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Biomass is a class of abundant renewable resource. Its efficient use in the 
field of biobased materials is one of the important ways for implementation 
of sustainable development strategies. 2,5-Furandicarboxylic acid (FDCA) 
as a potential alternative of terephthalic acid (PTA) to make alipharomatic 
polyesters, can be obtained in mass amount from cellulose via bio- or 
chemical process. For this reason, FDCA-based polyesters have gained 
high interest recently. This review systematically summarizes recent 
progress in the making of FDCA-based polyesters (including poly(ethylene 
2,5-furandicarboxylate) (PEF), poly(propylene 2,5-furandicarboxylate) 
(PPF), poly(butylene 2,5-furandicarboxylate) (PBF), poly(hexylene 2,5-
furandicarboxylate) (PHF), and their copolyesters), especially highlighting 
the progress and fundamental aspects for their synthesis and properties. 
Significant advantages (and also disadvantages) of the FDCA-based 
polyesters are clearly indicated relative to price, performance, and 
sustainable development, in reference to traditional petroleum-based 
polyesters in industrial application. The goal of this review is to provide 
useful information regarding the synthesis and properties of FDCA-based 
polyesters. 
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INTRODUCTION 
 

Plastics are closely related to the development of human society. Terephthalic acid 

(PTA) based polyester, as one of the most important plastics, has been widely used in food 

packaging, plastic toys, plastic furniture, and engineering plastics. In recent years, due to 

the excessive consumption of fossil resources and environmental problems, the search for 

new materials with environment friendly and unique properties to synthesize biobased 

polymers has attracted extensive attention. Simultaneously, European countries and the 

United States have begun to support the development and use of biomass-based products to 

reduce the excessive reliance on oil-based products. Against this background, a large 

number of monomers derived from renewable resources, such as dodecanedioic acid (Green 

et al. 2000; Zou et al. 2018; Firoozi and Kang 2019; Zhang et al. 2019a;), lactic acid (Duo 

et al. 2016; Herran et al. 2019; Montava-Jorda et al. 2019; Wu et al. 2019), levulinic acid 

(Hartweg and Becer 2016; Pileidis and Titirici 2016; Amarasekara et al. 2018; Sinisi et al. 

2019), isosorbide (Sousa et al. 2016a; Chebbi et al. 2019; Hu et al. 2019a; Kieber et al. 

2019), ethylene diol (Haernvall et al. 2017; Li et al. 2017; Lu et al. 2017; Sukhawipat et al. 

2018), and succinic acid (Rizescu et al. 2017; Landim et al. 2018; Garcia-Campo et al. 

2019; Hu et al. 2019b; Pasma et al. 2019) have been continuously developed and promoted 

the synthesis and widespread use of a large number of new biobased polymers products. 
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Among them, 2,5-furandicarboxylic acid (FDCA) is deemed as a promising platform 

chemical to prepare biobased polyesters. 

FDCA has two carboxylic acid groups, and this implies that there is good potential 

as a replacement for PTA due to similarities between PTA and FDCA (Moreau et al. 2004). 

This aromatic diacid has been considered as a potential replacement and also as a renewable 

resource-based equivalent of PTA, which is a monomer in poly(ethylene terephthalate) 

(PET) plastics. The market for PTA exceeds 50,000 kt per year, demonstrating the large 

potential of FDCA for the preparation of polyethylene furanoate (PEF) as a replacement for 

PET (Eerhart et al. 2012; Amarasekara et al. 2017). For this reason, the biobased FDCA has 

attracted extensive attention from academy and industry, including the preparation of FDCA 

and its precursor, 5-hydroxymethylfurfural (HMF), together with varieties of FDCA-based 

materials that can be used in the domain of packaging, textile and coating. There have some 

related publications reviewing the progress and critical aspects in the synthesis and 

properties of FDCA-based polyesters a few years ago (van Es 2013; Sousa et al. 2015; 

Papageorgiou et al. 2016). Now, ongoing research and industrial production of FDCA-based 

polyesters, especially for poly(ethylene 2,5-furandicarboxylate) (PEF), poly(propylene 2,5-

furandicarboxylate) (PPF), poly(butylene 2,5-furandicarboxylate) (PBF), poly(hexylene 

2,5-furandicarboxylate) (PHF) and their copolyesters, has progressed in a new stage due to 

the increasing attention paid by researchers in recent years. In order to gain a deeper 

understanding of the current status of the synthesis and properties of FDCA-based 

polyesters, this mini review paper summarizes and discusses the recent progress, hoping to 

help readers to have a deeper understanding and cognition in this field, and to make a greater 

breakthroughs in this exciting research area. 

 
 
SYNTHESIS OF POLY(ETHYLENE 2,5-FURANDICARBOXYLATE) (PEF)                        
 

Poly(ethylene 2,5-furandicarboxylate) (PEF) is the most eye-catching member of 

the FDCA-based polyesters family, which is considered a furan counterpart of the 

engineering polyester, PET (Gandini et al. 2009b; Sousa et al. 2015; Banella et al. 2019). 

Although fully renewable-based PET has been foreseen, and several routes are under 

development today, attempts to amplify the process have been limited due to the low yields 

(Tavener et al. 2003; Collias et al. 2014; Jerpdal et al. 2019). By contrast, PEF is totally 

based on renewable resources, as its two monomers, ethylene glycol (EG) and FDCA can 

be obtained from cellulose (Zhang et al. 2015; Zhou et al. 2019). It is expected that PEF 

will create its own market niche toward its full penetration in existing polyester market and 

be widely used in all works of life due to its high performance in high barrier, thermal, and 

mechanical properties (Sousa et al. 2015).  

