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ABSTRACT

A brief review of pertinent works in the field of contact
mechanics is made, with emphasis placed on works related to
the calendering process, starting with Hertz’ assumptions and
ending with non-Hertzian effects, including thin-layer covered
rolls, sliding, sticking, "micro-slip", and friecticn effects.

Emphasis is placed on the effict that changiny Poisson’s
ratio has on the behavior of stres; ard strain in the nip and
how this is related to soft-nip calendering parameters (the
relative rotational velocities o soft-covered and mating
rolls, for example).

High resolution color graphics of the state of strain in
the nip zone are presented, as iodelled by finite-element
analysis cf the contact problen in soft-nip calendacing,

INTRODUCTION

The literature in the field of Contact Mechenics is so
extensive that the papers surveying this field have had to
concentrate on narrower aspects of the discipline. Some
outstanding exanrples are the rel:ztively recent surveys by
Kalker (1), Goodman (2) and .Johnson (3). Althouch the main
purpose of these bapers was to review the field of Contact
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Mechanics, these authors (vho are authorities in the field)
have had to gxclude topics like lubrication
(elas\tohydmcilwamic, etc.), thermal deformation, detailed
material behavior in centact  (tribology) ., and experimental
mechanics, in order tos b2 able to do a concise <job of
reviewing the field. Therefore, we will only attempt a
cursory review of the tield placing particular emphasis on
topics that are closely relzted to the calendering process.

Hertz’ theory

The Hertz (4) thecry of contact rests on the following
assunptions: 1) the geomatry of the contacting curved surfaces
(at least one of the hodies must have a curved surface) can be
accurately described Ly cuadratic terms in the spatial
coorcinates [this is aclually a good approximation as long as
the contact lsngths are snaller than the relative radii of
curvature of the sur faces), 2) the bodies deform as
(infinitely dsep) half-spuces, 3) the (small-deformation)
linear theory of elasticity applies, and 4) there is no
friction present at the sontacting surfaces.

This theory has Deen quite successfully applied in
engineering practice., 1ts success is due to the fact that it
rests on & consistent set of assumptions. Fessler and
Ollerton (3) neasured the contact dimensions of photoelastic
models, and found that Lhe measurements did not depart
significantly £rom Heriz' thecry up to the limit of the
material strength of the models they used. Furthermore, the
agreement: betw:en Hertz’ theory and these experiments was good
even when the ratic of the si.gnificant dimensions of contact
area to the radius of curvature of the surfaces reached the
surprisingly high value of 0.3.

Most publications dealing with contact problems retain at
least scme of the assulptions of Hertz' theory of contact.
For exanple, when friction forces are included, most works
still keep the assumpt:i.on of linear elastic half-spaces in
contact and the assumption that the dimensions of the contact
area are smi.ler than the principal radii of curvature of the
contacting surfaces.

while the assumpticn of half-spaces in contact is a good
one for cotton-filled rolls, as employed in supercalendering
of paper, and for metal rollers used in calendering, the
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synthetic covers used for on-mach:ne soft-nip calendering of
paper (and more recently, for sup:rcelendering of paper) can

be so thin (in comparison with the
half-space assumption has to be dis

of

course,

doing away with Her

contact length) that the
carded.,

tz" assumplicns causes

major complications in obtaining closed-form solutions, and

hence,

for

complicated problems,

nunerical

rather than

analytical solutions may have to he empyloyed.

Classification of contact problems aff:cted by friction

Most analyses of friction effects on contact problems use
Amonton’s (Coulomb’s) law of friction.

In order to discuss fricticn effects, it i useful to
adopt a classification similar tc the one used by Johnson (3)

and divide the types of contac
into those where there is a
acting on the contacting bodies

t problems affectec by friction
resultant tangential traction
(as well as a force normal to

the contacting surface) and thcse tvoes of contact problems

where there is only a resultant normal load acting on the

surface.

Contact
problems
affected
by friction

<

N~

( 1)Resultant

a)
tangential
traction b)
at contact
interface
\ c)
.
2)No resultant d)
tangential
traction ‘
at contact
interface
\ e)

It is im@brtant to make a dist..
types (b and d) of static contact problems (that is, with and

without a tangential 1load).
distinguish between the two type

It

(tractive rolling, and free rollinc).

Sliding contact

Static contack under
tangential load

Tractive rolling

Static contact of
dissimilar solids
under no tangential
load

Free rolling of
dissimilar solids

nction between the two

is also important to

5 (¢ and e) of rolling contact
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Static contact

Static contact under & tangential traction is that type
of contact where the tangential traction is not large enough
to produce overall sliding »f the bodies, but where there are
still regions of slip pressnt in the contact area. Static
contact of dissimilar sclids under no tangential load takes
place when only norwal leads are acting on the contacting
surfaces. 'There are regions of slip present in the contact
area due to the fact thut bodies with different elastic
properties will experierce jifferent tangential displacements
under a normal load.

In the condition of static contact under a normal load,
as well as in the free rolling of dissimilar solids, only
purely normal loads (te th: contacting surfaces) are acting
and hence the resultan: tangential load is zero. In the
conditions of sliding, static contact with a resultant
tangential lcad, and in tractive rolling, a non-zero resultant
tangential load is acting on the surface in addition to the
normal load.

pissimilar naterials

only when differences in tangential displacements of the
contacting bodies may arise (whether as a result of a
resultant tangential tracticn or from the dissimilar elastic
characteristics of the contacting bodies), will friction
result in a solution of a different nature than Hertz’s
theory.

Indeed, it is interesting to observe that Hertz' theory
of contact will still apply when friction is present at the
interface if: a) both kodics experience identical tangential
displacements at the contacting surface, or if b) the
tangential displacement:s of both bodies at the contacting
surface are zerc. under these conditions the contact process,
including {res volling, is completely reversible in the
thermodynami.c sense, since thers is no slip, and hence there
is no heat dissipated at th: interface. The contact stresses
and cdeformations are still qiven by Hertz' theory of contact.

