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Historically, paper has been consolidated by wet pressing
followed by drying on steam cylinders or by other low inten-
sity evaporative processes . Although these time-tested pro
cesses will continue to be the mainstay of papermaking for
some time, they are now being challenged by new systems that
exploit the interactive effects of increased pressures and
temperatures . We want to review our understanding of these
hybrid processes and the unprecedented performance potential
they offer. At the same time, we want to integrate .them into
a common context with the more conventional web consolidation
processes . To do this, we define four classes of systems
mechanical, thermal, thermal with restraint, and ther-
momechanical . Each class uses mechanical, thermal, and
interactive effects in a unique way to determine water removal
rates, energy efficiency, property development potential, and
machine size and complexity . In a parallel and unifying
fashion, each class also occupies a distinct region on coor-
dinates of specific energy consumption and working tem-
perature. This diagram is offered as a starting point for
integrating wet pressing, hot pressing, cylinder drying, press
drying, Condebelt drying, impulse drying, and others into four
distinct classes of web consolidation systems .
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INTRODUCTION

Historically, paper has been consolidated by wet pressing
followed by drying on steam cylinders or by some other evap-
orative process . These basic processes have been thoroughly
studied and are fairly well understood . A review of wet
pressing and conventional cylinder drying will be presented in
another paper i n this symposium. They will be treated only
very briefly in this paper and then only for the purposes of
comparison and unification of the many web consolidation pro-
cesses now under consideration.

Despite the venerability of wet pressing and conventional
cylinder drying, they fall far short of satisfying the needs
of the papermaker . As a result, a number of new web con
solidation processes have been proposed or used in the last 25
years . These processes, at least the ones to be considered in
this paper, combine the use of thermal energy, as delivered to
the web by one or more hot surfaces, with pressures well above
those typically used in thermally based systems .

These new consolidation systems divide naturally into two
classes . In one class, water is still removed as vapor, but
the rates are higher than typical and the property development
potential is improved by both temperature and pressure
effects . Thermal energy is still used in about the same
amounts as in conventional cylinder dryers . The main new
effects are elevated sheet temperatures and drying under z-
direction restraint or compression. We elect to call these TZ
systems as an abbreviation for thermal drying (evaporation)
with z-direction restraint . To qualify for this class, the
restraint must be sufficient to improve properties .
Otherwise, the systems remain as thermal (T) systems .
Examples include several early versions of so-called press
dryers and thermal vacuum or Condebelt dryers .

Some of the new systems combine temperature, pressure,
and an appropriate sheet moisture content with a mechanical
configuration that can produce and exploit sheet saturation .
Under these conditions, some new mechanisms come into play
that greatly improve the speed and thermal efficiency of water
removal and, at the same time, offer excellent property devel-
opment potentials . These systems we elect to call ther-
momechanical web consolidation systems (TM) because they
remove water by mechanical and thermal means, and by an
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interactive combination of the two . Examples include many of
the proposed or existing pilot configurations for press drying
(18), and impulse drying . The thermodynamic behavior of the
TM systems is unique among web consolidation systems and our
understanding has been developed largely over the past 4 or 5
years.

The intent of this paper is twofold.

	

First, we want to
review some of the fundamentals of TZ and TM systems with
special attention to the latter since they have been
investigated most recently . Second, we want to examine a
single unique diagram as a way of unifying our descriptions of
all the common web consolidation processes. We start by
reviewing some of the pioneering work, first on systems of the
TZ class, and then on systems of the TM class . By dividing
the review along these class lines, we will not be able to
preserve chronological order. We will attempt to preserve
time relationships by dating the various works, however .

SOME PIONEERING TZ PROCESSES

Z-direction Restraint

In 1975, Setterholm, et al . (1 ) examined the use of z-
direction restraint in drying to + improve paper properties . In
a laboratory study, Douglas fir pulps from 49 to 62% yield
were dried under either continuous or intermittent restraint.
Restraint pressure was typically 400 kPa with platen
temperatures at about 1500C . Apparently the, pressing
configuration was that described in a subsequent paper (2) as
a heated platen, one 150 mesh screen, the sheet, five 150 mesh
screens, and a second heated platen, Fig. 1A . These tests
produced excellent density and physical properties, often far
in excess of commercial practice. High strength from the
highest yield furnish was a particularly noteworthy result .
Several different cyclic applications of pressure, examined to
test various possible implementation schemes, showed
significant property development, as well.
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Fig. 1 . Mechanical configurations for various hybrid dryers .
A, B and C are constrained evaporative dryers (TZ) .
F i s a TEM-SEC press.

	

D, E and G can all be ther
momechanical web consolidation systems (TM) .

Press Drying

Two years later, Se tterholm and Benson (2) described the
results of "press drying" high yield hardwood pulps . This is
the first mention of the term "press drying. "

	

In this study,
the platen-sheet configuration was as described above, but
most of the tests were conducted with a platen pressure of 2.8
MPa and a temperature of about 2000 C . Excellent densification
and strength properties were obtained by press drying these
furnishes, showing the great potential of using such processes
to produce good products from stiff furnishes . Completely
drying the sheets from 30% solids required from 5 to 900
seconds for platen temperatures from 260°C down to 93°C and a
platen pressure of 400 kPa . In subsequent tests with the same



or a similar apparatus, Byrd (3) showed sheet internal
temperatures of about 100°C through the drying cycle . After
drying, sensible heating raised the sheet temperature to near
the platen temperature.
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In an early examination of the role of fiber composition
in press drying property development, Horn (4) studied pulps
with a wide range of lignin and hemicellulose contents. These
were dried from 60% solids, between screens at a pressure of
2 .76 MPa and a temperature of 204°C . For this drying
configuration and time, the web temperature should remain at
100°C while moist, and then climb to the platen temperature of
204°C when dry . Horn attributed the excellent strength of the
press dried products solely to hemicellulose softening and
flow which, under moist conditions, can occur at a temperature
well

	

below

	

100°C .

	

Lignin,

	

in

	

contrast,

	

softens

	

at

	

a
temperature well above 100°C when moist and even higher when
dry . Based on this, the low bonding potential of lignin, and
the absence of any direct relationship between lignin content
and observed strength, Horn concluded that lignin was not a
factor in strength development . The press dried high lignin
sheets also showed favorable creep rates, which Horn
attributed to lignin protection of hydrogen bonds .

Byrd (5) extended Horn's study by press drying special
pulps having independently controlled lignin and hemicellulose
contents . He also used a much wider range of initial moisture
contents . These sheets were also dried between screens . Byrd
showed that sheets with a high hemicellulose content exhibited
flow earlier and at a lower temperature, and that they
produced higher adhesion strength. He also showed that lignin
content had no effect on the hemicellulose softening
temperature, as measured by the onset of interlaminar shear
s trength deve lopment. For his drying conditions, there was
evidence of hemicellulose flow in about 1 second, whereas
lignin required about 15 seconds . These are presumed to be
related to sheet temperatures and polymer softening
temperatures, and not to any particular time dependency of
these softening processes . From these results, Byrd supported
Horn's conclusion that hemicelluloses are responsible for
strength, and that lignin serves only to delay flow of the
hemicellulose and does not contribute to strength.
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Byrd examined the wet strength of these sheets by soaking
them either in water or in a weak sodium hydroxide solution,
which preferentially attacks lignin bonds . Lignin-free pulps
produced similar results in these two tests . For increasing
lignin contents, the wet strength retention was greater under
water soak conditions . Byrd attributed these results to
latent lignin flow, which protects the hydrogen bonds from
moisture attack . He further suggested that the exposure times
were not sufficient to produce moisture resistance from auto-
crosslinking in cellulose . Hence, Byrd supported Horn's
contention that moisture resistance was due solely to lignin
protection of hydrogen bonds . Back's view (6) is that
moisture

	

resistance

	

is

	

the

	

result

	

of

	

auto-cross linking,

	

a
process which requires hot-when-dry conditions and, depending
on the treatment temperature, can be relatively slow .

In parallel but independent work, Anderson and Back (7)
investigated a similar press drying process, prompted, in
part, by his earlier work on hardboard. Kraft softwood pulps
from 52 to 69% yield were dried between two polished and
heated platens, Fig. 1B, maintained at temperatures up to
350°C for some of the experiments . In preliminary experiments
at various pressures, Back found that the sheet temperature
remained nearly constant at the saturation temperature
corresponding to the applied pressure during the evaporative
drying period . After drying, the temperatures climbed toward
the platen temperature go these experiments also produced hot-
when-dry conditions . Most of the actual drying experiments
were carried out at a platen temperature of 200 11C and an
unspecified pressure .

