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ABSTRACT

Recent advances in the theory of condensed matter physics have fur-
nished us with powerful theoretical methods for understanding the st-
ructural and dynamical properties of inhomogeneous materials, such as
the fibre network which constitutes paper. We discuss the concepts of
universality and scaling, on which all the new theoretical arguments are
based. In understanding the properties of forming and of paper, the
percolation transition, i.e. the unique state where an infinitely connec-
ted network of fibres is formed, is of particular interest. The physical
aspects and the power of the percolation theory are discussed in the pre-
sentation. Applications of these new concepts to paper have so far been
few.

We show how the percolation theory yields practical qualitative results
explaining the relationship between the consistency of the suspension in
the headbox and the formation. The complicated structure of the tur-
bulence on the wire and on the jet, which manifests itself in the residual
variations of basis weight, is discussed using some scaling ideas related
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to the universality of the nonlinear dynamical systems. The effect of for-
mation on the mechanical properties, especially ultimate strength, can
be viewed theoretically with the aid of scaling, percolation and network
theories. The reinforcing effect of chemical fibres in newsprint can be
judged by a rather simple scaling argument, which, when developed furt-
her, gives insight into the nonlinear relationship between strength and
the amount of chemical fibres in newsprint.

Scaling and percolation are qualitative methods. When studied and app-
lied properly, these concepts help us get a picture of the inhomogeneous
materials and understand the basic principles behind their properties. It
is then easier to decide on the right quantities to measure when quanti-
tative information is needed in papermaking.

1 A SHORT INTRODUCTION TO SCALING AND PER-
COLATION

When modelling a system it is most important to find out its symmet-
ries. The model is feasible only if it possesses all the symmetries of the
system. The model is then solved separately for each representation of
the symmetry group(s), which reduces the complexity of the problem
considerably. Also, when the problem cannot be solved analytically, but
is simulated, the symmetries tell us how to optimise computation and
how results obtained for particular parameter values carry over to cer-
tain other combinations of the parameter values. The present condensed
matter theory which has been very successful in explaining the properties
of ordered materials such as metals and insulating crystals, relies heavi-
ly on symmetry under two discrete groups: translational and rotational
transformations.

Scale transformation is a trivial but less-used operation under which
systems can be invariant (and thus ”symmetrical”).(!) A scale trans-
formation simply changes the "magnification” by which the system is
studied. It may at first seem contrary to common sense that a system
which consists of any finite size building blocks could be scale invariant:
if we magnify the system enough we see the individual blocks which by
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definition cannot look similar to the inhomogeneous system itself. Also,
when studying samples of finite size and using low enough magnification
we see the whole system itself in different sizes and the scale invariance
appears to be broken. Both these observations are correct. However,
there may be an intermediate scale region where the scale invariance
applies to the intensive i.e. density-like variables.

Why should we in paper physics be interested in scale invariance? The
strength of the scale invariance is in the universality associated to it.
We know that close to the point where the system under consideration
is scale invariant its properties are similar to those of a large group of
other systems which thus constitute a universality class.(!) Solving rat-
her simplified problems yields the universal properties of more complex
systems, such as paper.

In this article we discuss the formation and the structure of paper. The
scale invariance of this inhomogeneous fibre network cannot be exact
because of the randomness. However, scale invariance may apply in the
statistical sense; all the statistical distributions of the properties desc-
ribing the structure and its transport behaviour can be invariant. In
fact, the great success of scaling in the theory of second order phase
transitions, such as ferromagnetism, and in quantum field theories, such
as quantum chromodynamics, is based on statistical asymptotic scale
invariance.(!)

The statistical scale invariance can be studied most conveniently by exa-
mining the correlation functions of the structure. In general, one needs
to know all the N-point correlation functions

GN(Z1,..., TN) = Av(m(Z1)..m(TN)) (1)

where m(z) is the mass density function of the object considered and
Av() denote averaging with respect to all possible realisations. If the
stochastic process producing the structure is Gaussian, it is sufficient to
know G; and G, only. The autocorrelation function is defined as

Rz(il,iz) = Gg(f],_fz)—Gl(fl)Gl(ig) = Rz(fl—fg) (2)
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where the last equality follows from the assumption of statistical unifor-
mity: all the statistical properties are equal throughout the material. In
general G,(7) is asymptotically an exponential function

Ry(r) ~e 7o (3)

where 79 is called the correlation length. It is obvious from Eq. (3) that
if we change the scale by a (r — ar), we change the functional form of
the R;. But if the autocorrelation function is of power law form

Ra(r) ~r77 (4)

the functional form is scale invariant; only the prefactor changes. This
change in prefactor is cancelled by scaling m by a factor a~ 7. Hence a
system is scale invariant if the corresponding autocorrelation function is
a power law.

