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Abstract

The concepts and methodology of system identification and adaptive
control in papermaking an presented and discussed . In particular the
crucial problems of deadtime compensation and proper interpretation of
scanning gauge measurements are reviewed. Two new approaches devel-
oped recently in our laboratory to overcome these problems are presented .

The key points in extending the monovariable adaptive control schemes
to the multivariable case are discussed . Successful applications of self-
tuning control to machine and cross-directional control of moisture and
basis weight are outlined . The difficulties associated with multivariable
adaptive control are illustrated by an example of colour control on a paper
machine .

Finally, novel approaches to adaptive control such as genetic algo-
rithms, neural networks, and multimodel techniques are presented . The
promise of these recent advances in adaptive control is illustrated by an
example of automatic compensation for species changes in kraft pulping .
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INTRODUCTION

The paper machine is by far the most automated process in the pulp and
paper manufacturing process. Sophisticated sensors are available to mea-
sure various properties of the sheet, ranging from simple basis weight and
moisture to physical properties such as strength . Many modern identifica-
tion and control methods were given their first industrial test on a paper
machine (1). Unfortunately, this pioneering work has had little influence on
the industrial practice of paper machine control (2) . Thus, most functions
on paper machines are still controlled using very simple control algorithms .

Today the amount of information available through on-line sensors is
such that the design of a control system becomes a formidable task . In-
deed, as more variables are measured, and thus can be controlled, it be-
comes more complex and difficult to model the interactions between them .
Moreover, those interactions are subject to change, for example as the
feedstock characteristics change . A key question is therefore : how can we
control such a multivariable, nonlinear and time-varying system? Do the
techniques even exist?

Today's control theory can provide partial solutions. -Some promising
developments may soon , provide more complete answers . The characteriza-
tion of unknown process relationships is the realm of system identification,
while the control of unknown and time-varying system is the main goal
of adaptive control research . In this paper we briefly review the concepts
and methodology of system identification and adaptive control . We then
discuss current and potential applications of those techniques to paper-
making control problems . Finally, we discuss three novel approaches that
mi-.ty prove particularly appropriate to solve the multivariable nonlinear
problem mentioned above.

SYSTEM IDENTIFICATION

Identification Methods

Most modern control techniques are model-based, i.e. they require a model
of the process dynamics . Very often, modelling on the basis of first princi-
ples is not possible, or is not sufficiently reliable . The alternative is then
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to perturb the process inputs, and based on the observed behaviour, to fit
a simplified linear model (e.g . a transfer function) that best describes that
behaviour . This is the field of process or system identification . See Ljung
(3) for a comprehensive treatment of the topic .

Within the control engineering community, the most popular identi-
fication method is the least-squares method . Let a dynamic system be
described by

n
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y(t)

	

-aiy(t - i) +

	

biu(t - i) + w(t)

where t denotes discrete time, u(t) and y(t) are respectively the input and
ouput of the plant and w(t) is the process noise . Defining
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the system above can be written as

YM = x'MO + W(O

	

(2)

With N observations, the data can be put in the following compact form :
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If for each point we define the modelling error as

40 = YM -1'MO

	

(4)
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then the least-squares performance index to be minimized is :

N

J = EE2(t)

	

(5)
1

or using the matrix notation above

J= [Y- X81T[Y-X01

	

(6)

Differentiating with respect to B and equating to zero then yields 9, the
least-squares estimate of 9:

= [XTX]-IXTy

	

(7)

Unfortunately, the least-squares estimate is unbiased, i. e . E(8) = 8 only
in two cases :

9 if the noise sequence w(t) is uncorrelated and has zero-mean, or

if w(t) is independent of u(t) and the model is a moving average, i .e .
no a term is estimated.

In practice, process disturbances are rarely totally random, but are corre-
lated . Thus, despite its simplicity the least-squares method will in general
not be used because it gives biased estimates in the presence of corre-
lated process noise . Alternative methods such as the maximum-likelihood
method must be used .

The maximum-likelihood method considers the model below where u
is the input, y the output and e is zero-mean white noise with standard
deviation o, :
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where the parameters of ai, bi, ci as well as o, are unknown . Defining

TB = [ a1 . . . an b1 . . . bn C1 . . .
Cn1

iT=[ _y(t) . . . -y(t_n) u(t_k) . . . u(t- k- n) e(t_1) . . . e(t-n)1
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the above model can be written as

YM = 1'(tV+ e-(t)

	

(9 )

Unfortunately, one cannot use the least-squares method on this model since
the sequence e(t) is unknown. In case of known parameters, the past values
of e(t) can be reconstructed from the sequence :

n
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c(t) = y(t) +

	

aiy(t - Z) -

	

hiu(t - k - Z) -

	

ciE(t - Z)
i=1
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i=1

In case of unknown parameters, c(t) can be interpreted as a model error
equal to e(t) only when the parameters assume their true values . The
maximum-likelihood method then minimizes the performance index below:

N

V = 2~E2(t)
t-1

Because there is no closed-form solution to this minimization problem,
a numerical procedure has to be used . It can be shown that the maxi-
mumlikelihood estimate is the most accurate unbiased estimate available .
Hence, the maximum-likelihood method is the preferred identification tech-
nique, and is available in most software packages offering control system
design and analysis capabilities .