Results were compared with liner made by conventional
processes . Back also studied the effect of initial moisture
content on property development. At 52% yield, press drying
showed no advantage over conventional processes when compared
at equal density, thus showing that high sheet temperatures
did not produce any independent effect. Essentially
equivalent results have been produced in impulse drying (8) .
At higher yields, Back's press drying results did show higher
strengths at a given density . Mere, the beneficial effects of
sheet softening apparently came into play offsetting the
normally detrimental effects of higher yield. At a platen
temperature of 200°C, incremental performance gains from press
drying began at about 50% moisture and increased with wetter
sheets . At 350°C, benefits began at a slightly lower initial
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moisture. There is no mention of the probable mechanism .
Moisture resistance of the press dried sheets was not
evaluated in this work .

In all of this early work on press drying, the sheets
were overdried, i .e . they were left in the dryer long after
reaching 93-94% solids, and most were fully restrained
throughout the drying process . In such experiments, the
temperature-when-dry will be near the platen temperature,
i .e. , in the 150-2000C range. In the Forest Products
Laboratory experiments which sandwiched the sheet between
screens, the temperature-when-moist will be about 100°C, which
is well above the hemicellulose softening temperature and well
below that for lignin . For Back's experiments, which used
polished platens that effectively seal the sheet, the
temperature-when-moist could be well above 1000 C, haw far
depending on applied pressure which was not specified .

	

Hence,
i n

	

these

	

experiments

	

some

	

lignin

	

softening

	

is

	

at

	

least
possible . This could contribute to improved fiber flexibility
and conformabi lity,

	

and may be the explanation for the high
strength to density ratio for the press dried sheets .

All of the press drying experiments cited here involve
purely evaporative water removal and will use nearly as much
specific energy as a cylinder dryer. Because of the elevated
restraint pressures, property development was much improved
over other thermal consolidation systems . Hence, these press
drying configurations belong to the T7 class .

Thermal-vacuum or Condebelt Drying

A very novel paper drying concept was proposed by
Lehtinen (9) in 1980 . In this well known concept, the drying
configuration consists of a cooled metal plate or belt, a felt
or other water receiver, the moist sheet, and a heated metal
plate or belt, Fig. 1C . The assembly is sealed along the
edges and air is partially removed from the sheet and felt
before the process is started. Vapor forms in the sheet and
flows to the cool surface where it condenses at the cool
surface

	

temperature

	

and is

	

collected in the fabric .

	

Since
this temperature can be quite low, a fairly strong partial
vacuum is formed . This compresses the sandwich and provides
good heat transfer . Because of the vacuum, drying can occur
at quite low temperatures, allowing use of waste heat .
Properties may suffer, however.
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Drying rates are improved by the absence of air and the
good heat transfer, and can be about ten times those in a
cylinder dryer.

	

Specific energy consumption will be about the
same as for a cylinder dryer since all of the water must be
evaporated . A more recent version of this process (10) pro-
poses drying between continuous belts, both of which are tem-
perature controlled . This permits applying a z-direction
restraint, and adjusting the average sheet temperature and the
temperature differential somewhat independently . In this way,
it is possible to achieve sheet temperature and restraint con-
ditions that are favorable for property development with stiff
furnishes, as in press and impulse drying . This system,
called a Condebelt dryer (11), is an elegant example of a
system designed for property development. Because i t i s an
evaporative dryer with sufficient restraint to improve proper-
ties, it is a TZ dryer.

SOME PIONEERING PROCESSES OF THE TM CLASS

A Taut Belt-Steam Heated Cylinder System

In a remarkable piece of work, documented in a rarely
referenced patent (12), first applied for in 1963 and issued
i n

	

1967,

	

Gottwald,

	

et al.

	

describe

	

what

	

appears

	

to be

	

the
first "press dryer" for paper.

	

Their invention was used on an
operating paper machine to produce several grades by passing a
moist web between a metal cylinder, internally heated with
high pressure steam, and a taut porous fabric or belt .

	

Fabric
tensions are set to give normal pressures "of at least 35 kPa
and greater than the vapor pressure of the liquid at the tem-
perature employed ."

	

The recommended temperature range i s from
about 120 to 250°C .

	

This version of the -process is depicted
in Fig.

	

1D.

Gottwald, et al . cite "drying" rates of about 220
kg/hr/sqm as compared to about 25 for cylinder drying . Of
this amount, about half leaves the sheet as cool liquid,
showing that it is true liquid dewatering and not condensed
vapor. They also showed increases in web strength and stiff-
ness with increasing belt tension, i .e ., z-direction
restraint. Dewatering was attributed to four factors : the
driving force of vapor, pressing of the web, reduction of
water viscosity, and flash evaporation. This is the first
known suggestion of a vapor displacement or entrainment mecha-
nism . A simple calculation, based on an example from the



patent, gives a specific energy consumption of about 1700
kJ/kg of water removed. This patent also mentions the "use of
a series of dryers ahead of the press nip" as a sort of hot
press .

Impulse Drying

Wahren ( 13 ) pioneered the use of a press nip with one
externally heated roll as a hybrid or thermomechanical web
consolidation

	

system,

	

later

	

named

	

impulse

	

drying

	

(1 4) .

	

A
patent, first applied for in 1978, was issued in 1982 (13) .
External heating and high surface temperatures were used to
support the extremely high heat transfer rates in the nip
needed for rapid water removal. Wahren claimed rapid genera-
tion of steam near the hot surface and significant liquid
dewatering as a result . In a subsequent paper, Arenander and
Wahren (14) call this the "steam pulse effect," a new mecha-
nism which they believed was responsible for the extraordinary
water removal rates, often as high as 30,000 kg/hr/sqm .
Whether they believed the steam pulse effect caused displace-
ment or entrainment, or both, is not clear. This would appear
to be the same mechanism described by Gottwald and co-workers
(12) .

Using a roll press nip restricts contact time to a few
milliseconds, but longer nip presses, Fig . 1E, can extend
this . In either case, the process rates are very high because
of the high temperatures and pressures involved . This would
appear to be a high intensity version of the Gottwald, et al.
(12) system, although the developments were apparently
independent .

Tai-SEC or Direct Action Hot Pressing
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Another system of this general type is known as the
TEM-SEC press or the Direct Action Hot Press (15 16) . A
large, central roll of a special material, heated internally
with low pressure steam, serves as the common element of two
successive press nips, each with its own felt which may also
be heated, Fig . 1 F . The unconstrained sheet follows the hot
roll between nips . Sheet exit temperature is measured and
used to control the temperature of the roll surface. The
large common roll makes both nips somewhat longer than in a
conventional roll press .
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Although this system operates at low temperatures, the
combination of heating from both sides of the -sheet and inti-
mate contact with the roll gives good heat transfer . Press
exit dryness levels in the 52-58% range have been achieved in
commercial practice over the last several years . Elevated
sheet temperatures and corresponding reductions in water
viscosity are cited as the basis for this excellent perfor-
mance . Although this configuration is very similar to that of
the impulse dryer due to Wahren, the conditions employed are
very mild so vapor generation and vapor driven liquid dewa-
tering are unlikely . Hence, this system probably belongs in
the hot pressing class (mechanical web consolidation) and will
not be discussed further in this paper . A modest increase in
the intensity of the operating conditions could move i t into
the TM class, however, so it is mentioned here .

Pilot Press Dryers

The early press drying systems (1-5,7) invoked a purely
evaporative mechanism to fully dry the sheet. As a result,
they are fairly slow despite using quite high pressures .
Commercial implementation of a -system utilizing both a high
pressure and a fairly long drying time is a serious challenge,
as noted by Wedel (17) . Because of this, most laboratories
involved in press drying research proposed alternate con-
figurations for pilot scale press dryers . Swenson (18)
describes a number of these. In general, they all involve
heated rolls and press nips or belts, or both to get the
required constraint . At commercial speeds, most would provide
only partial drying . Most also involve direct contact between
the moist sheet and the heated surface on one side and some
type of open mesh material on the other to either receive
water or allow vapor to pass. All of these can be represented
by various combinations of nips interspersed with taut belts,
Fig. 1G .