The scale invariant state of the system is approached through the di-
vergence of the correlation length ro. The number u describing the
divergence is common for a large group of systems, called a universality
class. For the divergence we write

ro ~ (p—pc)™* (5a)

where p is a parameter describing the system and p. its value at the
point where the system is scale invariant.

An important example of a system which possesses a scale invariant state
is the percolation problem.(?) For example for the two-dimensional squa-
re lattice with p being the probability that a bond between two nearest
neighbors of lattice is connecting the points, the percolation problem can
be phrased as follows:

"How large a portion p of the bonds of lattice are needed to
establish an infinitely large connected geometrical object?”
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It can be shown that an infinite cluster of bonds exists if p > p. = 0.5,
the threshold value. Furthermore, the autocorrelation function of the
infinite cluster is shown to be of the scale invariant form with p = %
and v = 2 — D, where D = 1.73 is the fractal dimension of the infi-
nite cluster.(?) In the percolation problem the correlation length is the
average linear size of the clusters. A third important scaling describing

percolation is for the probability that a site is on the infinite cluster:

P, ~ (P - pc)u (5b)

The exponents are related to one another through v = ﬁ Any network
close to its threshold obeys the scaling laws, Eqs. (4-5) with these values
of exponents v and p.

The transport properties, for example the elastic modulus or strength, of
a geometrically scale invariant object also have universal features. The
square is not suitable for studying these properties because of its very
exceptional symmetry. Instead, one usually replaces the square lattice
by the triangular lattice when transport properties are considered. The
threshold of the triangular lattice is p. = 2sin(7/18) ~ 0.3473, but the
geometrical universality class is the same as that of the square lattice
with the same v and u. The elasticity can be modelled in at least three
different ways:

o the Born model which prevents clusters from rotating as a who-
le;(®)

o the bond-bending model which is the most physical but also the
most difficult to use in simulations;(4)

o the central-force model in which there is no energy penalty for
the node of the network to move perpendicular to a bond.(%)

The three different models belong to different universality classes of the
elasticity. The exponent of interest here is the one describing, how the
elastic modulus, E increases from its zero value:

E~(p-p) (6)



200

The values of B for the three different universality classes mentioned
above are: 1.297, 3.8, 3.8.375) The central-force model is peculiar in
that the elasticity vanishes before the network becomes disconnected.

The region where universality dominates the network behaviour has been
found to be quite wide in the percolation problem. Therefore percolation
theory of simple networks helps us to understand the mechanical pro-
perties of some real papers, tissue being presumably the most promising
material.

When paper is formed out of a suspension, the consistency is close to
its three-dimensional percolation threshold value. Thus the flocculation
process has some features which are due to the percolation universality.
It is important to know which of the features at the percolation thres-
hold are universal. Basically, all the exponents are universal numbers

whereas for example the threshold p. is not.

In the rest of this presentation we discuss four problems where scaling
theory is useful:

o the flocculation at the headbox consistencies;
o the dynamical scaling of turbulence;

o the effect of formation and density on the strength of low-density
paper (network theory);(®)

the optimal use of reinforcement pulp in mechanical printing
papers.(7)

The scaling theories being qualitative ones tell us which of the properties
and quantities are relevant for the problems under consideration. They
help us to attack the problems in the most efficient way rather than solve
them. It still remains to be seen whether the scaling guides us towards
more practical and useful experiments and simulations or not. Hence
the question mark in the title of this presentation.



201

2 SUSPENSIONS CLOSE TO THE CRITICAL CONCENT-
RATION

When the volume concentration of fibres in a pulp suspension exceeds
a critical value c.,, the fibres form a continuous viscoelastic network.
The critical concentration is not a universal number but depends on the
width and the length distributions of the fibres. An estimate of this
quantity was derived by Thalen and Wahren(®):

o — 8wA
T A+ 2B -1)

(7)

where n is the number of contacts per fibre needed for entanglement in
the network and A is the ratio of fibre radius to its length. Experimen-
tally, they found that n should be chosen between 3 and 5. The existing
Monte Carlo simulations suggest that the critical consistency is given
by(® 24. Recently, it has been argued that the critical consistency de-
pends heavily on the history of the sample preparation.(!9) One should
note that a continuous network is formed at a possibly lower concent-
ration cﬁi), but this does not carry elastic load because of insufficient
entanglement.