Recursive Identification

There are many situations when it is preferable to perform the iden-
tification on-line, such as in adaptive control . In this case, the previous
identification methods need to be implemented in a recursive fashion, i .e .
the parameter estimate at time t should be computed as a function of the
estimate at time t -1 and of the incoming information at time t. The field
of recursive identification has been the subject of intensive research in the
last two decades . For an in-depth look at this field, the reader is referred
to the book by Ljung and Soderstrom (4) on the topic .

The recursive least-squares (RLS) algorithm is given by the equations
below:

B(t + 1) = B_(t) -F

	

Tp(t)x(t -I- 1)

	

[Y(t .+ 1) - !T (t + 1)B_(t)]

	

(10)
1 + x (t + 1)P(t)1(t + 1)
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(11)

The recursive least-squares algorithm is the exact mathematical equivalent
of the batch least-squares algorithm , and thus has the same properties .
The matrix P is proportional to the covariance matrix of the estimate, and
is thus called the covariance matrix. The algorithm has to be started with
initial values for 8(0) and P(0) . Generally, P(0) is set to aI where I is the
identity matrix and a is a large positive number . The larger a is, the less
confidence is put in the initial estimate 9(0) .

Whereas it is possible to develop an exact recursive version of the least-
squares algorithm, it is not possible to do so for the maximum-likelihood
method . Instead, one has to develop approximations . The approximation
that has been shown to be best, both from theory and from simulation
studies, is the approximate maximum-likelihood method (AML) where e(t)
is approximated by the residual 71(t) defined as

71 (t) = y (t) - y(t It) = y(t) - IT(t) B(t)

Defining the 9 vector and the x vector as in :

ADAPTIVE CONTROL
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xT T=[-Y(t) . . " -y(t-n) u(t-k) . . . u(t- k- n) y(t-1) . . . y(t-n)]
then results in a scheme that is described by the same equations as the
recursive least-squares above. The AML estimate can be shown to converge
to the true parameter values under fairly weak conditions .

Monovariable Adaptive Control

Adaptive control is a complex and still somewhat immature field, despite
more than thirty years of research which became particularly intense after
the seminal 1973 paper by Astrom and Wittenmark (5) . For a comprehen-
sive view of the current state of the art in the field, readers are referred to
the book by Astrom and Wittenmark (6).
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Fig 1- Block diagram of an adaptive controller

When a control engineer wants to develop a control scheme for a partic-
ular process, one of the first tasks to be accomplished is the identification
of the process dynamics. , The second major task is then to design the
controller that will achieve the desired control objective. Adaptive control
can be thought of as an automation of that design procedure, i . e. on-line
identification and control design . A typical block diagram of such an adap-
tive controller is shown on Figure 1 . A major difference is that the entire
procedure is performed online, in real-time and without human supervi-
sion . Because of this lack of human supervision, extra care has to be taken
when implementing such a scheme. One of the current research trends is
to develop an emulation of that human supervisor using an expert system
overlooking both the implementation and the operation of the adaptive
controller . Such a system would greatly improve the reliability of current
adaptive control schemes . However, a major drawback with current adap-
tive control methods is that they require prior knowledge of the structure
of the plant dynamics, i. e of the order and dead time of the process transfer
function . Wrong assumptions may lead to instability, obviously an unde-
sirable feature.

One way to design a robust adaptive control requiring minimal a priori
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information and capable of handling time-delay plants (common in process
control) is to abandon the usual transfer function models and instead de-
velop an unstructured adaptive control scheme using an orthonormal series
representation . This is the approach recently developed in our laboratory
(.Z), (8). The set of Laguerre functions is particularly appealing because
it is simple to represent and is similar to transient signals . It also closely
resembles Pade approximants . The continuous Laguerre functions, can be
represented by the simple and convenient ladder network shown in Fig-
ure 2, where s is the Laplace transform operator . The output of the plant
y(t) is described by,

NY(t)
_~c21i(t) + w(t) = co1(t) + w(t)

	

(12)
t-i

where co = [C1

	

C2 . . . CN], !'(t) _ [ l1(t)

	

l2(t)

	

. . .

	

IN(t) ]T, where the
li 's are the outputs from each block in Figure 1, and w(t) is the process
noise . Some of advantages in using the above series representation are that,
(a) because of its resemblance to the Pade approximants, time-delays can
be very well represented as part of the plant dynamics and, (b) the model
order N does not theoretically affect the coefficients ci . It can be shown
that under fairly weak conditions, c, the least-squares estimate of c will be
unbiased .