THE CLASSES OF WEB CONSOLIDATION SYSTEMS

Wet presses and hot presses remove water by reducing the
volume of the moist web and are thus mechanical web con-
solidation systems . Cylinder dryers and other low restraint
evaporative systems are purely thermal systems . Our
understanding of these types of systems is fairly well devel-
oped and will be described elsewhere in this symposium.
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Adding an appreciable level of restraint to a thermal web
consolidation system tends to raise the sheet temperature and
the evaporation rate . The high web temperature and the
increased z compression may improve properties, especially for
s tiff furnishes. The dewatering mechanisms in this subclass
are not new, however. We will return to the TZ systems later
when we consider unification .

In contrast, thermomechanical web consolidation systems
involve both new dewatering and new property development
mechanisms . They are usually partial "dryers" in that appre
ciable water may remain in the sheet at the conclusion of the
process . An understanding of the thermodynamics and fundamen-
tal mechanisms of these processes of web consolidation has
been developed in the last few years and deserves our detailed
attention before we proceed to unification.

For our purposes, these systems all sandwich the sheet
between one heated surface (direct contact) and a porous
member which acts to pass vapor or collect water.

	

If the con
ditions are mild, such systems will act like a cylinder dryer.
Moderately more intense conditions may produce the behavior of
a restrained evaporative dryer or TZ systems . The process of
real interest occurs, however, for higher pressures and/or
wetter sheets, where saturation is likely . Under these con-
ditions, very different mechanisms prevail . Mechanical con-
figurations which can produce saturation include very taut
porous belts, Fig. 1D, press nips, Fig. 1E, or combinations of
nips and belts, Fig. 1 G. Various combinations of these basic
configurations can represent impulse drying, all of the pilot
press dryer configurations described by Swenson (18) and,
perhaps, others . These are the thermomechanical web con-
solidation systems . As we will show in the next section, the
fundamental thermodynamics, water removal, and property devel-
opment characteristics of these processes are very different
from that of the other web consolidation processes of interest
i n this paper, including the TZ systems .
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THE MECHANISMS OF THERMOMECHANICAL WEB CONSOLIDATION SYSTEMS

Wet Pressing in Thermomechanical Weib Consolidation

When the sheet first contacts the hot surface in a ther-
momechanical consolidation system, the sheet temperature is
raised by conduction and convection heat transfer (19) until
vapor begins to form . During this vapor-free period, liquid
dewatering by volume reduction, as in wet pressing, is
possible if the pressure-time history and the sheet moisture
content are sufficient to produce saturation . There may be
some thermal augmentation (hot pressing) because of heating of
the sheet. This should be a quite small factor, however,
since the average sheet temperature rises only slightly in
this period even though the temperature near the hot surface
is approaching an elevated boiling temperature, Fig. 2 .

Fig. 2 . Internal temperature measurements in impulse drying.
A is the platen temperature, B is the applied
pressure, and C, D, and E are temperatures at 50,
100, and 150 gsm from the hot surface, respectively .
Total sheet weight was 150 gsm .
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Shortly after first contact, liquid near the hot surface
will reach the saturation temperature corresponding to the
local hydraulic pressure, and vapor will begin to form . By
definition, wet pressing will cease since the sheet is no
longer filled with liquid . However, vapor displacement of
liquid water will begin at this time with an initial vapor
pressure equal to the hydraulic pressure at the end of the wet
pressing period . Up to this point, water removal by wet
pressing should depend on the imposed pressure-time history in
the usual fashion, altered slightly by increased web tem-
perature. Conditions that promote rapid initiation of boiling
will tend to shorten the wet pressing period and lengthen the
vapor displacement period .

	

Because the driving pressures and
flow resistances for wet pressing and vapor displacement are
equal at the transition point, the dewatering rates should be
nearly the same, as well .

So far, there are no known ways of distinguishing the
liquid dewatering from wet pressing and vapor displacement nor
to detect the exact transition point . Hence, independent
experiments (20,-21,22), run with an unheated pressing surface,
may overestimate the amount of water removed by volume reduc-
tion when the pressing surface is hot. It is expected that
the wet pressing component will increase with increasing sheet
moisture, increasing pressing pressure, decreasing surface
temperature, and decreasing sheet flow resistance . According
to heat flux data obtained by several authors ( 2 0,_21 , 2 3 ) , a
rapid rise in pressure may promote earlier boiling, but how
this trades off with a similar increase in wet pressing is
unknown. Devlin showed about 9% water removal by independent
wet pressing experiments . Because of the slow pressure rise
and the intense heat transfer, it is possible that wet
pressing was totally suppressed by early boiling in his sub-
sequent drying experiments .

	

This is consistent with instan-
taneous measurements which showed that the sheet just reached
the saturation caliper when vapor displacement was believed to
have started.

Water removal by wet pressing i s likely i n Configurations
1 E, F, and G, but could also occur in Configurations 1C and D
for very wet sheets and high levels of restraint. Liquid
saturation is possible in Configurations 1A and B, but liquid
dewatering is hindered by the absence of a transverse flow
path.

	

If liquid dewatering occurs, it must proceed from the
outside of the sheet to the middle .

	

This would also affect
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heat transfer and the thermal effects, leading to strong in-
plane gradients . In commercial systems of this type, which
would require very large drying areas, the feasibility of in-
plane liquid flow becomes even less . Configurations 1A, B, C,
and p are likely to be largely evaporative dryers whereas
Configurations 1 E and G allow for the possibility of liquid
water removal by wet pressing or vapor displacement or both.
Evaporation of any kind is unlikely in the TEM-SEC press,
Configuration 1F, because of the mild conditions used .

Heat Transfer at the Sheet-Hot Surface Interface

Heat transfer in TM processes can be very vigorous and
may constitute the rate limiting factor for performance . It
i s

	

strongly

	

influenced

	

in both

	

character and

	

level by

	

the
pressure-time history imposed on the sheet. Hence, let's exa-
mine the effect on heat transfer of several rectangular
pressure pulses of various levels . If the pressure is
increased fairly rapidly to values in the wet pressing range
and held for even a few milliseconds, the heat flux behavior
is dramatic, as shown in Fig. 3 . The early, very large heat
flux peak is characteristic. For have rsine shaped pressure
pulses, Burton (23) has recorded peak values up to 800 kW/sqm
using a hammer and anvil wet press simulator; Lavery ( 21 ) and
others have recorded values in excess of 300 kW/sqm under many
conditions with electrohydraulic presses, which have a
somewhat slower initial pressure rise . Lavery ( 21 ) has noted
that these peak values decrease slightly with increasing ini-
tial sheet solids over the range from 20 to 50% . The heat
flux peak usually occurs before the pressure peak, regardless
of how short the pressure pulse or how fast the pressure rise.
Hence, the pressure rise rate and the heat flux rise rate are
closely related.
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Fig. 3 . Typical pressure and heat flux curves for ther-
momechanical web consolidation.

De vli n

	

(20),

	

Burton

	

(23),

	

__Lave ry

	

(24),

	

and others

	

have
suggested that pool boiling at the hot surface is responsible
for these high heat transfer rates . Lavery ( 24 ) suggests that
the rising part of the curve is controlled by the pressure and
temperature available at the hot surface and liquid availa-
bility i n the sheet. A peak i s reached when the liquid supply
becomes inadequate to fully satisfy the boiling potential at
the hot surface . After this peak, heat flux values decline
rapidly to values of around 80 kW/sqm in 100 ms or so .

	

Even
this value is too large to be explained by conduction ( 19 )
suggesting that boiling continues .
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Peak heat flux values, obtained in similar experiments at
successively lower pressures, show a type of threshold behav-
ior, Fig. 4 . Apparently, there is some minimum pressure
necessary to initiate this type of boiling heat transfer .

	

Two
explanations are possible . If the pressure is low or the
sheet relatively dry, liquid saturation and, hence, pool
boiling may be precluded. Additionally, heat transfer may be
limited by low contact pressures which may be further lowered
by vapor pressure lift off . For these explanations, the
threshold pressure should increase with initial sheet solids,
lower sheet compressibility, and increasing hot surface tem-
perature. There are no data with which to test these ideas,
but independent experiments show that wet pressing becomes
effective at about the same pressure as the threshold for high
heat flux . Hence, saturation is probably necessary for high
heat transfer rates . Later, we will show that rapid dewa-
tering and property development are very dependent on these
high heat flux values, as well .