Below the concentration ct?) the suspension consists of individual flocs
which are characterised by their size distribution P(l). The percolation
theory describes how P(l) scales close to the critical point. In experi-
ments by Smith(!1) small scale consistency variations as a function of
consistency show rather unexpected behaviour with two maxima and
two minima. We repeated these experiments and carried them a step
further by studying the spectra of the consistency variations.

The experiment is carried out in the following way. A pulp suspension
made in tap water is strongly agitated in order to mix the fibres properly.
Then the suspension is poured into a shallow box with a glass floor. At
all consistencies the thickness of the suspension layer is the same. The
sample is illuminated from below and the pattern of light transmission
is recorded with a video camera. With the help of an image analyser the
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average gray scale and the variations in the gray scales are calculated.
The average gray scale vs. consistency is used as the calibration cur-
ve for consistency variations. The original image is Fourier-transformed
(2-d) with a mainframe and the one-dimensional scanning spectra are
determined. The scanning spectrum describes indirectly the floc struc-
ture: the position of the maximum is the governing linear floc size and
its amplitude roughly estimates how large a portion is in the flocs.

We have chosen to study pulp suspensions instead of laboratory sheets
because we want to avoid all shear forces which might break up the floc
structure after the initial agitation. The constant thickness of the pulp
suspension means that we are varying the basis weight of the correspon-
ding sheet. This does not, however, affect the floc size distribution and
the amplitude scales can be compared by correct normalization.

When analysing the pulp suspension with Fourier-transform techniques
we cannot separate the isolated parts of the network from the infinite
network. The spectrum of randomly distributed objects does not be-
have singularly at the percolation threshold; it is only the spectrum of
the infinite cluster which has exceptional properties at the special point.
Therefore we must look for indirect evidence of the percolation thres-
hold. One important parameter describing the state of flocculation is

the microscale A defined in terms of the two-dimensional spectrum S(k)
as(12); _ _
1 [dkk*S(k)

X2 T [dES(k) ®

Microscale is very sensitive to the cutoff wavelength, i.e. the resolution
but when evaluated with equal resolution it is repeatable and a good
measure of the variations close to resolution scale. Differences of the
order of 0.03 mm in the value microscale are significant when measured
from paper.
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Figure 1. Microscale as a function of the consistency of the pulp
suspension.

Fig. 1 shows how the microscale depends on consistency at different
cutoff wavelengths in our experiment. We observe that the microscale
increases up to consistencies close to 0.7 and then levels off. Qualitatively
this can be understood as follows.

When there does not exist an infinite network, the fibres and the flocs
can travel long distances during and after the agitation. This allows
for phase separation into flocs. The unrestricted movement is especially
important for the flocculation after agitation and hence important for
the structure if any such movement is strong enough to affect the struc-
ture. When the consistency increases, the distances between individual
fibres decreases and flocs are more easily produced. Above the threshold
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consistency the free fibres move in a restricted geometry and separation
is therefore also restricted. Thus according to our results on microscale
the threshold is 0.7-0.8. This agrees well with the fibre dimensions of
our sample pulp.

2 Normalized consistency fluctuations
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Figure 2. The variance of the consistency fluctuations as a function
of consistency scaled to correspond to a sheet of constant gram-
mage.

The standard deviation of the consistency fluctuations was divided by
the square root of the consistency to yield grammage independent re-
sults. The curve in Fig. 2 shows three regions. At low consistencies
the fluctuations increase with increasing consistency. As the flocs are
becoming close to one another their movement is restricted. Hence the
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fluctuations level off. Once the continuous network is formed also during
the strong agitation, the infinite cluster restricts the movement of fibres
considerably and the fluctuations drop dramatically. The percolation
threshold here is around 0.8 % in agreement with the value obtained
from microscale, Fig. 1. However, the data are insufficient for deriving
any critical exponents.

Above the critical elastic concentration ¢ an infinite continuous net-
work which can carry load is formed. This structure is characterised by
its elastic properties, such as shear modulus and shear strength. Wahren
and coworkers(®) studied these properties both theoretically and experi-
mentally. The theoretical work was based on an approximation which in
theoretical physics is known as the effective medium theory:(!*) the for-
ces acting on a fibre segment are the ones which the surrounding medium
cause on the average and the fluctuations are neglected. Close to the
critical concentration the fluctuations are dominating. The percolation
theory can be used to study the effects of the fluctuations.