An adaptive control scheme based on the above formulation uses the
recursive least-squares (RLS) method to identify the parameter vector c.

c(t) = c(t - 1) +

	

~(t - 1)I(t)

	

Iy~t) _cT(t - 1 )I(t)]

	

(13)1 + 1 (t)P(t -1)I(t)

P(t - 1}1(t)l~'(t)P(t - 1}P(t) -- P(t - 1) -

	

(14)
1 -1T (t)P(t - 1)1(t)

A predictive control law can then easily be developed. Theorems proving
the global convergence and stability of this scheme are presented in Zervos
and Dumont (8) .

The choice of the parameter p in the Laguerre functions is not crucial .
However, it influences the accuracy of the approximation of the plant dy-
namics as a truncated series . For a given plant, there exists an optimal p
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Fig 2- Laguerre ladder network

that minimizes the number of filters required to achieve a given accuracy.
The chain of all-pass filters in the Laguerre network provides good repre-
sentation of a time delay T, in particular when p = 2N/T . The actual plant
order has little bearing on the number of filters N. The horizon of the pre-
dictive control law is automatically adjusted on-line to assure closed-loop
stability.

Multivariable Adaptive Control

In theory, the generalization of monovariable adaptive control schemes
to the multivariable case is rather straightforward . The main difficulty
appears for the case of multiple delays, in which case the design of the
controller is significantly more complex. Recent advances in multivariable
predictive control appear to provide a satisfactory solution . The major
difficulty in multivariable adaptive control arises from the significantly in-
creased number of parameters to be estimated on-line. This increases the
computational load, but more importantly, slows convergence down to the
point of making the algorithms impractical in many situations . Thus, in
multivariable adaptive control, it is crucial to utilize as much prior knowl-
edge as possible to reduce the number of parameters to be estimated on-
line . Ideally, one would like to estimate physical parameters of the system
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directly, but due to the nonlinear nature of most systems, this is not a triv-
ial task . We shall discuss later some novel techniques that may overcome
this problem.

APPLICATIONS TO PAPERMAKING CONTROL

Estimation of MD and CD Variations

While the gauges traverse the web, the sheet moves in the machine di-
rection at very high speed. For instance, on a 4m wide newsprint sheet
moving at 900 m/min, during a 20s scanning time, 300 m of paper has
passed under the gauge. Thus, the path of the gauge on the sheet is at a
very shallow angle (0.76 deg) relative to the machine direction . Therefore,
the raw profile measurement contains a vary significant machine direction
component . The problem is then : is it possible to retrieve the true profile
from this raw signal?

On a machine with a steady profile and nearly white machine direc-
tion variations, the retrieval of the profile is a rather trivial task and the
standard method which follows works well . Let xn(t) denote the raw mea-
surement obtained at the measurement box n during the scan s . The
standard method is simply an exponential filter

Yn(,) = (I - a)yn(, _ 1) + aXn(S) (15)

where yn(s) is the estimated profile for the measurement box n and the
scan s, and 0 < a < 1 is the exponential filter pole . The exponential
filter pole a is generally set such that a < 0 .3, which means that after a
step change in the profile it takes about 8 scans to get within 5% of the
new profile. The simple filter described above is crude and rather slow
to converge to the true profile. Moreover, it is not optimal . Because of
the inherent process nonlinearity, for moisture profiles it will give biased
estimates . Efforts to overcome this problem have resulted in a significant
amount of patented work, all of which belongs to the vendors of paper
machine control system .

More recently in our laboratory, Natarajan et al . (9) proposed ascheme
consisting of a least-squares parameter identifier for estimating CD profile
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deviations and a Kalman filter for estimating MD profiles . The Lindeborg
(10) model for moisture deviations can be written as :

k = in + (1 + Be)Uk + Vk

	

(16)Yn

Uk

	

+ ~k

	

(17)
where

ykn

	

is the measured profile deviation from the reference level at CD
position n and time instant k

pn

	

is the percentage deviation from the reference level at the CD
position n.

B

	

is a constant
Uk

	

is the percentage MD variation at time k
Vk

	

is sensor noise assumed to be Gaussian white noise
U

	

is the mean moisture content in the MD
is a zero mean stochastic process

This model can be expressed in a state-space form given by :
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(19)Yk
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0
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{I + Bpn)

	

{1 + Bpn)

	

(20)

If pn and B are known, by using Equations (18) and (19) the estimation
of ii and ~k can be approached as a Kalman filtering problem. Conversely,
if is and ~k are known, then the estimation of pn and B can be attempted as
a least squares parameter identification problem. The proposed algorithm
is a bootstrap algorithm combining these two ideas . Using the present
estimates of pn and B in a Kalman filter, we predict ii and G+1 (at next