Fig. 4.

	

The effect of pressure and temperature on peak heat
flux .

	

Note the threshold a t a pressure o f about 0.4
MPa .

For sheets that are extremely wet or for pressures that
are very high, hydraulic pressures may be sufficient to
suppress boiling, at least for a short time . Despite this
possibility, Lavery (21) has shown nearly equivalent heat
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transfer in sheets from 20 to 50% solids when consolidated at
a peak pressure of 4 .8 MPa and a hot surface temperature of
315°C . For temperatures from 200 to 3500C, the corresponding
saturation pressures are from 1 .55 to 16.5 MPa . Hence, sig-
nificant delay of boiling by excess hydraulic pressure is
unlikely except in cases of low temperatures and/or very wet
sheets .

Fig. 5 shows two different pressure-time histories and
the corresponding heat flux curves for otherwise identical
situations . Pulse P1 could be generated by a press nip
followed

	

by

	

a

	

very

	

taut

	

belt as

	

in

	

Configuration

	

1G.

	

In
contrast, P2 could correspond to a taut belt only,
Configuration 1 D.

	

Two things can be noted from these data .
First, the press nip pressure pulse is sufficient to initiate
a high heat flux, HF1 , even though it is short.

	

Second, the
low pressure tail in P1 produced by the taut belt can sustain
a high rate of heat transfer . For the low pressure system
without the nip, P2, high heat fluxes, HF2, are never
achieved. Apparently, the nip serves to saturate and con-
solidate the sheet to initiate the high rate of heat transfer .
A low pressure level following this pulse can maintain the
compressed state and support the high rate heat transfer pro-
cesses but, when used alone, cannot initiate them . A system
with a low pressure zone followed by a press nip may have less
potential than the reverse configuration .

Fig. 5 .

	

The effect of an initial press nip on heat transfer
in a belt-type thermo-mechanical web consolidation
system .



656

Other similar tests show, however, that a tail pressure
of

	

about

	

350

	

kPa

	

sustains

	

the

	

high

	

heat

	

flux

	

whereas

	

a
pressure of about 70 kPa does not.

	

Hence, there must also be
a threshold pressure associated with the heat flux maintenance
process . If a second nip is added after the low pressure
dwell, Fig. 1G, the very high heat flux values can be
reestablished .

	

Hence, successive nips interspersed with very
taut belts can probably be quite effective . The ability to
initiate and sustain high heat flux values may be the single
most important factor in the performance potential of ther-
momechanical web consolidation processes . As we have seen,
this can be done with very taut belts, press nips, nips and
belts, and, perhaps, other mechanical configurations, as well.
There appears to be a threshold pressure required to initiate
the high rate processes and a second threshold pressure
required to sustain them . However, a continuously high
pressure level is not necessary to sustain high heat transfer
rates, once they are established.

Internal Heat Transfer and Vapor Displacement of Liquid

For pressure and moisture levels sufficient to produce
liquid saturation, several authors (19,20,23-26) have sup-
ported a two zone model to describe the internal ther
modynamics . Vapor, formed at or near the hot surface, flows
into the sheet under a total pressure gradient (because the
sheet is initially saturated and air-free) . When the vapor
reaches a sufficiently cool zone, it condenses to raise the
local temperature and redistribute the sheet water content.
The cooler zone is liquid filled and forms a "seal" to prevent
vapor flow from the sheet to the felt . This vapor-liquid
interface is quite stable ( 19 ) so the sheet divides into a
vapor zone next to the hot surface and a liquid-filled zone
next to the water receiver .

Intense heat transfer, Fig. 3, forces the vapor zone to
grow and the vapor pressure to increase under appropriate
dynamic balance conditions . This leads to several important
features of thermomechanical processes . First, the growing
vapor layer "displaces" liquid water and serves as an effec-
tive dewatering mechanism. Again, numerous authors
(19,20,23-26) have presented data and arguments to support the
vapor-displacement mechanism. Recently, flash x-ray
radiographs of an impulse drying event have provided strong
visual evidence for the vapor front concept.

	

Second, the
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heat-pipe like heat transfer process, afforded by liquid
reflux from the liquid pool back to the hot surface, quickly
heats the sheet to quite high temperatures, Fig. 2 . The ele-
vated temperatures reduce water viscosity to aid liquid dewa-
tering. They also soften fibers to improve compressibility
and permit lignin and hemicellulose flow, an important factor
in property development.

The sheet internal temperature data in Fig. 2 are typical
and suggest the type of z-direction temperature distribution
sketched in Fig. 6. Within the growing vapor zone, the tem
perature and pressure should be interrelated by saturation
with only a small pressure drop to support vapor flow . Hence,
the temperature through this zone should fall slowly toward
the liquid zone . Devlin (20), and Sprague and Burton (25)
have suggested that the liquid water bound to or in the fibers
in the vapor zone will remain liquid because of hygroscopic
effects.

	

Hence, the fibers in the vapor zone remain hot and
wet through much of the drying cycle, conditions that are
ideal for web consolidation . The liquid pool is heated by
conduction and convection heat transfer . Finally, liquid
water is transported from the liquid pool to the hot surface
by capillary action in the smaller pores . Because the tem-
perature drop through the vapor zone is small, the vapor
pressure drop opposing liquid reflux will be correspondingly
small. Lindsay ( 26 ) has provided convincing theoretical and
experimental evidence to support a reflux mechanism . He has
shown that liquid reflux over only about 1 % of the area in the
plane of the sheet is sufficient to support the measured heat
flux values .

Fig . 6 . A sketched representation of the expected temperature
distribution in a saturated sheet subjected to ther-
momechanical consolidation .
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As a specific example, Fig. 2, the vapor zone temperature
may approach 150°C which has a corresponding vapor pressure of
460 kPa .

	

This is the driving pressure for vapor displacement
dewatering .

	

This pressure will increase with hot surface tem-
perature, if the applied pressure is sufficient to support it .
At 460 kPa and 150°C, 0.0027 kg of water, evaporated at an
energy cost of 5.7 kJ, can displace 1 kg of liquid water.
Sensible heating requires a small additional amount of energy r

but vapor displacement i s an extremely energy efficient dewa-
tering process. Thus, process conditions that emphasize vapor
displacement will be most efficient.

The amount of vapor displacement dewatering depends on
vapor-liquid interface penetration of the sheet. In time, the
front will arrive at the sheet felt interface, giving the
maximum possible vapor displacement dewatering . Since the
felt permeability i s high, the front temperature i s assumed to
be 100°C when i t reaches the felt . The time required for the
100°C isotherm to reach the felt surface increases linearly
with basis weight and decreases linearly with hot surface tem-
perature, as shown by the regression coefficients below . The
pressures used in these experiments, 2 .1, 3.1, and 4 .1, were
not sufficiently important to be included in the equations .
Front velocity is sensitive to furnish type, but not overly
so, as these data show .

sm)

FURNISH DEFINITIONS

1

	

Unbleached Southern Pine Kraft at about 51% yield
2

	

Unbleached Red Oak Kraft at 59% yield
3

	

Bleached Kraft, 80% Eucalyptus, 20% Softwood
4

	

Same as 3 except refined in a Valley Beater to
f reene s s shown

Passage time

Furnish

(ms) =

CSF (ml)

A +

A

B*Temp

B

(°C)

C

+ C*BW (

Corr. Coe.

1 660 83 -0.30 0.68 0 .83
2 660 105 -0-42 0.86 0 .84
3 460 73 -0.25 0.62 0 .94
4 300 80 -0.41 1 .16 0 .93



Vapor displacement, as described above, requires sheet
saturation soon after contact with the hot surface . In some
cases, the sheet may approach but not reach a saturated state.
Evaporation near the hot surface, fed by capillary reflux,
will cause condensation within the web and a corresponding
redistribution of the sheet water ( 20 ) . If this process is
vigorous, enough water may concentrate at some zone in the
sheet to cause local saturation . Vapor displacement would
then proceed much as described for the saturated case . In
fact, Lindsay's analysis (26) shows that conditions quite far
from full saturation are still very favorable for liquid dewa-
tering by a moving vapor front because of the widely different
relative permeabilities of the gas and liquid phases . This
may have been the operative mechanism in the Gottwald, e t al .
(12) dryer since significant liquid dewatering was observed,
but the conditions used may not have produced sheet saturation
by compression. This may also explain liquid dewatering from
an initial solids of 65% in Lavery's (27 ) results where,
again, saturation by sheet compression (as in wet pressing) is
very unlikely .

