and determination of the total extractives content showed a 
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significant reduction of extractives between the fresh and previously treated particles, with 

a reduction of 42.4% by the cold water treatment and 33.8% by the hot water treatment 

(Table 3). Although pretreatments for extractives removal did not present statistically 

significant differences among them, the hot water (T2) treatment presented lower 

efficiency, and the same was observed by Castro et al. (2014). 

 

Table 3. Total Extractive Values 
Treatment Total Extractive (%) Reduction 

T1 2.79 (0.20) A - 

T2 1.85 (0.12) B 33.8% 

T3 1.61 (0.01) B 42.1% 

* Three specimens were used for each test. 
** Equal letters mean no statistical difference (5% significance level). 
*** Extractives present in fresh wood particles and after treatments. 

 

Optical microscopy 
Figure 2 shows optical microscopy images of the surface between the cement and 

the wood particle of each composite produced. Figures 2a, 2b, and 2c shows the presence 

of voids after the treatments produced with fresh wood particles, treated in hot water, and 

cold water. Besides reducing the density of the composites, the voids facilitate the 

absorption of water and, consequently, its swelling. The voids indicated by the arrows in 

Figs. 2a, 2b, and 2c reduce the matrix-reinforcement interaction. 

 

 
 

Fig. 2. 10X optical microscopy of a) T2, b) T3 and c) T4 

 

Another issue observed is the presence of some adhesion failures at the interface 

between the cement and particles in the specimen produced with fresh particles, indicated 

by the circle in Fig. 2a. These adhesion failures can best be observed in the image obtained 

with 60X magnification (Fig. 3a). It is noteworthy that after the treatments, there was a 

better interaction between matrix and reinforcement (Figs. 3b and 3c). 

 

 
 

Fig. 3. 60X optical microscopy of a) T1, b) T2, c) T3, and d) T4 
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According to Miller and Moslemi (1991), the extractives may migrate and 

concentrate on the wood surface during the composite cure, causing the formation of a 

hydrophobic layer that reduces the hydrogen bridges between cement and wood, causing 

adhesion failures that reduce the resistance at the interface. 

 

 

CONCLUSIONS 
 

1. The inclusion of wood particles at a ratio of 36 parts per 100 parts of cement solids 

halved the density value of the material studied compared with the control treatment. 

2. The properties of swelling, strength, and stiffness to the axial compression of the 

composites were not influenced by the particles used, either fresh or treated. 

3. Pre-treatment for the use of Indian cedar wood particles is not required for the 

manufacture of this composite. 

4. The performance of the cement-wood composite presented values suitable for 

application in sealing blocks in lightweight construction systems, as the values obtained 

in the compression test showed similar results to materials with this commercial 

application. 
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