The synthesis of PEF dates back to the middle of the previous century; however, the 

literature on PEF is scanty after the research about the X-ray study of the FDCA-based 

polyester’s structure in 1968 (Sousa et al. 2015). Until the last decade, as people have been 

paying more and more attention to building a sustainable society, a revival of interest in the 

synthesis and characterization of PEF and related polyesters can be observed (Ji et al. 2008; 

Gandini et al. 2009a,b; Gomes et al. 2011). For example, Ji et al. (2008) developed a two-

stage method for the preparation of PEF from cellulose (Fig. 1). In the first stage, 

dihydroxyethyl furanate monomers or oligomers can be obtained through the esterification 

or reverse transesterification between FDCA and EG. Next, the polycondensation reaction 

allows the polymerization product to reach the corresponding molecular weight. In the 
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process of polycondensation, the excessive and generated EG is removed by raising the 

temperature and vacuum degree to promote the polycondensation reaction in the direction 

of PEF formation. 

 

 
Fig. 1. Typical route for the synthesis of EG and FDCA from cellulose and the two-stage approach 
for the synthesis of PEF 
 

Gandini et al. (2009a,b) developed two methods for the synthesis of PEF from 

FDCA and EG. They used a small amount of hydrochloric acid to catalyze the esterification 

of FDCA with EG, then antimony trioxide (Sb2O3) was used as the catalyst for condensation 

polymerization to obtain some white PEFs with DPn values of 250 to 300. It was determined 

that the PEFs exhibited good chemical stability, which was only soluble in strong acid 

(trifluoroacetic acid, TFA) and strong polar organic solvents (hot tetrachloroethane, TCE), 

and was thermally stable (around 300°C) by TGA analysis. Further analysis of the 

differential scanning calorimetry (DSC) and X-ray diffraction (XRD) showed that the PEFs 

exhibited a high degree of crystallinity, and the melting temperature (Tm) was 210 to 215 

°C. Furthermore, the glass transition temperature (Tg) was 75 to 80 °C (Gandini et al. 

2009b). In the same year, they developed another method to obtain PEF, which had similar 

properties to their prepared PEFs. The product was soluble in TFA and 1,1,1,3,3,3-

hexafluoro-2-propanol (HFP) but insoluble in TCE; however, the difference was that the 

DPn was very low (about 70) (Gandini et al. 2009a). 

Gomes et al. (2011) used a similar method to get PEF with a number-average 

molecular weight (Mn) of 22400, weight-average molecular weight (Mw) of 44500 and 

polydispersity index (PDI) of 1.99. The peak value of X-ray diffraction was obtained at 

2θ=16.0, 20.1, and 27.8°. In addition, the thermogravimetric analysis (TGA) and DSC 

measurements revealed that the thermal decomposition (Tdi), maximum decomposition 

temperature (Td), Tg, crystallization temperature (Tc), and Tm was 300, 398, 80, 165, and 215 
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°C. The Tg as well as the Tc only appeared on the second DSC scan trace after quenching 

the melted polymer, indicating that the obtained PEF had a high degree of crystallinity. 

In addition to the two-step method, direct esterification is also an important method 

to prepare PEF. For example, Jiang et al. (2012) prepared the PEF via direct esterification 

method. The obtained PEF had a specific viscosity (ηsp) of 1.20 dL/g, and its Mn, Mw, and 

PDI values were 105300, 252000, and 2.39. In addition, the tensile test of PEF samples 

showed that PEF was a thermoplastic polyester material. Its tensile modulus, tensile 

strength, and elongation at break of PEF were 2070 MPa. 66.7 MPa, and 4.2%, respectively. 

Codou et al. (2014) also obtained some melt-crystallized and glass-crystallized PEF samples 

via the direct esterification method. The products exhibited similar crystallinities and unit 

cell structures with those reported for PEF obtained by transesterification (Gandini et al. 

2009b; Papageorgiou et al. 2014). In addition, the non-isothermal data analysis of PEF was 

carried out by DSC, and a new calculation method was used to evaluate the Hoffman-

Lauritzen theory. The evaluation equation of the method showed that the effective activation 

energy of the growth rate depended on the melting temperature (Tm) and the assumed 

temperature (T∞), and results showed the growth kinetics of the crystals were different 

during the two crystallization processes. Nevertheless, PEF crystals from the glass 

temperature and melting temperature had a similar structure. Furthermore, compared with 

melt crystallization rate of PEF, the experimental data of glass crystallization was in good 

agreement with the predicted value of Hoffman-Lauritzen rate equation (Codou et al. 2014).  

The main reason for the deviation of melt crystallization was that the secondary nucleation 

limited the transverse growth rate (Codou et al. 2014). 

In order to further understand the unique characteristics of the PEF, its crystal 

structure, dynamics, structure-property correlations, and penetrant transport have attracted 

much attention (Burgess et al. 2014, 2015; Tsanaktsis et al. 2015a; Mao et al. 2016; Burgess 

et al. 2016; Araujo et al. 2018; Rosenboom et al. 2018). For example, Mao et al. (2016) 

determined the crystal structure of PEF with X-ray fiber diffraction (XRFD) and molecular 

model, which was composed of monoclinic unit cell with a space group of P21, whose cell 

parameter was a=5.784 Å, b=6.780 Å, c=20.296 Å, and γ=103.3º, and the density of this 

crystalline structure was 1.562 g/cm3. Araujo et al. (2018) revealed that the PEF presented 

strained synFDCA-transEG extended zigzag conformation in the crystalline region, which was 

favorable in the crystal but was not feasible for single chain due to the formation of a large 

array of C−H···O bonds. In the amorphous regions, PEF chains tended to the antiFDCA-

gaucheEG helical conformation. Compared with PET, PEF with a high energy difference 

among the amorphous and crystalline chains resulted in a higher crystallization temperature, 

while strain-induced crystallization required a higher tensile ratio. The use of novel inelastic 

neutron scattering (INS) spectroscopy further indicated that the PEF chains of several low 

frequency vibration modes was less flexible than that of PET, so that the gas barrier 

properties were higher. 