1162

Fig 3- Structure of the profile estimation algorithm

instant, then using this prediction and the measurement yk+1, we updatepnf1 , B and so on . The overall structure of the algorithm is shown in Fig-
ure 3. The least squares identifier and the Kalman filter are well described
in the literature, as for example in (11) . Thus, for every measurement
box, the least-squares algorithm provides an estimate of the CD profile
deviation and the Kalman filter provides an estimate of the MD variation.
Simulation and industrial test results show the algorithm to be more accu-
rate and faster to converge to the true profile than other techniques . It can
be tuned to provide optimal (in the least-squares sense) estimates . Any
shortening of the paper machine, for example by successful use of impulse
drying, will shorten dead time, making MD control at the current rate of
once a scan unattractive . Because it gives several estimates of the MD
variations per scan, this filter will allow MD control at a much increased
rate . Obviously, the use of full CD non-scanning gauges would render such
a filtering algorithm redundant .

MD Control of Dry Weight and Moisture

Machine direction control considers the control of the scan averages of
basis-weight and moisture . Control of dry weight manipulates the thick
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stock flow setpoint to obtain the desired fiber flow to the headbox. Usually,
the thick stock consistency is controlled andfeedforward to the thick stock
flow setpoint is provided as well . Moisture is generally controlled from the
steam pressure in the last dryer section. As seen earlier, the dynamics of
the basis-weight and moisture control loops is heavily dominated by dead
time . Also, on a newsprint machine, the setpoints for moisture and in par-
ticular basis-weight are rarely changed. Thus, for these loops one should
really solve the regulation problem, which requires characterization of the
process disturbance as a stochastic process.

However, in practice most systems installed in mills are based on deter-
ministic control design and often tuned for the servo problem, i.e . setpoint
tracking . The Dahlin algorithm is used extensively on paper machines . It
is a simple and straightforward way to perform dead-time compensation .
Depending on the process disturbance characteristics, it may in some in-
stances be tuned to near minimum-variance performance, even though it
does not use a model of the process noise. To solve the desired control
problem for the basis-weight and moisture control loops requires minimum-
variance control. Indeed, these crucial qualities of the final product must
meet stringent specifications, hence it is important to obtain good control.
In addition, any reduction in the moisture variations allows an increase
in the moisture content, thus saving steam or permitting a production in-
crease .

The first application of minimum-variance control to a paper machine
was reported in 1967 by Astr,5m (12) . In practice, true minimum variance
is rarely desirable because of the generally excessive control energy it re-
quires . This is particularly true on a paper machine where actuators are
valves that should not be subjected to excessive wear .

More recently, predictive control has attracted much interest in the
process control community. It can be used as a way of reducing the con-
trol variance . Another problem with minimum-variance control is that it
is impossible to tune manually. It relies on model of the plant, which be-
cause of furnish or grade changes, or other variations of the equipment or
the environment, may need to be updated from time to time .
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One way to automate this task is through adaptive control. Self-tuning
control for the paper machine was proposed very early. Indeed two of the
first industrial tests of self-tuning controllers were performed on a paper
machine (13), (14) . In both cases MD control of basis weight and moisture
was considered . For moisture control, even the gains of the feedforward
loop from the couch vacuum for decoupling control were adapted, using a
controller of the form :

Au(t) = b,Au(t-l)+b2AU(t-2)+aoy(t)+aly(t-l)+coAv(t)+c,Av(t-1)
(21)

where au is the incremental control signal, y is the error in moisture con-
tent, and au is the incremental couch vacuum .

Attempts by a vendor to develop a system based on the above work did
not lead to a commercial product for reasons not disclosed (15) . In Canada,
a pulp and paper company attempted to apply the above methodology to
a linerboard machine but failed to develop a scheme reliable enough for
continous operation. The intended scheme used feedforward from several
variables, resulting in the estimation of a large number of parameters and
identifiability problems . This emphasizes the fact that adaptive control is
not yet an off-the-shelf technology. Nevertheless, another pulp and paper
company in Canada claims to have successfully developed and operated
a self-tuning regulator for MD control of a fine paper machine for several
years (16) -

Lastly, one may look at the entire paper machine as a multivariable
system . Although it has long been known that the headbox is a multi-
variable system, and should be controlled as such, it is still controlled by
two monovariable loops. The headbox has been used in many simulation
studies as a benchmark for testing both monovariable and multivariable
adaptive control schemes.

Non-adaptive multivariable control has been applied to the entire pa-
per machine. The paper machine multivariable control system MUVAR
was developed and patented by the Centre Technique de IIndustrie des
Papers, Cartons et Celluloses in France (17) . This is a 4 x 4 system con-
sidering the multivariable control of the headbox stock concentration and



level, the jet velocity and the basis weight by action on the air valve, the
thin stock and thick stock valves and the slice opening, taking interactions
into account . With a jet velocity sensor, the basis weight at the slice can
also be controlled . This allows control of perturbations in a bandwidth
above that controllable by the reel basis-weight control loop . This system
is claimed to bring significant improvements over existing schemes, such
as a faster response, better decoupling, and fast, efficient speed and grade
changes . However, despite impressive results, this system failed to be a
commercial success, probably because of its complexity.