1f the contacting bodies caa be regarded as half spaces, then
the condition under whizh both bodies will experience
identical tangential displacements at the contacting surface
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(when no resultant tangential frection ig presert) is when
both bodies have identical elastic properties [identical
Young's modulus and Poisson’s ratic), or, more precisely, when
bodies have identical bulk meduli, (see Dundurs (6) and
Comninou and Dundurs (7), for a definition of bulk moduli
under conditions of plane strain or plane stress).  The
tangential displacements of both bodies (here regarded as
isotropic elastic half-spaces) s&sre zero (again, when no
resultant tangential traction is present) when both contacting
bodies have Poisson’s ratios exactly equal to 0.5, or when one
body is rigid (infinitely large Young’ s modulus) end the other
one has a Poisson’s ratio exactly equal to 0.5. 7The condition
that the tangential displacements of both contacting
(half-space) bodies are zero can, of course, be more simply
stated to be have been met when the bulk moduli of both bodiesg
are infinitely large.

Sliding, sticking and slipping

Dealing now in more detail with the types of contact
problems where a resultant tangeni:ial traction is present at
the contact interface, sliding contact. is defined a3 the case
where one body slides with respect. to the other, so that the
whole contact area is under a state of slip. Under this
condition, the tangential force ig equal to the ccefficient of
friction times the normal force laccording to amorton’s law of
friction). Static contact (under the presence of a resultant
tangential traction) takes place wten the resultant tangential
traction is smaller than the normal fo:ce times the oefficient
of friction. It is interesting to observe that the absence of
overall (gross) sliding does rot imply that there is no slip
over some part of the contact area. According to 2Amonton’s
law of friction, the coefficient of friction is defined as the
ratio of the tangential traction to the normal load, under
sliding conditions. Since the rormasl (compressive) stress
goes to zero at the perimeter of the contact ragion faster
than the shear (tangential) stress, one would need an
infinitely large coefficient nof friction in order to prevent
slip at this boundary. Therefore, some slip is inevitable,
for any finite amount of frictior, under the action of the
smallest tangential traction. When the region in which slip
takes place is very small with respect to the total contact
area, this slip has been called "microslip" by some authors.
As one increases the tangential traction, (keeping the same
coefficient of friction) the slip zore(s) becomes larger and
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larger, at the eipense of the sticking zones, until when the
overall tangential tracticn becomes equal to the overall
normal loa¢ times the cosfficient of friction, there is
complete sliding of both boiies.

Rolling contact

Since friction is & mechanism by which heat gets
dissipated, anc dissipal.ive processes are history-dependent,
the state cf centact becom:s history-dependent when slip is
present.  Hence, it is rot surprising that the state of
contact while rolling under a tangential load (tractive
rolling) is different than ancder static contact. Examples of
tractive rolling conditions are a driving wheel, and a wheel
on which brakes are app.ied, since these wheels must exert a
tractive lcad at the sontacting surface when friction is
present. Under tractive :olling conditions the regions of
stick and slip are {unliie the situation under static contact)
no longer sysmetrically 1ocated. One would expect this, since
as previously wentioned, s.ip produces a history dependence
and therefors the history of load application in a rolling
process results in a lack of symmetry around the center of
contact. When hoth bodies have identical material properties

_ (that is, when they have the same Dundurs’ bulk moduli) under
tractive rolling conditions, there is a stick region located
at the leading edge of contact and a region of slip located at
the trailing edge. the strain in the stick regiocn has
different (constant) values in each body. For example, the
stick region of & driving wheel experiences circumferential
shrinking, while the stick region of the mating rail
experiences stretching. The driving wheel behaves as if its
circumference were decreasec in length, while the rail
behaves as if its length had been increased. As a result of
this the driving wheel ill roll forward in cne revolution a
distance that is less than its undeformed perimeter.

Rolling Creep

The fractional difference between the forward speed of
the wheel and its peripheral (sucface) speed is known as the
"creep ratio". Frae rollirny bodies having identical material
properties experience ro rolling creep, since there is no
tangential load or slip in this case. aAlso, if both
contacting lxdies were perfectly rigid the creep ratio would
be zero. Indesd, it is imjortant to note that it is due to
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the fact that the contacting Lodies do deform under load, that
rolling creep takes place.