What’s more, a preliminary experiment and analysis of uniaxial stretching of PEF 

were carried out by Menager et al. (2018). It turned out that strain-induced crystallization 

(SIC) can develop under appropriate stretching conditions with PEF and controlled in a 

manner comparable to that of PET to promote strain hardening. According to the tensile 

conditions of PEF, the crystals with different morphologies were formed. On the other hand, 

the three-phase models can be well applied to the stretched PEF. The mobile amorphous 

content was between 0.50 and 0.65, and the rigid amorphous content was between 0.15 and 

0.30. In addition, when the tensile condition was at the most rubbery state of polyester, the 

mobile amorphous content in the polymer was much higher, reaching 0.70. 
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In addition, correlations between molecular weight and solution viscosity for PEF 

in comparison to PET were studied by van Berkel et al. (2018). Their research revealed that 

the melt viscosity of PEF was a function of molecular weight, and the temperature-

dependence of the melt viscosity showed a higher activation energy for PEF, and the shear 

rate dependence indicated a lower reputation time. They found that the PEF with sufficient 

molecular weight displayed ductility but overall a higher tendency to brittleness than PET 

in the glassy state, which resulted in a significantly higher yield stress combined with a 

higher strain rate dependence. 

However, PEF has some inherent shortcomings in thermomechanical properties, 

such as slow melt crystallization and brittleness, which may limit the application of PEF. In 

order to strengthen PEF, some PEF blends or copolymers have been developed. (Sousa et 

al. 2013; Yu et al. 2013; Matos et al. 2014; Sousa et al. 2016a; Wang et al. 2017a; 

Poulopoulou et al. 2019b; Xie et al. 2019). For example, Yu et al. (2013) prepared some 

poly(ethylene 2,5-furandicarboxylate-co-ethylene succinate) (PEFS) copolymers with 

FDCA and succinic acid via melt polycondensation in the presence EG. Random 

copolymers with number-average molecular weights exceeding 25600 and thermal stability 

exceeding 300°C were obtained. 

Sousa et al. (2013) prepared a straightforward partial substitution of non-renewable 

PET by renewable homologous PEF through random copolymerisation of bis(2-

hydroxyethyl) terephthalate (BHETP) and bis(hydroxyethyl)-2,5-furandicarboxylate 

(BHEFDC) (Fig. 2). They found that the isolation yields of all copolyesters were around 

80%, quite independent of the stoichiometric ratio of BHETP/BHEFDC used. This was an 

indication of the successful incorporation of both aromatic and furanic units into the 

copolyesters backbone.  

 

 
Fig. 2. Polytransesterification reaction of BHEFC with BHETP 

 

The Mw of these polyesters ranged between 13000 and 47000, and the polydispersity 

index (Mw/Mn) was close to 2. They found that the most relevant copolyesters corresponded 

to PET-ran-PEF 4/1, whose chemical structure contained 20% of aromatic and furanic units. 

Its Tg, Tc and Tm were 62.4, 125.2, and 220.1 °C, respectively, which were very similar to 

the properties of commercial PET. Furthermore, the thermal stability of the PET-ran-PEF 

4/1 was as high as 260°C and the operating temperature determined by dynamic mechanical 

analyses ranged from -40.9 to 67.5 °C, which were very close to those of PET. 

Matos et al. (2014) developed some poly(ethylene 2,5-furandicarboxylate)-co-

poly(lactic acid) copolyesters based on both PEF and poly(lactic acid) (PLA) to enhance 

their degradability. They found that the obtained copolyesters were amorphous polymers 
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with high glass transition temperatures and had improved degradability with compared with 

PEF homopolyester counterpart. 

In addition, Sousa et al. (2016a) reported the synthesis of fully renewable-based 

poly((ether)ester)s (PEEs) from FDCA, poly(ethylene glycol) (PEG), and isosorbide by 

polycondensation reactions (Fig. 3). Poly((poly(ethylene glycol)) 2,5-furandicarboxylate) 

(PEGF) polymers were obtained by polycondensation of FDCA with PEG or a mixture of 

PEG and isosorbide, and the isolation yield was about 65%. Furthermore, the PEGF 

polymers had a number-average molecular weight (Mn) in the range of 3300 to 17300, and 

the polydispersity values were close to 1.4, which was determined by size-exclusion 

chromatography in CH2Cl2/CHCl3/HFP. The properties of PEGF material could be easily 

adjusted by changing the chain length of PEG and adding isosorbide or not. The product 

had comparable or better thermal properties than that of the fossil-PEE, and the diluted 

PEGISF200 chloroform solution can be cast directly on the surface of a Teflon plate to form 

a film. PEGF series polyesters was found to be a single Tg and below room temperature by 

DSC thermograms analysis. The crystallization domains were formed by a sufficiently long 

chain (soft PEG segments) modification so that the Tm of the PEGF200 was about 49 °C. 

However, due to the enrichment of the second amorphous phase in the stiff isosorbide-

furandicarboxylate segments, the existence of PEG2000 and the amorphous domains of 

PEG soft segments, poly((poly(ethylene glycol) 2,5-furandicarboxylate)-co-poly(isosorbide 

2,5-furandicarboxylate) (PEGISF2000) exhibited different thermal properties, resulting in 

a Tg value of 168 °C, while Tm and Tg were about 40 °C and -26°C. In addition, the XRD 

results revealed that the semicrystalline character of PEGF2000 and PEGISF2000 has two 

sharp signals at 2θ≈ 19 and 23°, which was similar to that of PEG2000 polyester. 