CD Control of Dry Weight and Moisture
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The most impressive progress in paper machine control over the past 10
years or so has been in the area of CD control, thanks to the develop-
ment of innovative actuators and control algorithms . When 50 to 100 such
actuators are distributed across the web, close interactions are bound to
exist . A typical response of basis-weight to a change in a single slice actu-
ator spreads to other locations . Fortunately, in general the only dynamics
present, apart from dead-time, come from the actuators, and in most cases
can be neglected . There are basically two approaches for modelling this
kind of responses . The first uses an interaction matrix, the second a non-
causal spatial impulse response (18) .

The first approach considers the spread across the web in reponse to an
actuator is finite, identical for all actuators, and symmetric . The response
can therefore be represented by a small number of coefficients . Then,
given an initial deviation from target profile Dyo, where each element cor-
responds to a particular measurement box, and Au is a vector containing
the actuators moves, the resulting deviation from target profile Ay is given
by

Ay = Is0u -}- Dyo

	

(22)
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where K is a band diagonal matrix such as :

or

If the interaction matrix K is square, and if zero-deviation from the target
profile is desired, then from equation (22) one can obtain

Ay = IfOu + Dyo = 0

	

(23)

Du = -K-1 Ayo

	

(24)
This equation is the equivalent to a deadbeat controller . Generally, to
allow more conservative adjustments, the following is used

Du = -aK-1 0yo

	

(25)

with 0 < a < 1 . As seen on Figures 4 and 5, even for a simple K
matrix with a fairly narrow interaction band, the K-1 matrix is a full
and rather complex matrix . In practice, as the number of measurement
boxes is generally larger than the number of actuators, the matrix K is
non-square and thus non-invertible . Moreover, large control actions are
also undesirable, and thus a better problem is to find Du that minimizes
J where

J = DyTQAy -I- DuTPOu

	

(26)
and P and Q are symmetric, positive definite matrices . Differentiating
with respect to Du and equating to zero gives the control law :

Du = -(KTQK + P) -'KTQOyo

	

(27)

Note that, when P = 0 and Q = I, one obtains

Du = -(KTK)-'KTAyo

a b c 0 . . . 0 0 0 0
b a b c 0 . . . 0 0 0
c b a b c 0 . . . 0 0
0 c b a b c 0 . . . 0

0 0 . . . 0 c b a b c
0 0 0 . . . 0 c b a b
0 0 0 0 . . . 0 c b a



Fig 4- 3-D plot of the band diagonal interaction matrix

Fig 5- 3-D plot of the inverse of the band diagonal interaction matrix
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which is the least-squares solution of equation (23) when K is non-square .

Obviously, to implement this control law, one needs to know the matrix
K . One approach is to use a least-squares estimator to update it on-line, i . e
having a self-tuning scheme able to track changes in the profile response,
see ( 18 ) . This is one of the most successful commercial applications of
adaptive control . The fact that it is static and only three parameters are
estimated may have a lot to do with that success.

The other approach to modelling is to view the spread across the web
as a spatial impulse response, which differs from the familiar temporal
impulse response by the fact that on the negative x-axis it is non-zero, and
thus is non-causal . Assuming symmetry of the response, such a system
can be approximated by :

where Dyi is the profile deviation at CD location i, and Auj is the move-
ment of actuator j . One can then design a linear quadratic controller that
minimizes the following performance index:

Control of Colour

n

	

m

E ajAyi = 1: biAuj
i=-n j=-m

J =, n

	

ih 2

	

d2Au(x)
E[(

	

y(

	

)) + P

	

2
i=o

	

dx x=ih

(28)

(29)

where h is the actuator spacing. The second term in this performance
index, the second derivative of the slice lip deflection curve is proportional
to the bending moment, and is there to protect the slice lip from permanent
damage . For computation, this term is approximated by finite differences,
see (18 ) .

Colourimetry studies indicate that the human eye is a trivariant system .
As a result colours are defined by three numbers or tristimulus values .
Currently, the ISO standard frame of reference is the L a b system . Scan-
ning colour gauges based on three-dimensional measurements have been
developed and used to provide an on-line measurement of the colour on
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Fig 6- Dyeing process representation

paper machines .

The paper dyeing process can be modelled as a mass tranfer process. It
is a reasonable to assume that the three dyes have the same transport dy-
namics . Indeed, the general understanding is that the dyes fix very rapidly
to the fibers, and consequently that dye retention is the same as fiber re-
tention. If such is the case, then the dyeing process can be represented by
the block diagram of Figure 6 where R is the fiber retention . The colour at
the reel then relates to the dye content at the reel through a complicated
nonlinear function based on the Kubelka-hunk theory . The objective of
the control is to maintain the paper colour at a desired setpoint despite the
addition of recycled paper (broke) to the pulp . Good response to setpoint
change is also desirable . Interest in such continuous colour monitoring and
control is growing due to the demand for higher and more uniform paper
quality.