This creep, due to the differance between the tangential
deformations of the contacting bodies in the stick zone, has
(in the trade literature) sometimss been confused with
sliding. The reason for this confusion is that two rolling
bodies that experience complete sliding at their interface
will still experience a differential velocity and, hence,
their creep ratio will not be zZero. Since people can more
intuitively relate to differences in speed between rolling
bodies by attributing this speed differential to sliding
effects, rolling creep has sometimes been at:tributed to
sliding rather than to differerces in tangential strains
between the contacting bodies. Roll to roll slip was
postulated more than forty vears ago (8,9 and 10) as the
mechanism that produces a polishiryg effect on supercalendered
paper. This belief has continved to be widespread among
papermakers. This is possibly due to an extrapolation made
from watching the action of brush calenders and friction
calenders. 1In these types of calende:s slip between one roll
and the paper is deliberate znd prorounced.  Furthermore, it
has long been known that a peripheral speed cifferential
exists between the rolls in any supercalender stack. Schacht
and Kirchner (11) measured a peripheral--speed cifferential
between the top and bottom rolls 0l a nine roll supercalender.
The fractional speed difference (o creep) bestween these rolls
was 0.00408 when externally loaded. tnder no external loading
(just under the action of the roll weights) the measured creep
was 0.00285. Papermakers naturally assumed that thig speed
differential was due to sliding betwesn the rollers., However,
it should be clear to the analyst tha: the spesd differential
cannot be due to gross sliding between the rollers, since the
speed differential increases with increasing load. This speed
differential is actually due to the deformation of the bodies
in contact. Since the deformation increases with increasing
load, the creep increases with increasing load as well. Howe
and Lambert (15), among others, have measured the speed
differential of metal calender stacks (where all the rolls are
made of the same material). Their precise measurements showed
that no speed differential exis:ed. This confirmed that
rolling creep is due to the differential deformation of the
rollers in contact and that it vas not due to sliding. Since
the rolls in a (hard nip) calerder are all made of metal,
there is no differential speed and hence no creep is present.
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As remarked by Johnson (3), nearly a century had to elapse
after Hertz published his theory (4), until a complete theory
of rolling contact of ¢issimilar solids appeared in 1967 (12
and 13). antall and Jekmson (12 and 13) explained the nature
of the stresses and strains, as well as the extent of sticking
and slipping zones in +ne nip of dissimilar rolling bodies.
The fricticnal propertiss of paper (14) are such that it is
actually nct physically possible to have overall sliding of
the rollers involved ir the supercalendering process, unless
sufficient braking force weuld be deliberately applied to one
of these rollers. Indeecl, ‘he shear stress due to friction is
an order cof magnitude smaller than the normal stress
throughout most (rut not all.) of the contact area. Therefore,

most of the contact ares ne-jcks" rather than "slips".
Micro-slip

The ratio of shear stress to normal stress rises to
infinity at certain locaticns in the contact zone unless slip
is allowed to take place at these locations. Therefore, slip
does take place at these lecations, for any finite coefficient
of friction. The exltent of these slip zones is minute
(compared to the rotal extent of the contact zone) under free
rolling conditiong, snd therefore the slip in these zones is
referred to as "microslip". AS described at length by Johnson
(16), and ky Bentall and Johnsen (12), the shear stresses and
tangential (or hoop) strains at The surface depend on the
conditions of stick or slip at the point in question. At a
given space point of contzct, there are two material points
that instantly mate at that contact point. Each of these
material points belong to one of the contacting bodies. One
of these Ixdies will be denoted by the suffix "1%, while the
other body will be denoted by the suffix "2". At the contact
point. the two bedizs have local instantaneous velocities Vv
and V.. Far zvay from the contact points, the instantaneou
defomiaticm of the bodies is zero, and the surface velocities
are the peripheral speecs V and V.. Bentall and Johnson (12)
derived the £ollowing :Eomhla :E:'c:n2 the creep of both bodies,
assuming that the differenc: between the peripheral speeds was
very small:

Vz - Vl AV

E, = P——— [

Yy Vs

(1)
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where

= creep ratio

=Vy =vy =micro-slip velocity

= circumferentiial (hoop) strain cf body 1

GECECS IR

= circumferential (hoop) strain cf body 2

This equation is consistent with the agsumpl.ions of the
theory of linear elasticity and with the condition of no
(gross) sliding. Similar formulae wers previously derived by
other authors (17). Socong and Li ( 16) recently published a
proof of a similar relationship betweer the speed differential
and the local strain. Where the “wo bodies stick, the
micro-slip velocity is zero and hence the creep ratio is
exactly equal to the circumferential strain difference.

As previously noted, unless there are significan’ tangential
forces (for example when brakes are applied to one rcller) the
micro-slip regions are very small. Fentall and Johrson (12
and 13) show that two dissimiler ‘reely rolling elastic
cylinders have three regions of mic:oslip: <ne at each edge of
their contact zone and a third near the trailing end. Bentall
and Johnson draw the general coonclusion thai, in most
practical circumstances, the amount of micre-slip will be very
small and the stress distribution will be close to the one
predicted by neglecting all micro-slip, that is, by assuming
that the coefficient of friction s infinitely high. Tabor
(19 and 20) concluded from his experiments that the energy
losses due to micro-slip are negligible in the calculation of
rolling resistance.

The elastic strip in plane rolling contact

Bentall and Johnson (13) provide details of the normal
and shear stresses at the contact surface, the nip width, and
the regions of stick and slip of a sheet of elastic material
as it passes through the nip of a pair of rollers. The
analysis assumes plane strain deformetion. The usual Hertz’
assumptions are obeyed with the exceptions that friction
effects and that the finite thickniss of the strip are taken
into account. The numerical aralysis technicue wused by

Bentall and Johnson approximatss the surface stress
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distribution by cverlapping triangular elements. This results
in a piecewise-linear stress distribution. The solution of
the problem i3 shovm to depend on the £ollowing
non-dimensional parameters:

—friction coefficient

-strip-thickness to nip-width ratio

—poigson’s ratio of =he strip

-ratio of plene-strain elastic moduli between the strip
and the rollevs

~pundlurs’ (6 and §) paremeter for the mismatch in
plane-strain lulk modulus between the strip and the
rollers