Additionally, XRD analysis of PEGF2000 and PEGISF2000 revealed an amorphous center 

at about 20°, whereas the more crystalline PEG precursor did not appear. 
 

 
Fig. 3. Synthesis of two series of FDCA-based poly((ether)ester)s (PEGF and PEGISF2000) by 
polycondensation reaction 
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Wang et al. (2017a) prepared a series of multiblock copolymers poly(ethylene 2,5-

furandicarboxylate)-poly(ethylene glycol) (PEFEGs) from FDCA, EG, and PEG through a 

two-step melt polycondensation method (Fig. 4). TGA analysis showed that PEFEGs had 

good thermal stability. Additionally, by changing the chain length and content of the PEG, 

the properties of PEFEGs, including melt crystallization peak, melt peak, and enthalpy of 

PEG block, were improved. It was also found that the elongation values at break of PEFEGs 

were significantly higher than PEF, such that they exhibited excellent shape memory 

properties. 

 

 
 

Fig. 4. Synthetic route to PEFEGs copolyesters 
 

More recently, Xie et al. (2019) modified PEF with biobased 1,5-pentanediol via 

melt copolycondensation to improve its tensile strength and O2 barrier property. The 

obtained poly(ethylene-co-1,5-pentylene 2,5-furandicarboxylate)s (PEPeFs) demonstrated 

that the amorphous copolyesters had excellent thermal stability. They found that the PEF-

rich PEPeFs (ϕPeF 9-47%) showed greatly improved elongation at break, enhanced impact 

strength, improved O2 gas barrier property, high Young’s modulus and yielding strength in 

comparison with PEF. Poulopoulou et al. (2019b) revealed that the PEF-PPF copolyester 

with the belending of PEF and poly(propylene 2,5-furandicarboxylate) (PPF) showed a 

single composition-related Tg.  

1,4-cyclohexanedimethanol (CHDM) and 1,4-cyclohexanedicarboxylic acid 

(CHDA) were also selected to be a copolyester monomer for the modification of PEF in 

recent years (Fig. 5) (Hong et al. 2016; Wang et al. 2016, 2018c). Wang et al. (2016) 

modified PEFs with CHDM to improve their mechanical and barrier properties. They found 

that the composition of the resulted poly(ethylene-co-1,4-cyclohexanedimethylene 2,5-

furandicarboxylate)s (PECFs) had the characteristics of random polyester, and the 

composition of PECFs could be tunable by adjusting the molar amount of CHDM and 

dimethyl furan-2,5-dicarboxylate (DMFD). Also, the crystallinity, tensile modulus, and 

strength of the PECFs can be gradually reduced or increased by adjusting the amount of 

CHDM (0-59% or 76-100%), as revealed by DSC and tensile testing results. Furthermore, 

PECF-32 and PECF-76 exhibited better properties compared to PEN and PEI by barrier 

performance studies of O2 and CO2 permeability in PEF, which made PECFs more useful 

as a packaging material. Hong et al. (2016) also modified PEF with CHDM to obtain some 

copolyesters via esterification and polycondensation processes. They found that the CHDM 

had a positive effect on the previously seen drawbacks of furan-based polyesters, and the 

obtained co-polyester showed a dramatic increase in elongation at break (79±18%) and 

impact strength (4.0±0.1%). They thought that the cyclohexane ring conformational 

transition in the co-polyester chains containing CHDM improved the polyester’s chain 
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mobility and resulted in the ductility in the co-polyester. In addition, the results also revealed 

that the O2 permeability and amounts of acetaldehyde (AA) content of the co-polyester-

containing bottle was considerably lower than that of the PET-containing bottle. Therefore, 

they deemed that the obtained furan-based co-polyester was superior in both sustainability 

and performance and showed no limits in applicability for bottles and packaging. In 

addition, Wang et al. (2018c) synthesized a series of poly(ethylene 2,5-furandicarboxylate-

co-ethylene 1,4-cyclohexanedicarboxylate)s (PEFCs) from FDCA, EG and CHDA through 

a two-melt polycondensation. Their results showed that all PEFCs displayed the properties 

of a random copolymer, and the composition of PECFs could be tunable by adjusting the 

molar amount of FDCA and CHDA. The obtained PEFCs were amorphous, and the Tg 

decreased with the increase of CHDA content, but its thermal stability did not change. 

Furthermore, it was found that the obtained PEFC-30 was a toughened plastic with tensile 

modulus and elongation of 801 MPa and 667%, respectively. 

 

 
Fig. 5. Step-growth polycondensation of furan-based co-polyesters via melt transesterification and 
polycondensation processes 

 

 

SYNTHESIS OF POLY(PROPYLENE 2,5-FURANDICARBOXYLATE) (PPF) 
 

Polyesters derived from 1,3-propanediol (PD) were just reported in recent years due 

to the difficulties in the preparation of PD in sufficient quantities and purity (Bikiaris et al. 

2008). However, the research of PD polymers has attracted wide attention in academic and 

industry, as the attractive process for producing PD from renewable resources has been 

developed (Haas et al. 2005; Papageorgiou and Bikiaris 2005; Tsanaktsis et al. 2015b; 

Poulopoulou et al. 2018). Poly(propylene 2,5-furan dicarboxylate) (PPF) is a thermoplastic 

polyester, and its synthesis and structural, thermal, and mechanical properties have been 
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reported in recent years (Gandini et al. 2009a; Gomes et al. 2011; Jiang et al. 2012; 

Papageorgiou et al. 2015a; Vannini et al. 2015; Sousa et al. 2016b; Terzopoulou et al. 

2017b; Guidotti et al. 2018; Papadopoulos et al. 2018; Wang et al. 2019). 