The function relating dye concentration and colour on the L a b scale
is a non-linear one. For control it has to be linearized around the operat-
ing point. In so doing, the colour deviations relate to the dye deviations
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through the colour matrix A:

AC = AAD

	

(30)

where AC and AD represent the deviations of the colour and dye vectors
from the operating points . Note that the desired dye flows are not known
unless A is known.

An estimate of A is required by any controller . However, A is a function
of the setpoint and the dye characteristics, and it is affected by process
variables such as the pH of the pulp . Thus, one might consider a multi-
variable adpaptive control scheme for this process where identification of
the process is in large part the identification of an improved estimate of
A. However, it is not possible in an input-output model to separate A
from the other parameters . Thus even with a simple first-order model for
dye transport, the number of parameters to be estimated on-line is rather
large. Simulations show that such an adaptive controller fails to outper-
form and sometimes performs worse than a simple multivariable Dahlin
controller with fixed gains (19) . The adaptive controller simply cannot
cope with the large number of parameters to be estimated and therefore
displays poor tracking ability. This is a common problem with multivari-
able adaptive controllers . Ideally, in this case, to outperform the -fixed
controller one would like to estimate the colour matrix A directly.

Total Control of the Paper Machine

The current trend for paper machine control systems is toward on-line
control of the physical properties of paper (20) . Novel sensors to mea-
sure sheet strength in three directions (MI), CD and ZD) are becoming
available. However, before controlling these properties on-line, we may
have to develop new sensors and actuators. Moreover, we still lack clear
understanding of how papermaking variables interact to define the sheet
properties . The relationships involved are likely to vary in an unforesee-
able fashion, and thus will need to be estimated on-line using information
from various sensors .ors. As emphasized in (20), there are many variables in
the papermaking process, and thus the identification of those relationships
will not be a trivial task . Therefore, to control all those properties on-line
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will require the solution of a high dimensional, nonlinear time-varying con-
trol problem. From our earlier discussion of the colour control problem,
it is obvious that new estimation and adaptive control techniques will be
required . We present some promising approaches in the next section.

NOVEL APPROACHES

Multimodel Adaptive Control

The principle of multimodel adaptive control is illustrated in Figure 7. The
unknown plant is assumed to lie within a finite set of models . The plant
is characterized by a weighted sum of all those models . The weights vary
from zero to one, their sum is one, and they reflect the probability of a
particular model to adequately represent the plant. The adapter adjusts
the weights on-line to minimize a performance index, generally the squared
modelling error summed over a finite window . The main challenge is to de-
velop a simple search algorithm that guarantees convergence to the global
minimum, as the performance index is likely to be a multimodal function .

A multimodel adaptive controller presents various advantages . The
bank of models might correspond to a model parameterized as a function of
an unknown physical parameter assuming different probable values . This
is particularly appealing in the case of a multivariable system, as it will
likely result in fewer parameters to be estimated. Simulations show such
multimodel systems have the ability to track very fast changes in dynamics .
Another advantage of this approach is its inherent robustness . Indeed,
even with a fixed weight distribution, such a control system will be rather
insensitive to process dynamics changes .

There are various situations in papermaking for which such an approach
could prove useful . For instance, in the previously discussed colour control
problem, the main unknowns are the dye absorption and scattering coef-
ficients . However, we know that these lie in a given range, and we could
therefore easily build a bank of models corresponding to a finite number
of values of absorption and scattering coefficients K and S. The adapter
would then automatically adjust the weights to choose the most appro-

114priate

	

handlepria - te values of A and o at any given time .

	

a scheme

	

ncould handle
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Fig 7-- Multimodel adaptive control

grade and dye changes .

Another situation is when the raw material is known to consist of an
unknown mix of a finite number of known species (21) . If adequate models
can be developed for individual species, then a bank of models can be built
and the weights adjusted on-line. This not only provides automatic species
compensation to the controller but, perhaps more importantly, automatic
wood species identification to the operator . We illustrate this through a
simple example involving chemical cooking of an unknown mixture of two
wood species.

Consider the chemical pulping of two different wood species where we
know the Hatton's equation (22) relating the final Kappa number to the
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H-factor and the initial effective alkali FA for each species:

Ki = ai - Oi (log H) (EA)'i

	

for Z' =1, 2

	

(31)

Assume that the pulping takes place in a hypothetical reactor that can
be described by first-order dynamics with pole a plus dead time k. Now,
assume the feed stream is composed of a mix of two species and let wi be
the weight fraction of species i. The Kappa number out of the reactor is
then described by :

2

	

2
r, t = ar t-, +~ wibiUt-k + d~Vi,t-k

	

(32)
i-1

	

i=1

where
bi

	

(1 -a)[pi(EA)'i log H]t-k
d = 1 - a
v = ai

U = log H
From this model, we can easily design a r-number multispecies controller
based on a Dahlin controller and feedforward:
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biwi j=1

where K* is the setpoint and p is the desired closed-loop pole . It is easily
shown that the multispecies controller can be expressed as a linear combi-
nation of the single species controllers using the same control error signal,
i.e.