The Poisson’s ratic of the strip only influences (as an
independent parameter the amount of the indentation. Since
for practical values of ~he coefficient of friction the extent
of the slip regions is small, the computations concentrated on
solutions that assumed the coefficient of friction to be
infinitely large. The thickness of calendered paper is much
smaller than the nip width. also, since paper is a porous
material, ity Poisson’s ratio is very small. Therefore, the
solution of interest is the case of very thin strips with low
values of Poisson’s ratio. If the rollers are much stiffer
than the paper a rigid roller colution is approached where the
normal stress has a parabolic distribution, rather than the
semi-elliptical distribution found in Hertz' solution. This
is the case in calendering of paper with metal rollers (also
called hard-nip calenderinkp). In the limit, as the paper
becomes infinitesimally thii, the deformation of the rollers
should be taken into ac -ou-t, since, however large the ratio
of the rcller to pape: stiffress, the deformation of the
roller must precloninate cove:s that of the paper. The point at
which the assumption of rigid rollers should be abandoned was
determined lny Bentall anxd Johnson (13). The rnon-dimensional
parameter that governs wietrer the deformation of the strip is
negligible, or whether the deformation of the rcllers is
negligible, is simply the tatio between the deflexion of the
paper and the deflexion of the rollers. If the deflexion of
the rollers is significantly legs than the deflexion of the
paper (say, by a factor of 10), then one can assumne the
rollets as oeing rigid. cenversely, if the deflexion of the
rollers is significantly mcrte than the deflexion of the paper
then the normal stress disti ibution becomes Hertzian. One can
show that the deflexicn of the synthetic covers and the
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deflexion of the cotton-filled rolls used in soft~nip
calendering is as large or larger thim the defleiion of the
paper. Hence the stress distritution is gpproximately
Hertzian,

Based on Bentall and Johnso“’s analysis (13} and the
values of paper’s coefficient of frict .on as measured by Jones
and Peel (14) one expects the micro-slip regions to occupy a
very small portion of the contact zrea. =a braking force would
need to be applied, deliberately, to one of the rollers, in
order to produce a slip zone of corsiderable wize. Three
micro-slip regions exist, one at each edge of the contact
zone, and another slip region near the trailing edge, in which
the slip direction is opposite in sign to the other two.
Micro-slip takes place due to the different elastic properties
of the paper and of the rollers.

Contact analysis of thin covered rcllers

As remarked by Johnson (3), elastic cortact stress
analysis of layered solids, such as rubber coverad rollers, is
well developed by now. The works of soong and Li (18, 21 and
22), and of Wong (23) are notewerty in that they include the
effect of a sheet In the nip, in contact with soft-covered
rollers. However, these authors do net take intc account, in
detail, the transverse compressibility of the sheet. Instead,
they model the sheet as a flexible bean, Their work is
applicable to the case when the nipped sheet: deforms much less
than the roll covers. For examyle, when relatively stiff
paper is nipped by very soft rubber covers.

Calendering of paper: plastic deformal:on of & porous medium

Surface  finish characteristics produced by  the
calendering process are caused (24) by the replication of the
surfaces of the mating rollers. ~Tnis replication arises from
the thermoviscoplastic compaction cof the paper. Plastic
deformation of the paper can be produced by plastic collapse
of the fiber network, by damage of the bonded sites, or by
both. In order to obtain the des:.red wuniform hignh gloss and
smoothness properties, the calendering operaticn should
operate (by applying the required load) in the reqgion of the
stress-strain curve where the tangent moculus of the paper is
at a minimum. Since paper is an anisotropic material that has
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very different properties ir-plane as opposed to out-of-plane,
it should be pointed out that the stress-strain properties
that are relevant are thz t rough-the~thickness (out-of-plane)
properties. The tangent mcdulus of paper can be decreased by
increasing the applied lemp:rature or by increasing the water
content, or both. When the tangant modulus has a small value,
the strains, rather than the stresses, are of primary interest
and significance. This is evident since the tangent modulus
is the derivative of strass with respect to strain. Therefore
a small value of tangent mojulus means that a small change in
stress corresponds to a larce change in strain. A small error
in the strain will produce a smaller error in the stress;
whereas, & small eryror ir the stress will preoduce a much
larger error in the strain. For this reason, strain based
criteria for plastic processes are more sensitive and more
reliable than are stress-based corresponding criteria.
Furthermore, if there is = material instability, it is the
strain and mot fthe stress that will be able to uniguely
describe the problem. For example, in unstable buckling,
three different levels cf strain may correspond to the same
level of stress. Therefcre, these nonlinear material
processes can be better described in terms of strain than in
terms of stress. This is opposite to what one finds in linear
elastic analysis., These problems are usually described in
terms of stress, since ir the elastic region the tangent
modulus is Young’s wodulas, which has a large value.

FINITE ELEMENT BNALYSIS JF {OFT-NIP CALENDERING WITH SYNTHETIC
COVERED ROLLS

A finite element analysis of the contact problem was
carried out, in order to obtain the complete strain (and
stress) distribution of a covered roll in a soft-nip calender
nip. This finite element aralysis computer program (including
the theoretical foundation, the computer programming, and the
postprocessing) was writ-en by Dr. Kenji Kubomura based on his
Ph.D. work at Lhe Massachusztis Institute of Technology (25).
Vvirtually the same contact scheme was utilized as in (25),
but this time assuveck-displacement 8-noded isoparametric
finite elements were used Lo model the continuum. The
cylindrical geometrical shape of the rollers is exactly
modeled (instead of assuming the Hertzian guadratic
approximation for the geomztry of the curved bodies). The
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contact conditions at the interface hetween the rollers and
the paper are such that micro-slip is disrevarded. 'This is in
agreement with the results of Bentall and Johnson (13) that
indicate that the effect of micre-slip should be negligible.
Free rolling conditions are assumed. The paper is assumed to
stick to both recllers: in this example, a (synthetic) covered
roll and a (metal) mating roll. Since the paper being
calendered is deformed to large plastic strains, in the
stress-strain region of low tangent: modulus, it opposes
practically no tangential resistance to the deformation. This
follows from the fact that the pape2r may have a tangent
modulus of 10,000 to 30,000 psi, while the {synthetic) covered
roll may have a cover with a Young's medulus {at the operating
temperature) of 200,000 to 2,000,000 psi. The mating roll

has an elastic stiffness value of aubeut 30,000,000 psi. This
value is one to two orders of magnitude higher than the
stiffness of the roll cover. Therzfore, the mating roll acts
as a rigid material relative to the covered roll. On the
other hand, the roll cover has an elas:ic stiffness value that
is one to two orders of magnituce higher than the paper’s
tangent modulus. Therefore the paper practically acts as a
"lubricant" between the two rollers (l:ke a "porous lubricant"
that has a Poisson’s ratio close to zero rather than like an
incompressible fluid).