Gandinii et al. (2009a) first reported the synthesis of PPF in 2009. They found that 

the prepared PPF had similar properties to PEF, except for the characteristic resonance 

related to the additional intermediate CH2 groups, which can be obtained by FTIR and NMR 

spectra analysis of PPF. The Tm and Tg values of PPF were 174°C and 65°C, respectively, 

which were lower than their PEF homologues. This was attributed to the introduction of 

methylene groups in each polymer unit, resulting in higher macromolecular flexibility. 

Gomes et al. (2011) also synthesized some PPF polyesters with Mn and Mw values of 21600 

and 27600. Analysis of the thermal properties revealed that PPF exhibited high 

crystallization ability, and its Tg as well as Tc appeared only on the second DSC scan 

trajectory after molten PPF quenching. In addition, Vannini et al. (2015) found that the PPF 

copolyester displayed excellent barrier properties due to their special crystal phase, which 

can be used as packaging material due to their properties of exceptionally low oxygen 

transmission rates and good impermeability to water vapors. 

Papageorgiou et al. (2015a) reported the synthesis of PPF, and they compared their 

thermal behavior and solid-state structure with its terephthalate (PPT) and naphthalate 

(PPN) homologues. Through the structural analysis, they found that the final properties of 

the prepared samples were affected by different structural rings and ultimate chain stiffness. 

Compared with PPF and PPT, the PPN with higher rigidity showed higher Tg and thermal 

stability. The equilibrium melting point of PPF was obtained by the Hoffman-Weeks 

method at 199 ºC, and the heat of fusion of pure crystalline PPF polyester was calculated to 

be 141.8 J/g or 27.8 KJ/mol. In addition, the spherulites of PPFs at different temperatures 

were observed by polarized light microscopy (PLM), which revealed that PPF polyester 

formed small spherulites and had a slow growth rate. With the increase of temperature, the 

growth rate of PPN was faster and the spherulite was larger, and the band appeared in the 

spherulite grown above 160 °C. Then the PPT exhibited faster growth rates and banded 

spherulites, and as the crystallization temperature increased, the band spacing increased. 

Recently, Wang et al. (2019) studied the effects of various PD on the properties of 

PPF. In this research, the FDCA polyester with different thermal properties was prepared 

by using FDCA and different substituent PD as the starting material, which had a similar 

skeleton structure to the PPF (Fig. 6). They found that the Tg and crystallinity of 

poly(neopentyl glycol furandicarboxylate) (PNF) was increased compared to PPF, whereas 

the Tg and crystallinity of poly(2-ethyl-2-butyl-1,3-propylene furandicarboxylate) (PEBF) 

with more -CH3 substituted groups decreased compared with PNF. In this study, PNF 

exhibited high crystallinity with a ΔHm value of 32.1 J/g, which had the highest Tg (70°C) 

and Tm (201°C). In contrast, PPF had a low ΔHm value of 0.9 J/g and Tm of 173°C, while 

poly(2-methyl-1,3-propylene furandicarboxylate) (PMF) was a non-crystalline polyester. In 

addition, the gas barrier results revealed that PPF polyester had the best gas barrier property, 

followed by that of PMF and PNF, mainly due to the introduction of side chain -CH3 

substituents resulting in an increase in β relaxation and fractional free volume. 
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Fig. 6. Illustration for the synthesis of polyesters from FDCA and different diols (Reprinted with 
permission from Wang et al. 2019, American Chemical Society) 
 

In addition, copolyesters based on FDCA and PD were also studied in recent years 

(Jiang et al. 2015; Lomeli-Rodriguez et al. 2016; Wang et al. 2017b; Jia et al. 2019; Righetti 

et al. 2019). For example, Jiang et al. (2015) studied the synthesis, structure, and properties 

of novel copolyesters from TPA, FDCA, and PD via direct esterification method by using 

tetrabutyl titanate (TBT) as catalyst. They found that the obtained copolyester was random 

copolymers with an average Mw more than 1×104 g/mol, which had similar thermal 

stabilities and higher elongation at break to corresponding homopolyesters. Wang et al. 

(2017b) used 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) to modify PPF to get the 

copolyester of PPTF. They found that PPTF had the characteristics of random polyester. On 

the other hand, the semi-crystalline PPF can be made into a fully crystalline polyester by 

the addition of 10% CBDO, and it was easily to obtain higher transparency, and the Tg 

increased from 55.5 °C for PPF to 63.5 °C for PPTF. They also found that the O2 and CO2 

barrier properties would decrease by the addition of CBDO units, but the modified 

copolyester still showed good barrier properties. 
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SYNTHESIS OF POLY(BUTYLENE 2,5-FURANDICARBOXYLATE) (PBF) 
 

In earlier studies, it was found that poly(butylene terephthlate) (PBT) is an important 

semi-crystalline engineering thermoplastic with the advantages of high rigidity, low 

humidity, excellent properties, and favorable for processing and production (Tomar and 

Maiti 2010a; Sharma and Maiti 2013). Moreover, these characteristics were stable in a wide 

range of temperature and humidity. Compared with PET, PBT had more advantages, mainly 

depending on its facile crystallinity and easy dyeability, which made it the most commonly 

used durable product formed by inject molding (Tomar and Maiti 2010b; Sharma and Maiti 

2013). However, in the current study, it can be found that the notched Izod impact strength 

of PBT was very low (Tomar and Maiti 2007, 2008). Therefore, the synthesis of 

poly(butylene 2,5-furandicarboxylate) (PBF) as PBT counterpart, from FDCA and 1,4-

butanediol (BDO) has attracted much attention (Ma et al. 2012; Morales-Huerta et al. 

2016a; Zhu et al. 2013). 