2

ut = w Ajui ,t	(34)

where
Ai

	

biwi

	

(35)
E? biwiz=1

The multispecies controller above assumes knowledge of the feed stream
composition, i.e . of the wi . . If the feed stream composition is unknown,
then we must find the right values for Ai or wi. In this example, we choose
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Fig 8- Adaptive species compensation in kraft pulping of a two-species mix
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the second option, i .e . direct identification of the wi. For this, we choose
the simple projection algorithm:

Cr'i 't-l
+ 1 + OT lot_, [Kt - Ot-lot-11

	

(36)

where c is a constant and

0t

	

[Kj,tK2,t]bt

	

T

E?-N,fCV2
't]T

IN,t = I - 7bl,t

Figure 8 shows the behaviour of such a scheme when controlling the
chemical pulping of a variable mixture of hemlock and cedar. Noise has
been superimposed to make this simulation a bit more realistic. It is seen
that the Kappa number is well controlled despite wide variations in the
species mix, and that the composition of the feed is accurately estimated.
Although this example concerns chemical pulping, it is straightforward
to apply it to a species-dependent papermaking control problem, such as
refining .

Genetic Algorithms

Genetic algorithms (GA) are search algorithms based on concepts of nat-
ural selection and genetics, see Goldberg (23) . Using the Darwinian prin-
ciple of survival of the fittest together with some simple genetic operators,
genetic algorithms perform a randomized but directed search . Contrary to
gradient-based algorithms that only go from one point to another in the
search space, a GA uses a population of points in the search space and is
therefore less likely to miss the global optimum for a local one. Thus, it is
particularly well suited to multimodal functions. Also, because it does not
require gradient information, it can easily handle discontinuous functions.

A GA works with a population of binary strings just as nature works
with chromosomes . The binary strings are made from a coding of the
parameters which the algorithm should find or identify. Each parameter
corresponds to a fixed length binary substring of j bits [0, . . ., 2i - 1] . The
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value of the substring is mapped to an interval of the real numbers [l, u]
so the precision of the coding is (u - l)/(2i - 1) . With n parameters, the
final string consists of n concatenated substrings . The initial population is
generated randomly and the population size is kept constant throughout
the process . The algorithm only requires payoff information (fitness) for
each string .

A genetic algorithm in its simplest form consists of 3 steps : reproduc-
tion, crossover and mutation . For reproduction, strings are chosen accord-
ing to their normalized fitness . The strings with above average fitness will
have more offsprings than those with below average fitness . This directs
the search towards the best individuals . Next, new individuals have to be
generated by crossover, the main search operator . This operator combines
substrings from individuals selected for mating to generate a population
of better fit individuals . To apply this operator two strings are mated at
random and a point on the interval 1 < k < j -1 is chosen randomly. Two
new strings are then created by changing all characters between position 1
and k inclusively. This can best be explained by example . Suppose there
are two strings 00000000 and 11111111 and assume a randomly chosen
crossover point of 3 . Then the new strings will be 11100000 and 00011111 .
These two operators give genetic algorithms much of their power . The
mutation operator, which simply flips the state of a bit, can be viewed
as a background(secondary) operator to insure against loss of information
in some bit positions and as a way of getting the algorithm out of local
optimum .

Although the transition rules are probabilistic, this approach is not a
random search . By use of operators taken from population genetics the
algorithm efficiently explores part of the search space where the probabil-
ity of finding improved performance is high . Although genetic algorithms
have been shown to behave well on multimodal functions, there is no known
necessary and sufficient condition under which a function is genetically op-
timizable . Genetic algorithms are inherently parallel . Indeed, all strings or
individuals in a population evolve simultaneously without central coordina-
tion . To realize their full potential, they must be implemented on parallel
computer architectures . Genetic algorithms allow direct identification of
physical parameters, difficult with current methods due to severe nonlin-
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Fig 9- A three-layer neural network

earities, and thus have great potential in adaptive control, as shown in our
laboratory see Kristinsson and Dumont (24) and Dumont and Kristinsson
(25) .