Poisson’s ratio effect on the state of strain

In order to display the stat: of strain in the covered
roll, the following example has been chosen:

-line load: 2000 pounds pe: linear inch
—-diameter of the covered ro.l: 23.6 inches
~diameter of the mating roll: 24.7 inches
~total cover thickness: 0.% inches
—Young's modulus of cover (at operating
temperature): 200,000 psi.

On Figure 1 there is a schenatis representation of the
polymer cover as it experiences a normal contact lead in the
free rolling, soft-nip calendering of paper. In the
rectangular section is indicated -he section of the polymer
cover that suffers the most stress and strain, since the
stresses and strains die out at locations that are far removed
from the contact zone. The rest of the figures show the state
of strain in the cover in that ractangular section that is
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adjacent to the contact interface. Figures 2 to 12 display
the state of hoop (also called circumferential or tangential)
strain in the cover, for diiferent values of Poisson’s ratio.

Figure 2 displays the state of hoop strain for a
Poisson’s raltio of zerc, that is, for a very compressible,
porous material. The state of strain on the surface of the
covered roll is negative in the contact zone. Negative values
of strain mean that sirinking  is occurring in the
circumferential direction. The maximum negative vealue of
strain (~1.22%) cccurs at the surface, in the middle of the
contact zone. The hoop strains decrease in value tovards the
inside of the cover. Adjacent to the edge of the contact
zone, thera is a region of positive values of hoop strain at
the surface of the coversd roll. These positive strains mean
that the cover is experiencing stretching. The maximum value
of positive strain is 0.51% and it occurs at the surface of
the cover. Since the pape: sticks (due to friction) to the
cover only in the normally loaded contact =zone, and the
surface strain at the surfzce contact zone is negative, this
means that the paper is actually experiencing shrinking in the
machine direction when calerdered with this cover.

Figure & shows a cover with a Poisson’s ratio value of
0.10 compressed under the same conditions. The maximum
negative value of hcop st:ain (-1.01%) still occurs at the
surface, but it is lower than in the previous case. There is
a zone of positive circumfecential strain that appears in the
middle or the cover, underreath the zone of surface negative
strains. since the hoop strain at the surface is still
negative, the paper beinj ca lendered with this cover will also
experience chrinking in the machine direction, but this
shrinking will be less taan with the cover that had a
Poisson’s ratio of zero.

Figure 4 displays the sircumferential strain pattern for
the case of Poisson’s ratio of .20. This is close to the
Poigson’s ratic of a cotton filled roll. In this case, the
contact zone surface strain is still negative, but the maximum
(negative) wvalue has diminished (in comparison with the
previous cases) to -0.075%. The maximum positive value of
strain occurs now in the interior zone of positive strains
that lies Lkeneath the surface, at the center of the cover.
This positive strain is now -higher than the positive strains
that occur zt ¢he edges of the contact zone.
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Figure 3 - Circumferential strain
Poisson’s ratio = 0.10
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Figure 4 - Circumferential strain
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Figure 5 - Circumferential strain
Poisson’s ratio = 0.30
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Figure 6 - Circumferential strain
Poisson’s ratio = 0.33
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Figure 7 - Circumferential strain
Poisson’s ratio = 0.35

24.7,.DCR=

AUID -

23.6

E. v

©.10,2.3E8, .33
9.40.2.0E5. .35

VAL X 15 —4

MX = 79.5¢

MN = -24,18
& 75.87 - uP
I
= 58.32 - ©6.19
B 00.54 - 58.32
= 42.77 - 50.54
i 34.99 - 42.77
27.21 - 34.99
19.44 - 27.21
11.66 - 19.44
3.88 - 11.66
-3.88 - 3.88
-11.66 - -3.88
-19.44 - -11.66
-15.44 -  DOWN




PL1=2000.0 .RPM= 485.3,DMR=

HOOP

STRAIN

Figure 8 -

Circumferential strain
‘Poisson’s ratio = 0.37
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Figure 9 - Circumferential strain
Poisson’s ratio = 0.40
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Poisson’s ratio = 0.45
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Figure 12 - Circumferential strain
Poisson’s ratio = 0.48
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Figure 15 - Radial strain
Poisson’s ratio = 0.48
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Figure 5 shows the hoop strain distributicn for a cover
with a Poisson’s ratio of .30. It is evident that the zorie of
positive circumferential strains located in the center of the
cover has increased in size so mucl: that the maximun absolute
value of strain (0.63%) occurs there, rather than on the
surface of the cover. At this value of Poisson’s ratio the
surface strains are considerably smaller than at the lower
values of Poisson’s ratio, Most of the eontact area
experiences negative strains, the maxirum value of negative
strain being -0.39%. There are sone very low positive values
of strain now occurring on the inside of “he edges of the
contact interface. Since most of the contact area is
experiencing compressive strains, and these values of negative
strain are larger than the positive values on the surface, the
paper being calendered with a cover with these properties will
still experience shrinking in the machine dirsction. .

Figure 6 displays the strain state for a Poisson’s ratio
of 0.33. At this value of Poisson's retio the situation shows
the same pattern. The area of positive strains located at the
center of the cover continues expanding at the expense of the
other areas. The maximum value of positive strain (occurring
at the center of the cover) is now 0.73%. ‘he maximum value
of negative strain (-.27%) occurs at the center of the contact
surface.