Flash Evaporation
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In

	

the two zone model,

	

the vapor zone is

	

"sealed"

	

from
the atmosphere by the liquid saturated zone so that an appre
ciable vapor pressure can be generated .

	

Liquid remaining with
the fibers in this zone will be superheated with respect to
the atmosphere, but subcooled with respect to the local bulk
conditions because of hygroscopic effects . In the liquid zone
there will be a thin "layer" of water next to the vapor zone
that is above 100°C and, hence, superheated with respect to
the atmosphere, Fig. 6 . These conditions will persist until
the vapor pressure falls below the local saturation pressure .
When this occurs, flash evaporation will begin.

The vapor pressure may drop for either of at least two
reasons . First, as suggested by Devlin ( 20 ), when the vapor-
liquid interface reaches the sheet-felt interface, the liquid
seal needed to maintain the vapor pressure will be broken .
This may be a gradual process that commences when the front
nears the felt . Also, there may be viscous fingering (19) of
the vapor through the liquid when the liquid layer becomes
thin . Any of these events would tend to lower the vapor
pressure and initiate flash evaporation.
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Second, in short duration processes, the applied pressure
may be removed long before the front passes completely through
the sheet.

	

Here, too, the vapor pressure will tend to drop,
as suggested by Burton (23), because i t cannot be supported by
the reduced applied pressure and the correspondingly reduced
heat transfer . As suggested by Sprague (33), flashing during
a period of declining applied pressure should continue to
drive vapor displacement and to heat the remainder of the
sheet. Once constraint is totally lost, however, there is no
mechanism to support continued vapor displacement dewatering .

As the vapor pressure drops, hot water in the sheet will
begin to flash into vapor. This should occur first in the
boundary of the liquid pool next to the vapor zone where a
very slight vapor pressure drop will initiate flashing .
Flashing tends to sustain the vapor pressure so a dynamic
balance condition should control the flashing rate . Flashing
of water bound to or in the fibers will require a larger
pressure drop because of hygroscopic effects . Hence, one
would expect water to flash from progressively smaller pores
as the flashing process continues . Under some conditions, the
flashing process can become quite violent, leading to a sheet
disruption process called delamination . This undesirable
phenomenon has been described or alluded to by several authors
(1,7,18,28) .

Flashing tends try cool these two sheet zones quite
rapidly ( 20 , 2 3 , 2 4 ) . At the same time, the subcooled portion
of the liquid zone is heated so that the entire sheet
approaches a uniform temperature of 100°C immediately after
the pressure is completely removed, Fig. 2 . As a result, eva-
poration can continue for a short time after the pressure is
completely removed to account for a small amount of water
removal.

SUMMARY OF DEWATERING MECHANISMS IN TM SYSTEMS

If the applied pressure-sheet moisture content com-
bination exceeds a threshold condition, the sheet will become
saturated.

	

Under such conditions, water may be removed early
in the event by volume reduction, as in wet pressing. During
this period, heat transferred to the sheet by conduction will
raise the local web temperature to the saturation temperature
corresponding to the local hydraulic pressure . At this point,
the heat transfer mechanism changes to pool boiling,

	

a vapor



zone is formed next to the hot surface, and wet pressing
ceases . Liquid dewatering continues, however, as the high
heat flux at the hot surface supports a growing vapor layer
and a vapor-displacement-of-liquid mechanism. This divides
the sheet into three thermodynamic zones as shown in Fig. 6 .
Proceeding from the hot surface, these are: a zone where the
interstices are filled with vapor but the water in and on the
fibers remains liquid because of hygroscopic effects ; a zone
filled with liquid superheated with respect to the atmosphere
(above 1000C) ; and a zone filled with liquid below 1000 C .
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Vapor displacement continues until the vapor pressure in
the vapor zone drops . This may occur when this zone has
completely filled the sheet or when the external pressure is
reduced, either of which will initiate flash evaporation of
the liquid remaining in the sheet. Flashing initiated when
the sheet still contains three distinct zones will promote
continued vapor displacement of water and heating of the third
zone . This process may be uncontrollable, however, leading to
a violent release of energy and consequent damage of the
sheet. Flash evaporation, initiated when the vapor front
reaches the felt, will have mostly bound water to remove, a
process that is likely to be gentle and nondisruptive. In
either case, some water is removed as vapor by this flashing
process . Some evaporation may also occur after the sheet
leaves the "dryer," since the average sheet temperature is
likely to be near 1000C .

Throughout much of the process, the fibers in the sheet
are wet, hot, and under considerable structural load . These
conditions, which are ideal for web consolidation, will propa
gate through the sheet as the process continues.
Simultaneously, water i s being removed from the web to promote
hydrogen bonding. Because the sheet is hot and moist, lignin
flow is also possible . Hence, based on these thermodynamic
considerations, the TM processes would be expected to have
considerable property development potential. This is indeed
the case, as will be developed below . It should be noted,
however, that these processes are normally interrupted before
they can go to completion . This may leave significant z-
direction gradients in the sheet . These can be alleviated, to
some extent, by conducting a part of the drying from each side
o f the sheet .
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All of these thermomechanical processes - will revert to
thermal web consolidation i f the pressure falls below the
maintenance threshold . A subsequent recompression of suf
ficient magnitude will restore the high rate mechanisms
(thermomechanical processes), given appropriate sheet
conditions .

As with conventional paper web consolidation processes,
property development in thermomechanical web consolidation is
not fully understood nor predictable in a quantitative sense .
In general, however, these systems can produce two major
strength development benefits : substantially increased den-
sification and bonding, and moisture resistance . Under some
operating conditions and for some furnishes, they may also
produce higher strength at a given density than conventional
processes . Although such processes also have an ability to
influence surface and optical properties, these will not be
discussed in this paper .

A GENERAL WEB CONSOLIDATION DIAGRANT

We now want to examine a way of unifying the whole family
of web consolidation processes so they can be represented, in
a useful way, on one major diagram. To do this, we introduce
the idea of specific energy consumption . This is the amount
of energy used for each unit of water removed in the web con-
solidation process, whatever it may be . Energy losses, that
is, the efficiency of energy use from a machinery point of
view, will not be of concern, for the moment . on this
diagram, we want to examine energy efficiency, water removal
rates or dewatering times, and property development .

Wet Pressing

Since a wet press does not use any externally added ther-
mal energy, yet removes a great deal of water, the specific
energy consumption is obviously zero . On coordinates of spe
cific energy consumption versus web temperature, wet pressing
is a single line, labelled P in Fig. 7 . It is a line rather
than a point because the web temperature may vary con-
siderably, but will always be less than 100°C . Density will
usually be well related to the press exit solids so more
pressing,

	

followed by conventional drying,

	

produces higher



663

density . Bonding at the usual press exit solids levels is not
sufficient to prevent springback of stiff furnishes, so these
tend to produce lower densities . Hence, conventional wet
pressing does not allow the use of some furnishes of interest.

Fig. 7 . Specific energy consumption versus sheet or hot sur-
face temperature for several different web con-
solidation configurations . Included are pressing,
hot pressing, cylinder drying, high pressure cylinder
drying (Ahrens), evaporative press drying (Byrd), and
several versions of thermomechanical consolidation
systems .

Hot Pressing

In hot pressing, thermal energy is added directly to the
open web, usually with steam or infrared heating. Web tem-
peratures are limited to less than 100°C since the web is not
sealed to permit elevated vapor pressures. A simple energy
balance, based on reasonable assumptions and well known rules
of thumb (29), shows that the incremental water removal
derived from web heating requires a specific energy consump-
tion of about 1400 kJ/kg. On the diagram in Fig . 7, the line
marked HP represents hot pressing over the normal web tem-
perature range .

	

Relative to wet pressing, the elevated web
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temperature of hot pressing gives higher exit solids .

	

There
may be some independent increase in density with temperature,
especially for stiff furnishes, as explained by Back ( 30 ) .
Hence, hot pressing is of value in reducing the load on the
dryer section and may offer a limited way to extend the utili-
zation of stiff furnishes .