Wahren and coworkers(®) fitted their experimental results for shear mo-
dulus and shear strength according to formulas:

G= Go(c - Ccr)6 (90‘)

and
T = Tuo(c — cer)” (9%)

The five numbers Gy, Tyo, 8, v and c., were considered as the charac-
teristic numbers of a pulp. (In fact, Wahren and coworkers used the
sedimentation concentration instead of c¢... However, by definition it
is the c., below which the shear modulus and the shear strength va-
nish. Sedimentation consistency is easier to measure but leads to some
conceptual difficulties as we show below).

A power law behaviour is also predicted by the percolation theory. The
universality at c., means that the exponents § and v are the same num-
bers for all pulps and therefore only Gg, 740 and c., are needed to desc-
ribe a pulp. This is apparently contradictory to the experimental results
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by Wahren and coworkers.(!) We suggest the differences in the expo-
nents of various pulps in their experiments to be due to the replacement
of c., by the sedimentation consistency. Mechanical pulps, which rough-
ly speaking consist of two fractions, a fibrous one and the fines which
cannot carry load, sediment rather differently from chemical pulps. The
relationship between c., and sedimentation consistency is different for
these two types of pulps and this difference produces differences in ex-
ponents in curve fitting.

The fact that § and v are universal numbers is extremely helpful when
classifying pulps. Not only is the number of parameters reduced from
five to three but also the remaining parameters can be estimated more
accurately from the data. The values of § and v can be estimated either
numerically or experimentally in simplified systems (for example, con-
sisting of fibres with equal length and radius). The critical consistency
is then estimated by extrapolation of both 7 and G data and finally the
prefactors are obtained by linear regression analysis of logG and logr
vs. log(c — ccr), respectively. We also note that if the functional forms
of fibre length L and radius W distributions of two different pulps are
equal and the distributions are described by one parameter, the para-
meter A = W/L is equally good for classification as c., which is simply
a monotonously decreasing function of 4.

The analysis above suggests that the considerable amount of work nee-
ded to estimate § and v accurately would be rewarded.

3 TURBULENCE - ANOTHER SCALING BEHAVIOUR

In Section 2 we considered the properties of a fibre suspension at rest
after agitation. During the papermaking process this structure is subject
to turbulent shearing which breaks the floc structure. The final structure
of the paper is a combination of these two processes.

The modern chaos theory has showed that at the onset (or offset) of tur-
bulence the system shows universal dynamic scaling. Three universality
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classes exist: chaos via period-doubling, intermittency or Ruelle-Takens
scenario.(1¥) All three are known to exist in Newtonian fluids. During
dewatering on the wire section of a paper machine the turbulence decays
and reaches the offset point.

The dynamic scale invariance and the corresponding fractal structure in
the phase space means that even though the dynamics is unpredictable,
the statistical features of the dynamics have a well defined structure.
Such a fractal should introduce scaling behaviour in the machine direc-
tion as well. It is clear that the closer the point where turbulence is offset
is to the wet line the more pronounced is the effect of this scaling. No
attempts have been made to detect such a correlation. We suggest the
study of the correlations of the basis weight variations in the scale inter-
mediate to the formation scale and the scale where external disturbances
such as pressure pulsations dominate.

We also note that in the case of fully developed turbulence there exists
asymptotically scale invariance at small distances, which is due to the
decay of large externally created eddies into smaller ones. Presumably
this happens on the jet or on the forming board but the fibres in the
suspension there are still so mobile at this point that the structure, 7.e.
the basis weight variations, does not show this scaling. The expected
formation spectrum should behave as(1%)

E(\) ~ )73 (10)
at small values of the wavelength .

4 ELASTICITY AND STRENGTH - NETWORK SIMU-
LATIONS

4.1 Model

We have simulated the elasticity and strength of random networks in
order to study the effects of disorder and inhomogeneity on the mec-
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hanical properties of the fibre network constituting the paper. Nissan
and Batten(1®) have suggested similarly the use of percolation ideas to
connect the theory of H-bonded solids to the structural theories. Our
network is constructed on an underlying triangular network according
to following rules:

o the endpoint and the direction of a "fibre”, a linear object with
fixed length, is uniformly random on the lattice

o the fibres are independent of each other

¢ if two or more fibres occupy the same segment of the underlying
lattice they are assumed to operate mechanically parallel

e all the fibre segments have the same elastic properties
o the fibres bond to each other with infinite strength

o the segments have a maximum elongation which is common to
all the fibres; when the local elongation exceeds the maximum
value the segment breaks

The elastic energy to be minimised is the Born Hamiltonian(®)