Figure 7 (Poisson’s ratio of 0.35) continues with the
same pattern of strain in the cover. The center positive
strain continues its increase, by rzaching the valus of 0.80%.
The strains at the surface are now mu-h smaller, sc much so,
that the maximum negative value of strain does not occur at
the surface but it occurs now inside the cover, in areas that
are symmetrically located from the certer of the cover. The
paper that is calendered with this cover that has a Poisson’s
ratio of 0.35 will experience a much smaller valusz of machine
direction shrinking than with covers of lower Poisson’s
ratios.

The Poisson’s ratio of plastic covers that have been used
to replace cotton-filled rolls, in supercalendering as well as
in on-machine soft-nip calendering, have Poisson's ratios of
0.35 to 0.40. Therefore, Figures 7, 8 and 9 display the
circumferential strains that these ccvers experience in the
calendering operation.
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Figures B and 9 display the results for Poisson’s ratios
of 0.37 and .40 respectively. At these values of Poisson’s
ratios there is practically no circumferential strain
occurring al: the surface o the covered roll. The maximum
hoop strains occur inside the cover.

Figures 10, 11 and 12 show the circumferential strain
results for Poisson’s ratios of 0.42, 0.45 and 0.48,
respectively. ©Ong can see that +he surface strain now becomes
positive.  The central region of positive strains has now
grown so much that it has :eached the surface of the covered
roll. The higher the Pcisson’s ratio, the higher the tensile
value of the surface hcop strain. At a Poisson’s ratio of
0.48 the max.mum tensile strain reaches a value of 1.43% at
the center cf the cover.

The explanation for the severe changes in strain
distribution, going from i Poisson’s ratio of 0.00 to a
Poisson’s ratio of 0.48 is due to the compressibility of the
cover material. A cover with a Poisson’s ratio of 0.48
(rubber or urethzne, for example) is almost incompressible.
Due to the severe constraint imposed by the finite thickness
of the cover, the cover material being compressed has no
alternative bhut to flov sideways, in order to be able to
deform under lcac. The flow of material to the sides of the
center of cortact results in circumferential tensile strains.
When the Foisson’'s ratin is 0.00 the whole strain field is
negative, sinc: the cexpressive state of stress inposed on
the cover by the contact load can be supported by the
volumetric conpression of the cover. The volumetric
compression cf the cover results in circumferential shrinking
of the cover surface.

Figures 13, 14 and 15 display the strain in the radial
direction of the cover. These figures show that for a zero
value of the Foisson’s ratio the strain field is negative,
with the magimum negative strain occurring at the cover
surface. Ae the Poisson’s ratio increases, two symmetric
areas of positive strain develop and the maximum strain moves
inside the cover. At a Poisson’s ratio of 0.48 it is evident
that the ceformation under the contact zone is compressive,
but that siqrificant areas of positive, tensile strains occur
adjacent to the contact ares. These areas of positive strain
are also due to the relative incompressibility of a cover when
the Poisson's ratioc is closw: to 0.5. When the cover material
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is relatively incompressible, ths total volume of the material
will remain almost the same. The material will "flow" to the
sides such that it will bulge on the sides of the contact area
to accommodate for the central indentation produced by the
contact load.

The pressure distribution in the contact area of the
cover is also indicated in Figures 2 through 12, by means of a
load diagram on the top border of the cover’s section. The
non-Hertzian nature of the pressure distribution for low
values of Poisson’s ratio is typical of what one would expect
for a thin layer (the paper keing czlendered) at the contact
interface that has relatively stiffer in-plare (machine
direction) properties. This layer at +the interface
effectively acts as a plate deformed ia a plane-strain mode at
the contact interface, that is sucported by a fowidation (the
cover) that is compressible cue to its low Poisson’s ratio.
This kind of non-Hertzian pressure distribution is discussed,
for example, in references (26), (27) and (23). At a
Poisson’s ratio of 0.48 the pressure distribufion becomes
semi-Hertzian. This is due to the relative incompressibility
of the cover, which acts as a st:ffer foundation. The
pressure distribution for this Poisgon’s ratio can actually be
accurately represented (27) as a weighted sum of parabolic and
elliptic distribution functions.

Figure 16 displays the differential velozity (creep)
relationship (see equation 1) for a soft cover mating against
a rigid roll, with no slip in the nip. It is clear from the
previous discussion that for a foisson’s ratio smaller than
0.37 the circumferential strain at the contact surface of the
covered roll is negative, and thersfore the rovered roll
peripheral speed will be higher than the peripheral speed of
the (rigid) mating roll. Conversely, for a Poisson’s ratio
larger than 0.40 the peripheral speed of the covered roll will
be lower than the peripheral specd of the {rigid) mating roll,
since the hoop strain at the contact surface is positive for
these values of Poisson’s ratio. A cover with a Poisson’s
ratio in the range of 0.37 to 0.40 will experience very little
or no peripheral speed difference with regpect to the mating
roll. This is of importance for tecknological reasons. For
example, the tension controls in a supercalender have to be
adjusted for a "reverse nip" where two cotton-filled rolls
mate against each other, since thare is no peripheral speed
differential between the cotton-filled rolls, (sirce they are
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made of the same material), while there is a speed
differential betwesn the cotton filled rolls and the (metal)
mating rolls. On the other hand paper calendered with a
synthetic cover with a toinsen’s ratio of 0.37, for example,
will experience practically the same speed at the “"reverse
nip" and all the other nips. Also, the machine direction
deformation of the paper may be different when calendered with
a cover that has a low Poisson’s ratio and when calendered
with a cover that has a hich Peisson’s ratio. The paper will
experience shrinking in the machine direction when calendered
with a cover that has a low Poisson’s ratio (close to 0.00),
and it will experience extension when calendered with a cover
that has high Poisson’s ratio (close to 0.bl).