Wet pressing and hot pressing are mechanical web con-
solidation processes where water is removed by volume reduc-
tion . The major effects of elevated temperature are greater
water removal through water viscosity reduction and, perhaps,
a slight improvement in fiber conformability . Unless carried
to extreme levels of pressing with hot webs (31), these pro-
cesses are limited to solids levels in the low 50% range and
to densities of the order of 0.7 g/cc, even for flexible
fibers . Temperatures and bonding cannot be raised suf-
ficiently

k_
to have any significant independent impact on

moisture resistance .

Evaporative Drying

For most other web consolidation systems of interest in
this paper, hot surface temperature is a variable of great
importance . It will usually range above 1000C . Hence, to
represent such systems on the specific energy diagram, we
change the abscissa above 100°C to machine surface tem-
perature. In evaporative drying, we must supply sensible
heating of the entire web plus latent heating of the water
evaporated . This requires a minimum of about 2700 kJ/kg but,
due to thermal inefficiencies, will usually require much more .
On this augmented coordinate system, evaporative drying can
fall anywhere in the region labelled T for thermal con-
solidation . Higher surface temperatures and contact pressures
increase the heat transfer coefficients and the evaporation
rates, but do not significantly change the energy efficiency .

Despite the commonality of water removal mechanisms and
energy efficiency of evaporative systems, there are important
distinctions in property development . Under low z-pressure
conditions, bonding and fiber conformability in evaporative
drying are dependent on the auto-contraction forces of drying .
For flexible furnishes, these are sufficient to produce good
bonding and correspondingly good strength properties . For
stiff furnishes, however, these forces are inadequate to pro-
duce good consolidation .

	

The resulting papers are poorly



bonded and have equally poor mechanical properties . As noted
earlier, this has led to the consideration of the TZ systems
which use higher pressures and somewhat altered drying con-
figurations, especially for the stiff furnishes . The low
pressure thermal web consolidation processes (T) are
exemplified by cylinder drying as denoted by a total energy
consumption example point in the diagram of Fig. 7 . For the
higher pressure TZ systems, we need to consider several spe-
cific examples for placement on this diagram.
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Ahrens (32) examined the influence of hot surface tem-
peratures up to 303°C and pressures up to 30 kPa on hot sur-
face drying in a simulated extension of cylinder drying-like
systems .

	

In these experiments, the sheet was sandwiched bet-
ween an impervious hot surface and a felt . At the highest
temperature and pressure, the drying rate was about 4 times
that for normal cylinder drying conditions . Properties and
specific energy consumption were unaffected by conditions over
these ranges . Specific energy consumption, based on energy
delivery to the sheet from Ahrens data, are shown in the ther-
mal region of Fig. 7 .

	

In later experiments, Ahrens extended
the pressure range up to 350 kPa without altering the specific
energy consumption. Unfortunately, property data for these
higher pressures were not reported . In a further extension of
this work, Devlin ( 20 ) showed that pressures above 2.1 MPa had
a marked influence on water removal mechanisms, energy effi-
ciency, and property development. Hence, there appears to be
threshold pressure which can move these processes out of the
thermal regime

	

into the

	

thermomechanical regime .

	

Devlin' s
data will be discussed further below .

Byrd (3) dried linerboard sheets of about 200 gsm in a
system like that in Fig . 1A, i .e ., between screens that
allowed easy vapor escape .

	

Pressures of 14, 410, and 2760 kPa
and temperatures of 121, 177, 232, and 288°C were used . Only
the data for drying from 60 to 80% solids with two heated pla-
tens will be presented. Byrd's measured heat transfer data,
divided by total water removal to get specific energy consump-
tion, are plotted in Fig. 7 . Whether Byrd's data are for
energy transfer to the sheet only or include losses is not
clear, but the numbers suggest the latter . In any event, spe-
cific energy consumption in this configuration is about 4500
ki/kg and is only weakly dependent on drying conditions . Byrd
also found that the mid-sheet temperature remained at about
1001 C until the sheets were quite dry, and then climbed toward
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the platen temperature . These results strongly support the
notion that this is strictly a thermal web consolidation pro-
cess with no liquid dewatering . Byrd did not present any
property data in this paper, but very similar experiments with
Douglas fir (1 ) produced densities of about 1 .0 g/cc and
excellent strength properties .

Anderson and Back's experiments (7) with two heated
platens resulted in densities as high as 1 .0 g/cc and
correspondingly good physical properties . In the Condebelt
dryer (9) density and strength increase with z-pressure up to
about 0.4 MPa, and then level off . this level of restraint is
lower than that used in most early press dryers (1-5,7) . In a
study of several softwood pulps, produced in several different
ways, Michel and his colleagues found density to increase
fairly rapidly with pressure at first and then level off for
higher pressures. Although not sharply defined, this boundary
was also at about 0 .4 MPa . For evaporative press drying, it
appears that density increases with restraint pressure up to a
threshold value . This threshold is probably sensitive to pulp
type, dryer type, and drying conditions such as temperature
and sheet moisture content. Beyond this threshold, pressure
does not seem to be very important to property development.

From these various experiments, we have to conclude that
specific energy consumption will be about the same for all
drying configurations that involve only evaporative water
removal. Property development, on the other hand, can be
improved as pressures and temperatures are increased from
those used in cylinder dryers . Drying configuration may also
be important. All of the TZ dryers can produce hot-when-moist
conditions, but the Back double platen configuration or the
Condebelt dryer may produce the highest internal temperatures .
This would favor lignin softening and, in turn, could improve
property development, especially of stiff furnishes . Back (6)
has suggested the need to mechanically seal the back side of
the sheet for some part of the drying time to achieve still
higher temperatures and more lignin softening. In all TZ
systems, the drying rates are restricted to values about 10
times those for a cylinder dryer. Hence, the dryer part will
still be quite large .



Thermomechanical Web Consolidation

As discussed above, the thermomechanical processes remove
some water mechanically (wet pressing), some by evaporation
(thermal), and some by vapor displacement. Because of liquid
dewatering, these processes use much less energy than pure
thermal dewatering . Hence, they all have specific energy con-
sumption values in the region labelled TM (thermomechanical
consolidation) in Fig 7 . The relative contributions of the
three water removal mechanisms determine where they fit on the
diagram and, to a considerable extent, the property develop-
ment potential of the process . These, in turn, depend on the
particular conditions of temperature, pressure, and time used
i n drying .

Lavery (27) examined the drying behavior of 127 gsm
linerboard sheets under conditions representative of the pro-
cess called impulse drying, Fig. 1E . A haversine pressure
pulse with a duration of 30 ms, a peak height of 4 .8 MPa, and
a platen temperature of 315°C were used on sheets with initial
solids from 20 to 70%. For these experiments, specific energy
consumption reached a minimum value of about 370 kJ/kg at an
initial solids of 30% and a maximum of 2300 kJ/kg at 70% ini-
tial solids . These data clearly put impulse drying in the
thermomechanical web consolidation regime, as indicated in
Fig. 7, although the specific location will change as the
impulse drying conditions change . For drying systems and con-
ditions of this type, Lavery (8) has shown that density is
primarily a linear function of the solids at the dryer exit .
He has further shown that this relationship is not very
sensitive to drying conditions, initial solids levels, basis
weight, or whether the drying is done on one or two sides
(i .e ., with restraint lost between drying events) . Similar
data have been obtained for several very different furnishes .
In some lower pressure experiments, there was an independent
effect of pressure on density, as for the TZ systems .

Devlin ( 20 ) conducted some very thoroughly characterized
experiments with a heated platen version of Fig. 1E . The
sheets were removed from the dryer when they reached about 94%
solids, i .e ., when they were dry . He used 205 gsm linerboard
sheets with an initial solids of about 42% and a four point
plan with temperatures of 149 and 274°C, and pressures of 2.8
and 4.8 MPa .

	

In all cases, liquid dewatering was near 30% of
the total water removed.

	

He also measured the water removed
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by pressing under the same conditions with a room temperature
platen and found it to vary up to 9% of the total water
removed. As " . noted before, however, such experiments may
overestimate the volume reduction dewatering that occurs when
the

	

platen

	

is

	

heated .