H= % Y (@i (@ — ;) + B j (T — %))’ (11)

i

where the sum is over the nearest neighbours of the underlying lattice,
7; j is the unit vector connecting the neighbouring points multiplied by
the number of fibres occupying the segment i,j and 7; ; a vector perpen-
dicular to 7; ; and having the same length. %; is the displacement of the
node in the underlying network. Therefore the ratio of a to 3 describes
the relative strength of the extensional stiffness to transverse stiffness.
When 8 = 0 the network consists of simple elastic strings and is called
the central force model.(*) When a = 3 the problem is a scalar one and
is called the random resistor network.(?)
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4.2 Elasticity

We solved numerically the elastic modulus of the network as a function
of the number of fibre segments per number of segments in the under-
lying lattice, p. The size of the underlying lattice varied from 10 x 10 to
40 x 40. The results for the largest lattice size are shown in Fig.3. Two
B-to-a ratios and four fibre lengths, [ = 1, 2 and 4 were studied. The
following conclusions can be drawn:

e the density p needed to establish a connected network is lower
for higher fibre lengths;

o at fibre length [ = 1 the scaling behaviour predicted by the
percolation theory is extending to fairly high densities;

o at higher fibre lengths the scaling behaviour is less pronoun-
ced and the curves appear fairly linear down to the threshold
density; however, we also plotted the elastic modulus vs. the
probability that a segment is occupied by one or more fibre seg-
ments and noticed that this curve shows an equally clear scaling
region; all this means that scaling holds at all fibre lengths but
the scaling theory is valid in a smaller region around the th-
reshold the longer the fibres; dimensionality arguments support
this conclusion;

o if as are chosen such that the complete singly connected net-
work has a constant elastic modulus at different 8 to o ratios
the curves with a higher value of the ratio rise more steeply;
this is in agreement with the fact that if 8 vanishes the elastic
threshold density is lower than the threshold for connectivity;

Elastic modulus is easy to solve in simulations because of the linearity
of the fibres. Such simulations could be easily extended to incorporate
variations in the elastic modulus of the fibre segments. However, this
would not change the qualitative behaviour discussed above. It would
be straightforward but much more time consuming to simulate the true
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layered structure of the fibre network where fibre segments laying on top
of each other in an unstrained network can move differently from each
other during straining.

Our results show that in order to understand the elastic behaviour of
a fibre network the inhomogeneity fluctuations are not relevant except
at the very lowest densities. These densities may include the practically
important case of tissue. However, even at higher densities one must
take into account that the fibre network gets disconnected at finite p:
the elasticity index is the elasticity divided by the p — p., not just by p.

4.3 Strength

The strength of the network can be simulated according to the rules pre-
sented above. This is much more tedious because we have to solve for
the elastic problem between all the breaks of fibre segments. The size
of the system was here restricted to 20 x 20 and we studied only three
different densities, the ones which had the probability 0.9, 0.7, 0.5 for a
segment to be occupied by one or more fibres.

We have chosen all the fibre segments with equal properties, i.e. equal
values of o and 3 and the maximum elongation so that all the deviations
from linear elastic behaviour followed by a sudden rupture are due to
the geometrical inhomogeneity. Figure 4. shows the generic behaviour
of the force-elongation curves we obtained, and a real sample (averaged
over 10 networks).

The generic behaviour consists of the following five regions:
o elastic region where no fibres break;
e some weak segments break but they are surrounded by such st-
rong areas that the broken segments do not serve as nuclei for

cracks; the broken segments are uniformly distributed over the
sample;
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Figure 4. The generic force-elongation curve of the inhomogeneous
network.

o fibres which break are so close to each others that the load car-
ried by the network is rerouted in a larger scale, the force-car-
rying capability of the network stays constant but the network
can still be further elongated;

o the final rupture which is characterised by large areas of the
network becoming connected to the rest of the system through

a single segment and thus unable to carry load;

o a tail which is due to the small size effects and thus unphysical.
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The main result of this simulation is that networks in the medium densi-
ty region have a large ”plastic” region even though the fibres themselves
are linear up to their point of rupture. This shows that some features of
the force-elongation curves of paper can be due to the inhomogeneity of
the network.

The force-elongation curve does not predict correct behaviour when the
load is decreased: the curve always returns to zero elongation at zero
force. The irreversibility is created in the simulations only if the fibre
segments themselves behave irreversibly. A simple way to incorporate
this is by adding some fibre segments which need a finite elongation be-
fore they start to carry load. Once such fibres are activated they are
always active.