SUMMARY

Due to the severs constraint imposed by the finite
thickness of ¢he ccver of a covered roll, the volumetric
compressibility properties »f the cover have a very important
effect on the Jdeformation experienced by a covered roll in the
soft-nip calendering opsration. Due to friction, the paper
sticks to the mating rolls, except at some minute regions of
the contact area. These regions of micro-slip have been
previously shown to be f0o small (for practical values of the
material properties and of the coefficient of friction) to
affect the stress-strain distribution of the cover. Since the
paper being calendered is defermed to large plastic strains in
the calendering ocperation, its tangent modulus is relatively
low. In the contact area, the paper will experience virtually
the same surfzce strain of the cover. 1In the example shown,
the surface hoop strair. of the cover is negative (that is,
shrinking) for Poisson’s ratio values of the cover’s material
that are below 0.37. The surface hoop strain is positive
(extension) for Poisszon’s ratic values that are higher than
0.40. For Poisson's ratic values in the range of 0.37 the
cover experiences virtually no surface deformation. This
phenomenon should affect the (machine-direction) deformation
of the pape: bzing calendered, as well as the peripheral speed
differential of the rolls in the calendering operation.
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Transcription of Discussion

MODELLING THE STATE OF STRESS
AND STRAIN IN SOFT NIP
CALENDERING

Dr. J. J. A. Rodal

Dr. R. Mark ESPRI

The fiqures that ycu have just showed do not appear in your paper
and I am not sure if they are in your references either. Will
these be available for study by interested parties?

pr. J.J.A. Roilal

See my referznce number 24: they do appear in my article published
in the May 198¢ issue of the TAPPI Journal (Vol.72, No.5, pp 177-
186). That article discusses these figures (the stress - strain
properties cf paper) in mcre depth than I did here.

T would alsc like to add & few remarks to the ongoing discussion
of whether slip or shear ceformetion takes place in the nip of a
soft - nip calender. This phenomenon has been quite well analyzed
in the literature of (Rolling) Contact Mechanics. Professor K.L.
Johnson (Cambridge University: for example, has done quite a lot
of work in this field.

I think it is unequivocally distinguish between slip and shear
deformation in order to have a clear understanding of what is
happening. Frem elementary paysics we know that Amonton's (or
Coulomb's) law of friction states that the sliding force F., equals
the coefficient of fricticr u times the normal load P.



SLIP

P TR O T i B

F=uP
Fsp

Force required to slide
1igid obrect

Sliding occurs if the lateral force #, is greater than the product
of the coefficient of friction p times the normal load P. If the
lateral force F. is smaller than this , there is ne s1liding. For
deformable (that is, non-rigid) bodies there s:ill will be
shearing deformation of the materials under a lateral force F.
even when this force is not larg: enough to prcduce sliding.
Whether sliding or just shearing cdeformation occurs in a given
situation is governed by: the arplied force, the coefficient of
friction, and the material properties of the bodies involved.
Since we are dealing with deformabls:, non-rigid bodies (the paper
and the soft cover) one has to take their compliance into account.
Just because one has shearing fcrce at the nip, one cannot
immediately conclude that one hes sliding. For illustration
purposes, consider the following. (ne wnows from fluid mechanics
that the boundary conditions that zpply to a fluid are the no-slip
boundary conditions (even for flow of viscous fluids).
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Rig. 2

So you see that in the case of a fluid, in which extremely large
displacements occur, there is no «lip present at the boundaries.
This is so because the resistance to shear deformation (rate) of
a fluid is extremely small. Of course, paper is not a fluid, but
it is not a rigid body ei:her. Paper suffers large plastic
deformaticns in the calendering process. To ascertain whether
there is sliding or just shearing deformation involved, one should
study the mathematical formulation of the problem and analyze
whether sliding or shearirg deformation is occurring. If one does
this, the answer is that, for normel industrial precess conditions
(with parameters like the nip width to paper thickness ratio and
nip width to roller radius witk usual values), for coefficients
of friction that are higher thar p = 0.1, unless one deliberately
brakes one of the rolls, one will not have a significant amount
of slip. This has been shown nathematically (and experimentally).



Even if you change the coefficient of firiction of the paper to be
calendered, and obtain a differ:nt gloss as a result of
calendering this paper, one should “ot conclude that this change
in gloss is just due to a change in sliding conditions (brought
about by a change in the coefficiert of friction). We know from
the theory of friction (explained by adhesive Junctbions) due to
Bowden and Taber that the coefficient of fricticn is related to
the material's strength in plastic flow. More prec.sely stated,
it is related to the ratio of the material's value of “"shear yield
stress" divided by the material's velue of "normal yield stress."
A change in coefficient of friction may reflect a change in this
ratio. For example, the low coefficient of friction of Teflon (M
= 0.05) is due to the alignment of the polymer chains parallel to
the surface, in the direction of shear. This alignment can be
produced by plastic flow due to sliiinc. Due to this orientation
the polymer is anisotropic and the velue of the retic of vield
stress in shear to plastic yield under normal stress is much
smaller than it is for isotropic materials. So, once again, before
jumping to conclusions of whether sl:ding or shearing deformations
are involved, one should analyze the oproblem mathematically and
take the compliance of the bodies i:tc account.

Dr. J.D. Peel Kusters

If we use the Hertzian formula which is the old one for
calculating stresses and strains in rolls we all knew the formula
to use. If we wish to be more scphisticated we can use K.L.
Johnson or Bufler's work in the 1¢50's and 1960's. Of the
references you give which do you think are the more useful ones
for modern theoretical calculations of nip widths and
stress/strains in covers? I realise that we would need computers
to make the calculations.