Ma et al. (2012) successfully synthesized furan derivative polyester, PBF, and its 

crystallization properties was explored. The results of 1H NMR at 750 MHz showed that 

chain-end groups were detected in different polymerization stages, which clearly revealed 

the process of polymerization. By further testing, it is revealed that the polymer had high 

tendency to form crystalline structured (Tm=130 °C and 169 °C; Tg=32°C), whose butylene 

segment is in a folded conformation, which was beneficial to the continuous fiber extraction 

from the melt of PBF.  

Zhu et al. (2013) also prepared bio-based polyester PBF with 2,5-furandicarboxylic 

acid (FDCA) and BDO as raw materials via a two-stage polymerization. The obtained PBF 

had good thermal stability, strength, and ductility. Its melting point was around 172 °C, and 

a maximum degradation rate occurred at 428 °C. In addition, it was found that the obtained 

PBF was triclinic (a= 4.78(3) Å, b= 6.03(5) Å, c= 12.3(1) Å, α=110.1(2)°, β= 121.1(3)°, γ= 

100.6(2)°), which was very similar to the α- and β-forms of PBT. 

In addition, Morales-Huerta et al. (2016a) prepared cyclic ethylene and butylene 

2,5-furandicarboxylate oligoesters and then converted them to furan-based polyesters of 

PEF and PBF by ring opening polymerization (ROP). High yields of cyclic oligoesters were 

obtained by both high dilution condensation and thermal cyclodepolymerization methods, 

and they were found to be crystalline compounds melting within the 140 to 200 °C range. 

The obtained PEF and PBF by ROP had weight-average molecular weights between 50000 

and 60000 g/mol. 

The existing research shows that PBF is a semi-crystalline furanic polyester with Tg 

near 40 °C, with a high crystallization rate and a similar structure to PBT, which is a good 

production soft drink bottle or food packaging material. However, one of the main 

disadvantages of PBF is that the structure of the aliphatic chain of diol leads to its poor 

thermal performance, which is one of the main disadvantages of the most common aliphatic 

polyester. In order to extend the application market of polyester materials, the synthesis of 

a series of copolyesters has attracted the attention of researchers (Zhou et al. 2013; Wu et 

al. 2014; Diao et al. 2016; Morales-Huerta et al. 2016b; Kwiatkowska et al. 2017; Hu et al. 

2018; Matos et al. 2018; Morales-Huerta et al. 2018; Sousa et al. 2018; Hu et al. 2019c; 

Poulopoulou et al. 2019a). 

For example, some poly(butylene adipate-co-butylene furandicarboxylate) (PBAFs) 

copolymers with high molecular weight were synthesized (Zhou et al. 2013). They found 

that all PBAFs presented random structures, and their composition could be adjusted 

according to the feed molar ratio of the diacid monomers. The crystallization ability and 
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melting temperature of PBAFs decreased firstly with the increasing of FDCA content, and 

the trend was reversed when the content of FDCA exceeded 70%. The semicrystalline 

copolyester with high FDCA content had higher Tg, good tensile modulus, and strength. It 

was worth noting that the obtained copolyesters with 0 to 50% of FDCA content were 

biodegradability. 

Wu et al. (2014) obtained some high molecular weight biobased polyesters of PBF 

and aliphatic-aromatic copolyesters, including poly(butylene adipate-co-butylene 2,5-

furandicarboxylate)s (PBAFs) with adipic acid, BDO and highly purified biobased 

monomer of 2,5-furandicarboxylic acid (FA) via a two-step melt polycondensation reaction. 

The solubility of PBAF in 5 mg/mL organic solvents was determined, and the results 

showed that the solubility was related to the composition. In the case where the ϕBF did not 

exceed 50%, the PBAFs had high elastic deformation and rebound resilience, and the tensile 

properties (E=18 to 160 MPa, σb=9 to 17 MPa, εb=370 to 910%) were comparable to those 

of poly(butylene adipate). When ϕBF was higher, stress hardening occurred in the tensile 

test, and PBAFs exhibited a low tensile modulus (42 to 110 MPa), a medium strength (30 

to 42 MPa), and a high elongation at break (256%). 

Along the same idea, some new PBF-based copolyesters had been synthesized, such 

as poly(butylene-co-1,4-cyclohexanedimethylene 2,5-furandicarboxylic acid) (PBCFs) and 

poly(butylene 2,5-furandicarboxylate-co-terephthalate) P(BF-co-BT) (Diao et al. 2016; 

Morales-Huerta et al. 2016b). For PECFs, which were synthesized from FDCA, BDO, and 

CHDM, displayed the characteristics of random polyester with a triad component, and by 

changing the molar content of BDO and CHDM, the structural properties of PECF will vary, 

such as the average sequence length and monomer percentage (Fig. 7). It was found that the 

BDO was easily removed in the process of polycondensation, which was beneficial to the 

formation of long chain containing CHDM unit. Compared with PBF, the PBCFs modified 

by CHDM had a significantly change in thermal performance and crystallinity. The DSC 

results revealed that the Tg, Tm, and decomposition temperature changed from 45.7 to 

74.4°C, 140.1 to 251.9 °C, and 380.6 to 388 °C respectively with the molar percent of 

CHDM unit increased from 20% to 70%. The crystallizability and crystal structure was 

changed by CHDM incorporation. When the 1,4-cyclohexanedimethylene fragment (CF) 

unit increased to 31%, the copolyester was non-crystalline due to the difficulty in forming 

long regular segments, which had no cold crystallization and melting behavior. 

Nevertheless, the DSC analysis indicated that these copolyesters had multiple melting 

behavior with increase of CF content, and the shoulder peaks appeared on the main melting 

point side, mainly due to partial melt recrystallization and final melting (Diao et al. 2016). 