A drawback of the model we simulated is that bonds between fibres are
infinitely strong. In practise, the breaking of bonds is a relevant part of
the rupture mechanism. Again it is straightforward to incorporate the
breaking of bonds into the model but as this creates interactions between
nodes which are not between the nearest neighbours of the underlying
lattice, the solution of the elasticity problem becomes more complex.
Note that irreversibility can also be built into the model by allowing the
bonds to open and the system originally to have internal stresses.

This simulation is a first step towards understanding the relationship
between the inhomogeneity and the strength of paper. The model is cer-
tainly oversimplified, but serves as a natural starting point. As we have
studied networks away from the threshold density, we cannot rely on
universality. However, we expect that the behaviour described in Fig.4
is generic.

5 REINFORCEMENT PROBLEM(")

Printing papers consisting of weak mechanical fibres are reinforced by
strong chemical fibres; the most typical example is newsprint. When
the consistency of chemical fibres is low enough these fibres do not form
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a continuous network and thus cannot carry the load without the help
of the mechanical fibres. Therefore the strengthening effect in these
consistencies is a small one. When a continuous network is formed the
strength of the paper is greatly enhanced. We discuss this problem in
two extreme approximations:

e below the threshold consistency of chemical fibres the chemical
fibres are infinitely strong and the mechanical fibres constitute
a continuous medium with finite strength

e above the threshold the medium of mechanical fibres does not
have any strength; the chemical fibres have finite strength

We choose these approximations because they are exact percolation
problems. In fact, they are the vector versions of the random supercon-
ductor network and the random resistor network problems, respectively.
Finally we shall relax the assumption that the strength ratio of chemical
fibres to mechanical ones is infinite. When this ratio is large enough, the
dependence of the strength on the consistency of chemical fibres displays
features of these extreme cases.

First we note that if we can assume that the width of the chemical fibres
is irrelevant, the only geometric parameter to be considered is

F=cl?=lw'm (12)

where c is the number of fibres per unit area, 1 the fibre length, m the
grammage of the chemical fibres at fixed grammage of the sheet and w
the coarseness. This is a simple dimensional argument, but can also be
derived from a scaling argument. The critical value of T', I'; is known
to be approximately 5.7. This corresponds to a grammage of 0.5 g/m?.
This grammage of chemical fibres must coexist within one layer of fibres
in the network, i.e. in 5-15 g/m?. Hence the critical concentration is
3-10 %, which agrees well with experimental evidence.

In the first case the chemical fibres block the curve of rupture. Howe-
ver, as the network is not infinite, the curve of rupture can find its way
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through the sheet. When the number of chemical fibres is increased the
curve of rupture becomes more and more twisted. The energy required
to break the web is proportional to the length of the curve of rupture as
the mechanical fibres were assumed to form a continuous homogeneous
medium. The work to rupture, T, scales as

T ~ (T, -T)® (13)

where the exponent a is determined by the fractal dimensionality of the
network of chemical fibres at the threshold T'..

In the second case the network strength vanishes below the threshold.
When chemical fibres form a continuous network, a finite amount of
energy is needed to break the network. The better connected the net-
work the higher the work to rupture. Percolation theory and a simple
dimensionality argument shows that the work to rupture scales as

(T-T.)
T
The exponent 3 is determined by the fractal dimensionality of the back-
bone of the network at the threshold. The backbone of the network is
the part which consists of fibres which are connected at least twice to
the infinite cluster.

T (14)

The two scaling behaviours are shown in Fig. 5a, 5b. When the st-
rength of the mechanical fibres and reinforcing fibres are finite there is
a point close to the threshold at which the curve of rupture undergoes
no further twisting. Slightly above the threshold it is energetically un-
favourable to seek especially weak spots in the network chemical fibres.
These conditions can be expressed more exactly in terms of the fractal
dimensionalities and relative strength ratios. A practical situation of
crossover is illustrated in Fig. 5c. The nonlinearity at the threshold is
a sign of the percolation universality. The higher the strength ratio the
more pronounced the transition.

In practice, curves like Fig. 5c are observed for both the dry and wet
strength of newsprint. We suggest that this behaviour to be explained
by the threshold and the universality around it.
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Figure 5. The two extreme cases, (a), (b) of the reinforcement
problem and the crossover (c), which corresponds to the reinforce-
ment of newsprint.

(] CONCLUDING REMARKS

We have demonstrated in this paper that scaling arguments, percolation
theory and network models appear useful when studying the structure
of paper theoretically. All the methods used in our presentation are
qualitative and hence they do not give us exact techniques for making
better paper. Instead, we find them to be useful methods in optimising
the simulation and analysis work on the structure of paper.