Dr.J.J.A. Rodal

The calculation of the nip width for thin-covered rolls is a
complex problem since it dnvelv:s integral equations with
complicated kernels. However, there is an asymptetic solution
obtained by P. Meyers which is refarerced in youar paper, (Ref.
119) that can be programmed in a nanc-held calculator (Like a
Hewlett-Packard HP_28S) and hence it does not require a computer.
There is a paper in the TAPPI Journ:l by Desphande (from Xerox),
which is also referenced in your paper (Ref. 120), in which
Meyers' formula is used for interp:clation in order <o obtain a
simpler, empirical formula. This (empirical interpolation) formula



by Desphande has been used by people in the industry, due to its
simplicity. Sometimes this empirical formula by Desphande, which
is much simpler than Meyers' asymptotic series, has been (wrongly)
referred to as "Mevers' formula." Again, since nowadays one can
actually obtain the nip width and pressure distribution given by
Meyers' original (asymptctic series) formula with a hand-held
calculator, I do not sze the need for the empirical formula of
Desphande. Meyers' solution has & fairly rigorous mathematical
definition, and his assumplions are well known (linear elasticity,
small deforma:ions, dimension:s of contact being much smaller than
the radius of curvaturs and no friction being present at the
interface). Therafore one can cbtain its range of validity. On the
other hand, 1 cannct on the range of validity and accuracy of
Desphande's approximation, since, again, it does not rest on as
firm a mathematical foundalion. Later on, Alblas and Kuipers (Acta
Mechanica, ¢, 292, (1970)) aliso obtained a mathematical solution
to this problem, for the cas: of very thin nip covers (that is
very small ratic of thickress to nip-width). Alblas and Kuipers'
solution is more mathematically rigorous than Meyers' but the
difference between them is miror. Furthermore, Meyers' obtained
a solution for layers whers the nip width is of the same order as
the thickness, in additior tc the solution for very thin layers.
Hence, Meyers' solutions covar a larger range of validity. I
should also mention the very important (and voluminous) Russian
literature on this subject. V.MN.Aleksandrov, for example, obtained
quite a numbar of solutions te contact problems for layered bodies
since the 1950's and continues to be active in this area in the
1980's.

I should also like to say hat the solution of Meyers, Alblas et.
al. and Aleksandrov are velid for situations where the nip width
is of the same order as the layer thickness, or larger than the
layer thickness. This is the controlling factor. For prcblems for
which the laya- thickness is larger than the nip width, Hertz's
solution is fine. For exanple, for cotton-filled rolls ycu have
a layer thickaess that is 8 times or larger than the nip width,
and hence Hertz's esguation apglies. Dr. Peel and Dr. Baumgarten
were quite correct in using Hertz's ecquation in their theses since
these theses cdealt with zotton-filled rolls and not with the
polymer cover: now commonly used in soft-nip calendering.

Now, if there is a discreparcy between the values of nip width and
experimental measurements, it is often the case that this is due
to the materisl properties used as input for these ecuations,
rather than & breakdown of the usual assumptions (linear



elasticity, small displacement, etc ). In effect, there is a well
known adage of computer software: "yarbage irn, garbage out." The
results are only going to be as gocd as the input (and often they
are worse). It is a fact that the meterial properiies of the
materials involved are poorly knom. One neads accurate
measurements of the modulus of elasticity and Pcissen's ratio of
these covers in the range of interest. By the range of interest
I mean these properties measured ai: the operating temperatures,
strains, and strain rates. The present. situation is that these
properties have not been properly msasired and users are left to
speculate as to what their values arz. Another important variable
is the paper between the two rollers, that may have an important
effect on the pressure distributicn, for example. None of the
solutions previously mentioned include the effect of the paper.

I am not aware of any closed-fcrm soluticn thet gives the
distribution of strains for contact problems of layered solids.
Therefore, to obtain strain distributions for problems for which
the nip width is the same or greater than the cover thickness one
has to resort to numerical methods Llike the finite elsment method,
for which computers are a must.

Viscoelastic effects have often preoccupied +the mind of
researchers in calendering. FKowevir, it becomes an important
variable only with respect to the raccvery of the paper after it
leaves the nip. (viscoelastic recovery). With respect to what
happens at the nip, what matters is the relaxation time of the
materials (polymers have a distribution of relsmxation times!). It
is known that relaxation effects (at tlte nip) are important only
when the contact time roughly coincides with one of the relaxation
times of the materials (either the paper znd/or the cover). It is
under this particular condition that the contact problem becomes
significantly asymmetric. At high spezds (those for which the
contact time is shorter than the relaxazion time of the material)
the pressure distributions are approximately equal to the results
obtained by applying elastic theory [and therefore, neglecting
viscoelasticity), but with a "dyramic" elastic modulus. This
"dynamic" elastic modulus is higher thar the “static" modulus, due
to the strain-rate effect.

Even under these conditions, this effe:st may not be as large as
the actual reduction in elastic modilus that occurs due to
temperature, since the properties of tle materials irvolved (the
paper and the polymer cover) are very cependent on he operating
temperature.



The paper itself may have & very important effect on what happens
at the nip. We do not have time to go in to it, but the audience
may have not:iced that the distribution of pressure became semi-
elliptical /that is semi-Hertzian) for a Poisson's ratio of 0.48:
but at a Poisscn’s ratio close to 0.0, there was quite a non-
Hertzian distribution. There were two small lobes on the pressure
distribution, one at each end. This is related to the paper and
the cover prcperties.

With respect to the pressure and nip width measurements, one way
to do this is by having lcad cells in the mating metal roller. The
advantage being that onz mneasures the pressure distribution
(including nip wid:h} &t ectual operating conditions, and one can
include paper in the nip as well. However, I should warn you that
one has to be exitremely careful about having the load cell
tangential to the circurference. If the loadcell is slightly
higher ir slightly lowsr, or if it does not match the curvature
of the roller, one will obtzin very spurious results. If it is
microns off, one will have cowpletely wrong data.