Neural Networks

Neural networks are non-algorithmic computer architectures based on our
current understanding of how the brain encodes and processes information
(26) . They consist of densely interconnected networks of simple processing
elements called neurons . Figure 9 shows a three-layer network. Artificial
neurons are crude emulations of their biological counterparts . The output
of an artificial neuron is computed as the output of a nonlinear function
operating on a weighted sum of all inputs . The inputs xi correspond to
stimulation levels, the weights wi to synaptic strengths, the non-linearity
If(generally a sigmoid function) emulates the activation threshold :

n

Y f(~ Waxy)

	

with f(s) -	(37)
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Neural networks can learn by training. A successful application is
in recognition of handwritten characters . Neural networks have proved
good at extracting patterns, and thus their biggest potential is in pat-
tern recognition. An interesting capability of multilayer neural networks
is highlighted in a theorem due to Kolmogorov (27) which implies that
any continuous mapping from Rn to R- can be implemented as a three-
layer neural network with n input neurons, m output neurons, and 2n + I
middle-layer neurons . This property could be used to exactly map the pro-
file response on paper machines, without assumptions of the type described
previously. We are currently investigating this approach in our laboratory,
see Dumont (28) .

CONCLUSIONS

We have explored the extent to which techniques of system identification
and adaptive control have been applied to papermaking. Despite some suc-
cesses, those techniques are not widely used, primarily because their use is
not straightforward . In the case of monovariable systems, the techniques
are fairly well developed and work well . With some clever engineering, they
can be made easy to use. In the case of multivariable systems, the current
schemes suffer from identifiability and convergence problems when deal-
ing with high dimension systems, as demonstrated by the colour control
problem. Novel approaches such as multimodel adaptive control, genetic
algorithms and neural networks may provide innovative solutions to these
nonlinear, high dimensional problems likely to be encountered as we move
towards total control of the paper machine.
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SYSTEM IDENTIFICATION AND
ADAPTIVE CONTROL IN PAPERMAKING

G . A . Dumont

ERRATUM
Equation (37) on page 1177 of Vol .2 should read :

f(s) 1 + e

P.T . Herdman Wiggins Teape R & D Ltd

There is considerable interest in the use of expert control
techniques although these are still in the early stages . Could you
tell us how this relates to the techniques you have just
described?

G.A . Dumont

What is known currently as "expert control" is a combination of
expert systems technology with adaptive control . The essential
purpose is to overcome the problem of having to have a control
expert available 24 hours a day . The expert systems are designed
to do what a process control expert would do ; he would look at
what the control system is doing ; try to tune it ; change the
structure and so on .

M .I . MacLaurin

This has just reminded me about decoupled machine direction
control . I first saw machine direction basis weight control on a
paper machine when I joined Wiggins Teape in 1957 . It was on
Stoneywood number 8 machine with a hard valve system that took a
beta gauge signal and applied it to a machine speed, without any
decoupling so it did not really work too well .

Having said that you will appreciate that I did not really
understand the significance of that Neural Network theorem . I

Transcription of Discussion



wonder if you could explain; how does it relate to the CD
response?
G.A . Dumont

If you look at the response between 50 or 60 actuator movements
on the slice and the 2-300 measurement values on a profile you
have a continuous function . The problem is how do you characterise
this response? This is a multi dimensional problem of many
variables . What people have done is to use the simplistic model
of the band-diagonal matrix which is the only thing that can be
managed currently . The advantage of the neural network approach
is that you would not need to make any assumptions at all such as
that all actuators have a similar response and there is no edge
effect . You could directly identify the full matrix . There may be
some problems associated with the speed of convergence and that
is being worked on currently .
Dr . G .A . Baum James River

Thank you for a very interesting paper . Please could you give an
example of genetic algorithms?

G.A .Dumont

We have used it to find the friction coefficients for the drive
in a robotic arm . That is something which is quite difficult to
do using standard techniques because the system has a
discontinuity . Genetic algorithms do not worry if there are
discontinuities . One of the major obstacles in applying these
techniques is that they are extremely slow to run on sequential
computers, they are essentially parallel algorithms that require
parallel computers . These are coming up slowly so within 5 or 10
years we will be able to use these techniques more widely .

A .R . Guesalaga UMIST (England)

The model described in Equation 16 on page 1161 in the proceedings
for MD and CD variations present a high non linearity for the
variables being identified . In figure 3 on page 1162 you then
present a structure to tackle the estimation problem which has
some similarity to the so called Extended Kalman Filters .

From my experience using Extended Kalman Filters, this method
shows poor robustness even for very soft nonlinearities in the
models being identified, and for some initial values of the
estimates and covariance matrix,it can lead to wrong estimates .



In your paper you do not refer much to the robustness of your
method, so I would like to know if your approach overcame the
convergence problem, so it can be applied with confidence to a
production process?

G.A . Dumont

The scheme we use is not an Extended Kalman Filter (EKF) but a
bootstrap parameter estimator . An EKF simultaneously estimates
parameters and states, and is thus rather complex . Because a
bootstrap estimator provides separate estimation of parameters
and states, it is computationally simpler . Because of the
nonlinear nature of such a system, there is no general proof of
convergence . However, various simulation and application studies
have shown the superiority of bootstrap algorithms .