In this paper we have suggested several problems to be attacked by the-
se methods. We expect network theories to grow into an active field of
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research in paper physics. The transport properties of networks is a hot
topic in theoretical physics. Many of the results obtained there carry
over quite directly into paper physics.
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Transcription of Discussion

SCALING, PERCOLATION AND
NETWORK THEORIES; NEW INSIGHTS
INTO PAPERMAKING

R. Ritala and M. Huiku

Dr. B.D. Jordan, PAPRICAN

The world view you are discussing may or may not fit some of the
realities. The physics of critical phenomena is a sub field of
physics for a very good reason. It only deals with those phenomena
that are unique to the situation. When a system moves exceedingly
close to a critical point, very large scale fluctuations in the
system cause separate phenomena like critical opalescence. Only
within this very limited domain near the critical point do the
interactions between the fluctuations or clusters grab control of
the physics away from the interparticle interactions In our
context this would correspond to the interactions between flocs
dominating the physics instead of intrafibre or interfibre
interactions. Such a situation gives rise to power law scaling.
Most things in condensed matter physics take place far enough away
from the critical points that they are dominated by rules of their
own rather than the interactions between critical fluctuations.
I am wondering to what extent we can use this world view of having
a picture of the forming process, where adding a few more fibres
to a slurry will cause a single massive floc. Instead I suggest
a world view where clusters which are far from a critical point
quench straight into the paper structure.

Several questions arise:If you have something which is scaling by
the fibre length, how does one deal with the fact that you have
a distribution of fibre length and therefore your critical point
would be, in a sense, a whole ensemble of critical points?
Secondly, to what degree does the non-linearity of individual



fibres come into this model which is completely dominated by the
inter particle topology of the situation. Thirdly, in section
three of your manuscript you seem to imply that formation would
be fractal. As we discussed before your presentation, I would
contend that the formation would not be fractal in reality, and
‘if the power spectrum should exhibit a power law in wavelength
over any wavelength range, it would occur only at long wavelength
rather than at short wavelength as stated in your manuscript.

Dr. R. Ritala The Finnish Pulp and Paper Research Institute

I did not mean to say that percolation solves everything, but what
I meant was that scaling and percolation are very much the reality
in fibre suspensions at headbox consistencies. We have a very
powerful method to analyze problems, and I think that we can use
it in real life applications. I know that we can use it for very
low density fibre networks, but there is little real application
for this. We can use the same methods to study the reinforcement
problems which I did not have time to discuss, but this work was
completed and reported about 2 years ago. In that case, there is
a percolation transition and we can operate close to that
situation. In suspensions we need heavy mixing in fibre
suspensions to assure that we are in an equilibrium state, we are
not doing any quenching but, in fact, something more like
annealing. Distribution in fibre length does not lead to an
example of fixed points but is still desirable by a single fixed
point.

Dr. R.E. Mark, ESPRI

You stated that "Percolation and network theories yield no new
results on elasticity which are of a practical nature in paper
physics". Since we work in network theory at Syracuse, I feel
constrained to give you 6 examples I have jotted down where new
results on elasticity are flowing from network theory.

Firstly, network theory *)lows you to take into account 2- and 3-
dimensional anisotropy, which is not allowed for in your examples
of scaling. We offer references (1 - 3) in support of this point.
Secondly, we have hal a lot of success in matching theoretical
Poisson ratios with the experimentation very accurately and we can
predict Poisson ratios under a wide variety of circumstances (4).
Thirdly, we have a good explanation for the behaviour of
lightweight and/or low density sheets -which are very differently,
particularly in their strain behaviour in comparison with medium
and high density sheets - using network theory (5). By



lightweight and low density, we mean around 25 g/m® and/or 150
kg/m> or below.

The fourth example is that network theory gives you a better
picture of the location of the safe zone of stress, due to the
fact that network theory can account for compressive behaviour of
the fibres as well as tensile and in fact does so taking into
account the orientation of the fibre within the anisotropic sheet
(6-8). The fifth example is that network theory has assisted us
in devising a new method for the derivation of the in-plane shear
modulus of rigidity without the necessity of a difficult
experiments (9).

A sixth example relates to the effects of non-linear fibres (10).
My question, then, is how can you justify your statement when a
lot of useful findings are coming from this area of work?

1 Castagnede, B., Mark, R.E. and Seo, Y.B. "New concepts and
experimental implications in the description of the 3-D
elasticity of paper. 1. General considerations." J. Pulp
Paper Sci. 15 (5): J178-J182, Sept. 1989.