	

He

	

found

	

drying

	

times

	

of

	

1

	

and - 4
seconds for the high and low temperatures, respectively,
largely independent of pressure . He also found that the spe-
cific energy consumption values were nearly constant at about
1900 kJ/kg, independent of both pressure and temperature.
This is consistent with a constant liquid dewatering fraction .
These data, shown on Fig. 7, fall in the upper part of the TMC
zone .

The work

	

of

	

Gottwald,

	

et al.

	

( 1 2)

	

for

	

the drying con
figuration in Fig .

	

1 D has already been described.

	

The speci-
fic energy consumption is estimated to be about 1700kí/kg, as
shown on Fig. 7 . They indicated an increase in strength and
stiffness with increasing belt tension. This is in accord
with the notion that pressure is an important independent
variable when i t i s low .

Many of the thermomechanical web consolidation experi-
ments have not included energy measurement. This is espe-
cially true of those involving press nips and or taut belts
and, hence, partial dewatering .

	

This has left important parts
of the TM zone devoid of data.

	

To fill this in,

	

some recent
experiments were conducted with 100 gsm handsheets of high
yield (59%) kraft red oak, pressed to an initial solids of
30% .

	

Tests were conducted at platen temperatures of 149, 204,
260, and 316°C; constant pressures of 138, 345, 690, 1380, and
3450 kPa ; and a nip residence time of about 100 ms, as would
be produced by systems

	

1 D or E .

	

In these experiments, exit
solids ranged from about 32% to as high as 85% . Only those
experiments producing exit solids above 40% are included as
having provided meaningful water removal. These tests gave
specific energy consumption values up to about 1500 kJ/kg and
are shown in Fig . 7 .

Since these experiments provide specific energy consump-
tions values that range over a large part of the TM zone, we
elect to give a more detailèd accounting of property develop
ment . In all cases, these were partial drying experiments,
with final drying on a cylinder dryer simulator . The question
to be examined here is how properties depend on the ther-
modynamics of the particular drying situation.
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Fig. 9 . Breaking length versus density for the red oak tests
described in Fig. 8 .

Fig. 10 . Compressive strength index (STFI) for the red oak
tests described in Fig. 8 .



Fig . 11 . Stretch versus density for the red oak tests
described in Fig . 8 .

Fig . 12 . Wet to dry tensile strength ratios versus exit
solids for the red oak tests described in Fig . 8 .
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Since density is well related to exit solids and proper-
ties, in turn, are well related to density, i t is important to
relate the degree of dryness to the thermodynamic conditions
used in the dryer.

	

Fig. 13, for example, shows that pressure
becomes important only when it exceeds a threshold value, as
discussed before . Above this threshold, it is only mildly
important, but becomes more so as hot surface temperature is
increased. Temperature is very important, however, regardless
of pressure. For these processes, density (solids out) and
the average sheet temperature-time exposure increase together .
The resulting increased thermal effect may be responsible for
the improved moisture resistance . Auto-crosslinking is
unlikely since these processes never produce hot-when-dry con-
ditions unless carried to extremes.

Fig. 13 .

	

Exit solids versus the log of pressure with hot sur-
face temperature as a parameter. These data are
from the red oak experiments described in Fig. 8.

If we relate dryness gains to the specific energy con-
sumption, we find a positive trend, but the relationship is
poorly defined with a correlation coefficient of only 0 .4,
Fig. 14 . This clearly shows that specific energy use alone
does not determine dryness or density . Dryness shows a much
stronger relationship to the total energy transferred during
the drying event, Fig. 15 . Hence, as noted before, the heat
transfer rate at the hot surface is a primary rate limiting
factor .



Fig. 14 . Exit solids versus specific energy consumption for
the red oak tests described in Fig. 8 . As shown,
specific energy is not well related to the dryness
achieved.

Fig. 15 . Exit solids versus total energy transfer for the red
oak tests described in Fig. 8.
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There are several remarkable performance features of the
TM systems . They offer an excellent ability to produce dry-
ness, density, and strength at pressures and temperatures near
those used in TZ systems . The required time interval is
usually much less, however. When compared with wet or hot
presses, or low pressure thermal systems, the TZ and TM
systems offer vastly improved dewatering and property develop-
ment potentials .

SUMMARY

Most of the important web consolidation systems either in
use or proposed have been represented on a single coordinate
system of specific energy consumption versus either web or hot
surface temperature, Fig. 7 . On these coordinates, the most
important web consolidation processes divide into three
classes, each represented by a different area on the diagram.

Processes in the mechanical zone (wet and hot pressing)
are very fast and use little thermal energy . However, they
have limited property development potential, especially with
stiff furnishes . Exit solids are limited to around 50% unless
extraordinary levels of hot pressing are used .

Processes in the thermal zone (T systems such as cylinder
dryers) are slow and energy intensive . If the constraint
pressure is low, they also have limited property development
potential. In contrast, systems with higher levels of
constraint (TZ systems such as the platen press dryers and the
Condebelt system) can be much faster and produce much better
properties, even with stiff furnishes . Commercial TZ systems
will still be quite large and operate at a substantial
pressure.

	

Hence, their design will be a challenge.

Processes in the thermomechanical zone (TM systems such
as the impulse dryer and several of the proposed press drying
pilot configurations) will remove liquid water by wet pressing
and vapor displacement . Evaporation will remove some addi-
tional water . These systems can be very fast and, hence,
quite small.

	

They will usually leave some water in the sheet
to be removed by other dryers .

	

They can be very energy effi-
cient and have an excellent property development ability,
usually in proportion to the amount of drying that is
accomplished . Dewatering and property development relate
poorly to energy efficiency, but relatively well to total
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energy transfer .

	

Hence, heat transfer from the hot surface to
the sheet is the rate limiting step in such processes . Hot
surface temperature is a very important variable ; pressure is
much less important provided i t is above a threshold value .
Because these processes are intense and short, they induce
strong gradients in the sheet which may remain at the conclu-
sion of the process . The significance of this is not fully
known, but can lead to such undesirable effects as sheet
delamination or two-sided properties .

Assignment of a particular web consolidation process to
one of these classes depends on the conditions of the sheet,
the drying configuration, and the drying parameters imposed.
once assigned to a class, location of the process on the spe-
cific energy diagram is relatively straightforward . This
location, in turn, determines the mechanisms of the process
and much about its performance potential . Hopefully, the ter-
minology adopted for this diagram and the use of the diagram
will help in the development and communication of
understanding of all these important web consolidation
systems .
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Dr . C.H . Sprague

That is true .

Dr. C . Dunning

AN INTEGRATED VIEW OF WEB
CONSOLIDATION PROCESSES

C. H . Sprague (Review Paper)

Dr . C . Dunning

	

James River, USAF

Looking at the first points that you had on your overall matrix,
I gather that you were not trying to calculate the energy expended
as pure mechanical energy in the nip .

If you had - what do you estimate that the nip energy input would
have been in that case?

Dr. C .H . Sprague

I do not know the answer to that question . I was interested in how
thermal energy could be used and how it would interact with the
mechanical effects .
Certainly there is appreciable energy brought in through the
mechanical action and I did not try to calculate that . This might
be an interesting area of study .

Dr . H . Paulapuro

	

FPPRI Finland

If we consider these processes from the practical point of view
we would be interested in temperatures of approximately 100 -C . But
the change in the water removal mechanism will happen between 100

Transcription of Discussion



and 200 °C as your slide indicates . The process is expected to
become quite unstable in this area . Have you performed any
experiments in this area and noticed any instability in the
process?

Dr . C .H . Sprague

I am afraid I do not understand your question - could you rephrase
it?

Dr . H . Paulapuro

At a certain temperature you are changing the mechanism from that
of conventional pressing to the impulse drying mechanism . Have you
found in any of your experiments that the process becomes unstable
at this point?

Dr . C.H . Sprague

I am not sure what you mean by instability . But when you reach
conditions of moisture, temperature and pressure where you start
to build appreciable vapour pressure and significant levels of
superheated water in the sheet, then you have the potential for
significant instability when you start to open the nip, because
of the flash evaporation process . So, the forces that are
generated may significantly exceed the strength of the web at that
point and you can completely disrupt the web . If that is what you
have in mind, certainly we have seen this .

Dr . H . Paulapuro

Yes, but is this due to the change in the water removal mechanism
or simply due to general conditions in the process?