The copolymer P(BF-co-BT), which was prepared from cyclic oligomers of butylene 2,5-

furandicarboxylate c(BF)n and bytylene terephthalate c(BT)n via ring opening 

polymerization (ROP), had an average molecular weight in the range of 55000 and 80000, 

displaying a good thermal stability (Fig. 8). Although the homopolymer PBF was highly 

crystalline, the crystallinity of the copolyesters was largely repressed due to the presence of 

furanoate units. It was found that both Tm and Tg of the copolyesters varied steadily 

according to the furanoate/terephthalate ratio and the values were comparable to those 

reported for similar copolyesters prepared by melt polycondensation by other authors 

(Morales-Huerta et al. 2016b). 
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Fig. 7. (a) Polymer synthesis from FDCA, CHDM and BDO; (b) Synthetic route via ROP toward 
aromatic copolyesters containing butylene 2,5-furandicarboxylate and butylene terephthalate units 
(Reprinted with permission from Diao et al. 2016; Morales-Huerta et al. 2016b, American Chemical 
Society) 
 

In a similar vein, Morales-Huerta et al. (2018) prepared the cyclic oligo(butylene 

2,5-furandicarboxylate) and ε-caprolactone copolyester (PCL-PBF) via enzymatic ring-

a 
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opening polymerization without using organic solvents and mental catalysts, making the 

polymer greener than conventional polycondensation methods. They found that the PCL-

PBF copolyesters with wide and high yield molecular weight were obtained. The 

copolyesters were semi-crystalline, their monomers were distributed in blocks on the 

polymer chain, and their Tm and Tg values were between the PCL and PBF polyesters. More 

importantly, when an appropriate amount of furanoate was added to the chain, the Tg of PCL 

was significantly increased, which was related to the physical behavior of the polyester. 

They deemed that the obtained copolyester had the potential use in packaging and 

biomedicine due to their excellent properties. 

Kwiatkowska et al. (2017) prepared poly(butylene 2,5-furanoate)-block-(dimerized 

fatty acid) (PBF-b-FAD) polymers with different properties by polycondensation of FDCA, 

1,4-butanediol (1,4-BD), and dimerized fatty acid diol (FAD) under relatively mild and 

excessive diol conditions. A multi-block structure with ester groups was formed between 

the PBF blocks by the introduction of FAD and had a randomly distributed crystallizable 

rigid and non-crystalline flexible segment. It was found that the thermal performance of the 

PBF-b-FAD polymers was related not only to the molar amount of introduced FAD, but it 

also was affected by the thermal treatment of material. In addition, the mechanical properties 

of the macromolecular structure PBF-b-FAD polyesters varied with the molar ratio of PBF 

to FAD, which had a medium tensile strength and a relatively high deformation and damping 

at room temperature. 

Matos et al. (2018), based on the synthesis of polyesters from FDCA, prepared  a 

series of novel nanocomposite materials by introducing bacterial cellulose, such as 

acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate) (Ac-BC/PBF) and 

acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate)-co-(butylene 

diglycolate)s (Ac-BC/PBF-co-PBDG). The obtained copolyesters had high strength due to 

the adding of bacterial cellulose fibers. The Tg and Tm of the copolyesters were -25 to 46 °C 

and 61 to 174 °C, respectively. Furthermore, the nanocomposite copolyesters had better 

thermal stability (239 to 324 °C), and compared with pure copolyesters, the Young’s 

modulus of nanocomposite copolyesters were as high as 1239 MPa. 

In addition, Hu et al. (2018) prepared the poly(butylene furandicarboxylate)-b-

poly(ethylene glycol), poly(butylene furandicarboxylate-co-glycolate) (PBFGA), and 

poly(butylene furandicarboxylate)-b-poly(glycolic acid) (PBF-b-GA) copolyesters (Hu et 

al. 2019c), which displayed good thermal, mechanical, barrier and degradable properties. 

More recently, the PBF blends were also reported by Sousa et al. (2018) and 

Poulopoulou et al. (2019a), which showed some advantageous processing features as 

revealed by the lower melting temperature and higher thermal stability as compared with 

PBF. 

 

 
SYNTHESIS OF POLY(HEXYLENE 2,5-FURANDICARBOXYLATE) (PHF) 
 

Poly(hexylene 2,5-furandicarboxylate) (PHF) is a furan-type polyester that is 

synthesized by monomers of renewable resources and has a similar structure to 

poly(hexamethylene terephthalate) (PHT). PHF was first synthesized as reported by Moore 

and Kelly (1978), but in recent years, a series of poly(alkylene 2,5-fruandicarboxylate)s 

including PHF have been synthesized and characterized (Jiang et al. 2012; Papageorgiou et 

al. 2015b; Terzopoulou et al. 2016b; Haernvall et al. 2017; Zhang et al. 2019b). 
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For example, Jiang et al. (2012) reported the synthesis and characterization of some 

poly(alkylene 2,5-fruandicarboxylate)s including PHF. The obtained PHF with a Mw of 

66700 had a tensile modulus, tensile strength, and elongation at break of 493 MPa, 35.5 

MPa, and 210%, respectively. The DSC results showed that the Tg and Tm were 28.1 and 

148.2 °C, respectively. Papageorgiou et al. (2015b) studied the crystallization and thermal 

degradation behavior of PHF in 2015. They found that the Tm and Tg of the obtained PHF 

were 145 °C and 7 °C, respectively. Though the DSC analysis, it was revealed that PHF 

exhibited multiple melting behavior after the crystallization process, which was mainly due 

to partial melting, recrystallization, and final melting. It was found that the heat of fusion of 

pure crystalline PHF polyester was 34 kJ/mol, and further calculation gave an equilibrium 

melting temperature of 157 °C. 