2 Castagnede, B., Mark, R.E. and Seo, Y.B. "New concepts and
experimental implications in the description of the 3-D
elasticity of paper. 2. Experimental Results." J. Pulp Paper
Sci. in press, 1989.

3 Castagnede, B., Mark, R.E., Perkins, R.W. and
Ramasubramanian, M.K. "Micromechanics of an inhomogeneous
fibrous thin material by a laser speckle technique," in
preparation, 1989.

4 Ramasubramanian, M.K. and Perkins, R.W. "computer simulation
of the uniaxial elastic-plastic behaviour of paper," Trans.
ASME, J. Eng. Mat. Tech. 10: 117-123, April 1988.

5 Perkins, R.W. and Ramasubramanian, M.K. "Concerning
micromechanics models for the elastic behaviour of paper",
in Mechanics of polymeric and cellulosic materials (R.W.
Perkins Ed.), AMD Vol.99 (MD Vol.13), Am. Soc. Mech. Engrs.,
New York 1989.

6 Perkins, R.W. and Mark, R.E. "Some new concepts on the
relation between fibre orientation, fibre geometry and
mechanical properties™ in The Role of Fundamental Research
in Papermaking, Trans. 1981 FRC Vol. 1 (J.L. Brander Ed.)
MEP London 479-525, 1983.



7 Perkins, R.W., "Models for describing the elastic,
viscoelastic and inelastic mechanical behaviour of paper and
board," Ch. " in Handbook of Physical and Mechanical Testing
of Paper and Paperboard, Vol. 1 (R.E. Mark Ed.), Marcel
Dekker, Inc., New York 23-75, 1983.

8 Perkins, R.W., "Fibre networks: models for predicting
mechanical behaviour of paper", in Encyclopedia of Materials
Science and Engineering" (M.B. Bever Ed.), Pergamon Press,
Oxford, 1712-1719 (1986)

9 Seo, Y.B., Castagnede, B. and Mark, R.E., "An optimisation
approach for the determination of in-plane elastic constants
of paper", submitted for publication, 1989.

10 Sweitzer, Melissa G. "On the nature of curved fibres in
paper", M.S. Thesis (Mech. Eng.) 57pp, Syracuse University,
1985.

Dr. R. Ritala

All this is very well, but what I am saying is that all those
properties which you mentioned are model dependent, you do not
have universality. Percolation universality does not give us any
new insight except in a very a low density case; but I am not sure
if anyone is interested. I did not mean that network theories are
useless. I simply meant that the universal percolation properties
of elasticity in network theories appear in such a narrow region
that it is most probably of no practical use. I apologise if I
have expressed myself inaccurately in my overhead.

Prof. D. Wahren, Stora Technology

Dr. Ritala, you have provided a new way to look at many things and
phenomena. I think I can finally see the forest in spite of all
the trees. You appear to have given us a broad outline of basic
phenomena which, although not complete, gives a very good start.

Referring to Figure 4 on page 212 of Volume 1, the last line on
that page says that the generic curve has a tail which is due to
the small size effects and thus unphysical. That tail is exactly
what one would see in practice. It looks just like some stress
strain curves on short paper strips published by Goldsmith and
myself in Svensk Papperstidning around 1968.



Dr. R. Ritala

The reason for my scepticism is that to obtain these curves, we
take fairly small systems, study their loading curves and average
them out. In this case, that tail is coming from only one or two
of those samples. That is why I could not be sure from my
simulations that this was real. The averaging means that you have
these networks in parallel, and you have the loading curve for
this system, but I am not sure about the tail.

Prof. D. Wahren

In physical reality, 4 out of 5 short span tensile measurements
would show this behaviour. It is a physical reality.

Dr. A. Nissan, Westvaco Corporation

I am delighted to see that you are bringing this subject to the
forefront of paper science. Many of us find difficulty in
understanding many of the terms, e.g. scaling, universality, an
infinite network or cluster in a finite space or terms such as
fractal, fractal dimensions. In your paper, you also talk about
period doubling, chaos, and although you do not mention
attractors, you make implicit reference to them and again they are
infinite in a confined space. Because the books you refer to, and
there are many being published, start well into the subject, many
of us need a simpler introduction. Would it be possible for you
to write an extended appendix for Volume 3 which gives a more
detailed explanation of your terms with practical examples we can
relate to? I believe that, although the paper industry is a
"smoke stack" industry, it is a high tech one and the papers so
far demonstrate this, but I cannot use these papers as a
demonstration until I can understand all of their concepts.