Dr . C .H . Sprague

It seems to me that we have set up a thermodynamic situation in
the sheet which we cannot control . If we allow the drying process
to go to completion, of course, all of these gradients disappear
and we remove the potential for them to occur . But if we interrupt
the process in mid-stream then we have that potential remaining .



Dr . H . Paulapuro

Perhaps we can continue the discussion after the session .

Prof . J .D . Lindsay IPST USA

Perhaps I could clarify Dr . Paulapuro's original question on
instabilities .
Do you see a sudden transition from one mechanism to another and
perhaps oscillations between those or do you see a smooth change
as you go up in temperature and pressure?
Dr .C . Sprague

I have seen no evidence of instabilities of that kind . In fact if
you look at the data on Red Oak we measured a large number, of
sheet internal temperatures using very tiny thermocouples in the
sheet and watching the temperature migration through the sheets .
It is a very smooth process . These measurements are difficult as
you can appreciate, they contain a lot of noise . We plotted the
100 °C isotherm through the sheets to see how fast it was moving .
We did this for a number of different furnishes and we found, in
rough terms, that it is moving about at the rate of 1
g/m2/millisecond . So if you have 100g/m2 sheet it will take about
100 milliseconds for the heat to get through . This will vary
slightly with furnish, temperature, etc .
B . Wahlstrom

	

Borje Wahlstrom Inc.

	

USA

Thank you for a very interesting paper . Obviously there are some
limitations to the use of this process because of the delamination
of the papers if they are too impermeable . What kind of grades do
you expect impulse drying to be used on?

Dr . C . Sprague

The real attraction of these processes that exploit the
interactive effects of pressure and temperature to produce high
web temperatures is with furnishes which would be difficult to
consolidate . Therefore one tends to think about board grades, but
as you pointed out, these are the ones that are most susceptible
to delamination problems . So there is some effort going on
currently throughout the world to move the application initially
to lighter grades where those problems are not so great . At some
point downstream we will learn to control the delamination process
and still retain the performance potential of these systems . It
will then be applicable to any grade where its performance



characteristics are appropriate . This may take some time but I
think it will come eventually . This is an area where we need to
develop more fundamental under:-anding of the process so that we
can learn to control it in the late stages and thus avoid the
problem with delamination .

Dr .J .C . Roberts

	

UMIST

	

UK

The neutral sizes are particulary sensitive to temperature effects
and I wondered if any work had been done on how these high web
temperatures affected these processes . In particular, the fact
that ther^ is often competition between hydrolysis of the size and
direct r . action with the cellulose during drying . Has any work
been done and have you any idea how these processes might affect
it?

Dr . C . Sprague

It is not an area I have looked at . It was discussed in our early
thinking but I do not have any information which would be of help
to you .
Mr .I .K . Kartovaara

	

FPPRI

	

Finland

In conventional cylinder drying we have a fairly good chance of
recovering the latent heat in the evaporated water and in the
Condebelt process by Dr . Lehtinen the possibilities are even
better . In impulse drying I understand that it would be very
difficult to recover the latent heat in the evaporated water . Do
you think that this will seriously affect the possibilities of
usi_ :_j impulse drying?
Dr . C . Sprague

A substantial part of the water that is removed from the web is
actually removed as hot water and so the amount of evaporation
that takes place is fairly small especially if we limit this
process to 75-80% solids . I do not think that this will be a
serious deterrent - we will not lose enough energy for it to
create a problem . One does not see much vapour around an impulse
dryer operating under reasonable conditions .

Mr . P .E . Wrist

	

Paprican Canada

I am having a little difficulty with your explanation for the
approximately hundredfold increase in heat transfer rates which
occur with impulse drying in contrast with conventional drying .



As I understand your proposed mechanism, the nip first produces
a saturated layer in contact with the hot surface . Some moisture
evaporates at the hot surface- the vapour moves into the sheet
pushing the water ahead and then condenses, setting up a heat pump
which is then responsible for the high flux . This model does not
seem sufficiently different from that of conventional drying to
explain the hundredfold increase which occurs with just a modest
increase in temperature differential between the hot surface and
the paper . Surely as the temperature of the hot roll is increased
above 100°C we need a major discontinuity in the drying mechanism
to explain the observed large increase in the water removal rate
which occurs as we pass into the impulse drying regime . [ What
creates the explosive forces involved? Is it possible the liquid
film in contact with the roll super heats and then suddenly
nucleates with rapid steam formation as in a smelt-water recovery
boiler explosion? It is known that heat fluxes rise very high when
superheating occurs . ]
[ ]Additional comments made after the event Ed .
Dr . C . Sprague

Jeff Lindsay will cover this in detail in the next paper . But the
basic mechanism appears to be very much like a heat pipe where we
have a hot surface, a vapour layer and vapour leaving the hot
surface and cond_-:nsing in the lower zone of the sheet and then
there is a liqLi -- reflux back to the hot surface . So there is very
little net evaporation in this system . The energy transfer goes
into heating the web as a whole and that temperature rises very
rapidly . The zones near the hot surface will be well above 100°C
in just a few milliseconds . The energy transfer goes primarily
into sensible heating of the web and only a small amount is
actually used in the evaporation process in the early stages .
[After about 100 milliseconds, the heat flux level in impulse
drying is about 40-50 times that for conventional drying . This
difference is easily accounted for by the absence of air in the
sheet and the higher temperatures and pressures involved. Earlier
in the impulse drying event, heat flux levels may be much higher .
Here, however, the sheet is filled or nearly filled with liquid
and is also air free . This regime is believed to be characterised
by nucleate boiling, once the local liquid temperature reaches the
local liquid saturation temperature . Altho ,:gh the liquid at the
evaporation site is superheated with respect to the atmosphere,
it is not superheated with respect to the local thermodynamic
conditions . Hence, a vapour "explosion" seems unlikely, and
unnecessary .]



Dr . H .P . Didwania

	

Jefferson Smurfitt Corp .

	

USA

The relationship between exit solids and property developments are
shown to be independent of the particular drying conditions during
thermo-mechanical consolidation . How universal is this phenomenon
and what could be the implications of this finding?

Dr . C .A . Sprague

The available data suggests that independence of this relationship
from drying conditions will apply over a limited temperature an
pressure range, i .e . it will not be applicable at very low
temperatures or pressures . We know that applies over a fairly
broad range of what I would call conventional furnishes and a
fairly wide range of conditions . I have not, as yet established
that relationship for extremely stiff furnishes at say, 80-90%
yield .

Dr . K .I . Ebeling

	

James River Corp .

	

USA

Thank you for an excellent review . Could you tell us how important
the lignins and hemicelluloses in the cell wall are for obtaining
the increased consolidation in impulse drying . For instance if one
has a high alpha pulp i .e . low hemicellulose, low lignin pulp -
what would be the effect of these new drying processes on such a
sheet?

Dr . C . Sprague

According to the work done by Horn and Byrd consolidation is
primarily the result of hemicellulose flow and hydrogen bonding .
The lignin does not. really play a significant role in bond
development and strength - according to them its role is more in
protecting the bonds once they are formed - obviously you are not
going to have that in a bleached grade for example .



Prof . D . Wahren

	

Stora Technology

	

Sweden

Dr . C . Sprague

Dr . J .L . Brander

	

Wiggins Teape R & D Ltd UK

Dr . C . Sprague

I believe that processes like this will become more important from
a surface property point of view when we look at grades which are
low in lignin and hemicellulose, since these processes have a
significant ability to do that . The literature is fragmented in
this area primarily because people have looked at the issue in
terms of strength development rather than surface development .

In answer to KariIs question, with respect to strength development
in high and low yield pulps - does one have less of an advantage
with the high temperatures in low yield pulps?

Yes, from a strength development point of view . I am sorry if I
did not make that clear . If you use a highly bleached furnish you
would not have the extra strength development potential . But I
think surface properties become very important in that case .

I wonder if you would like to comment on the potential two-
sidedness of papers dried in this way?

Certainly if you initiate a process of this kind which establishes
very strong gradients in the sheet and then interrupt the process
in midstream you will have a sheet that is quite two-sided . There
will be density gradients through the sheet of the type that Mike
(MacGregor) talked about yesterday in relationship to wet
pressing . There will be significant smoothness differences in the
sheet . It is clearly the case that where we need a balanced sheet
we are going to have to do some of the drying on one side and some
on the other side . Some of this work has already been done with
quite promising results . However, this has not yet been published .