More recently, PHF was synthesized from FDCA and 1,6-hexanediol (HDO) via 

direct esterification (Fig. 8) (Zhang et al. 2019b). The obtained PHF had typical (110) plane, 

(010) plane, and (111) plane at 2θ = 13.78° (d=6.42 Å), 17.06° (d=5.19 Å), and 24.9° 

(d=3.58 Å) with intrinsic viscosity of 0.803 dL/g, average Young’s modulus of 479 MPa, 

and maximum tensile strength pf 36.5 MPa. Its elongation at break was 216%, which was 

significantly higher than that of PET (90%) and PEF (3%). It was found that the high 

intrinsic viscosity caused the increase in the enthalpy of fusion with respect to as-

synthesized PEF, in this case, the melting peak was particularly sharp, and the Tg and Tm 

was about 48 and 144 °C, which were relatively lower when compared to those of PEF. 

 

 
 

Fig. 8. Typical route for the synthesis of PHF from cellulose (Image from Zhang et al. 2019b) 
 

Although the PHFs have been found to exhibit excellent mechanical properties, their 

applications have been limited due to the flammability. Recently, the synthesis of PHF-

based copolyesters also attracted the attention of researchers (Wang et al. 2018a, b; Zhang 

et al. 2019b). Wang et al. (2018b) reported the use of renewable FDCA, HDO, and 2-

carboxyetyly (phenyl)phosphinic acid (CEPPA) to synthesize phosphorus-containing 

poly(hexamethylene 2,5-furandicarboxylate)s (PHFCs) with different properties. They 

found that a series of synthetic PHFC showed good thermal performance, and the Tg 

decreased slightly as the molar content of CEPPA increased. In addition, they also 
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synthesized the poly(hexamethylene 2,5-fruandicarboxylate)-b-poly(ethylene glycol) 

(PHFEGs) from FDCA, HDO and PEG via a two-step melt polycondensation method. Their 

results showed that the content of PEG in the prepared PHFEGs polyester was on different 

from that of the initial addition, and all of the PHFEGs were a dimorphic block copolymers 

and exhibited the excellent thermal stability with excellent shape-memory ability (Wang et 

al. 2018a). Poly(ethylene-co-hexamethylene 2,5-fruandicarboxylate) (PEHF) copolyesters 

with high intrinsic viscosity were synthesized by two-melt polycondensation using FDCA, 

EG and HDO as raw materials. They found that when a large amount of hexamethylene 2,5-

furandicarboxylate (HF) (φHF≥88 mol%) was introduced, the prepared copolyesters were 

semi-crystalline, while for the remaining conditions they were amorphous polyesters. The 

synthesized copolyesters exhibited better thermal properties and had a single Tg which 

decreased as the amount of HF introduced increased. In addition, as the molar content of 

HF increased, the tensile modulus and tensile strength of the non-crystalline copolyester 

decreased, but the elongation at break and impact strength increased. The tensile properties 

of PEHF copolyesters were similar to those of bottle grade PET (Xie et al. 2018). 

 

 
THE DECOMPOSITION OF FDCA-BASED POLYESTERS 
 

It was known that the start of decomposing of FDCA-based polyesters will happen 

through the breaking of the polymer chain in the six-member transition stage due to the 

presence of a β-hydrogen atom, and most of the hetero-cleavage was continued instead of 

homogenization (Levchik and Weil 2004; Chebbi et al. 2019; Lu et al. 2019; Terzopoulou 

et al. 2019). Different cleavage methods will form different degradation products, such as -

COOH and -CH2=CH2 products (Hetero-cleavage) or aldehydes, terminal alkyl, or methoxy 

terminal molecules (random chain scission). 

The decomposition mechanism of FDCA-based polyesters was first studied by 

applying Py-GC/MS technology (Tsanaktsis et al. 2015b; Terzopoulou et al. 2016a,b; 

Terzopoulou et al. 2017a; Kasmi et al. 2018, 2019). In this research, the thermal degradation 

mechanism of FDCA-based polyester such as PEF, PPF, and PBF at 340, 390, and 500 °C 

was investigated, and mass spectrometry was carried out after gas separation in the GC 

capillary column. It was found that more complex pattern was present at high temperatures 

of 500 °C, whereas in the case of 340 and 390 °C, the chromatographic peak was less and 

chromatogram map was simpler. Some volatile substances (CO, CH3CHO, etc.) obtained 

by decomposition of -COOH and -CH2=CH2 products were detected at low retention times. 

(Tsanaktsis et al. 2015b) The results of the Py-GC/MS analysis of PHF, PNF, and some 

other FDCA-based polyesters showed that the main thermal degradation products were 

similar to the PEF, PPF, and PBF (Terzopoulou et al. 2016a). 

 
 
CONCLUSIONS AND OUTLOOK 
 

On account of the excessive consumption of fossil resources and environmental 

issues, renewable biomass materials and sustainable economy have received wide attention 

in industry and academia. FDCA-based polyesters provide a viable solution to the 

environmental and economic issues arising from over-reliance on petroleum-based 

products. As described above, the synthesis of FDCA-based polyesters has made a major 

breakthrough, and a large number of preparation strategies are being implemented and 
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improved. Of course, not all these FDCA-based copolyesters will reach industrial 

application, and their substitution for petroleum-based polymers remains challenging. This 

arduous task involves obtaining large quantities of biomass raw materials, producing high-

performance FDCA-based polyesters, and their cost-effective performance. Academia and 

industry have devoted a lot of time and effort to the production of FDCA-based polymers 

and PEF, and there continues to be progress in the right direction. Base on the new trends 

of rational utilization of renewable biomass resources and the encouraging results, it is 

exciting to develop valuable products from biomass materials. On the other hand, the global 

organizations should provide additional funding and incentives to both industry and 

academia in the field of fully biobased polymers, though large-scale production of fully bio-

based polymers is still difficult and has a long way to go. 
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