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Accurate measurement of the shear stiffness of corrugated fibreboard and other
high performance sandwich panels is difficult because most loading strategies
required to introduce shear stresses also introduce secondary effects, which
complicate the measurement .

This paper analysis the strain field introduced by twisting a strip of material and
demonstrates a simple relationship for accurately determining the shear stiffness
of corrugated fibreboard and other high performance sandwich panels .
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INTRODUCTION

The simplest type of sandwich panel consists of two stiff, high
strength sheets (or facings) separated by a low density core .

This construction has been used in many engineering applications
to create high performance, cost effective structures found in building
construction, aircraft and more commonly in packaging .

The purpose of the facings is to provide high bending stiffness to
the panel and protection to the easily damaged core . The purpose of the
core is to provide facing separation without undue weight penalty, to
provide sufficient shear stiffness compatible with the overall bending
stiffness of the panel, and provide lateral support to the facings to inhibit
local buckling instability .

Any damage to the core material by excessive lateral pressure can
severely weaken the core structure . This is particularly true of a
corrugated core (Fig 1) used extensively in packaging applications .

Figure 1 . Panel with a corrugated core .
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Lateral pressure, especially if localised, causes crushing and
permanent deformation to the fluted corrugations with consequent drastic
loss in machine direction (MD) shear stiffness of the core . In the
packaging field in particular, low cost methods of measuring and
controlling shear damage to corrugated panels is of particular
importance .

This paper examines the fundamental relationship between the M D
shear stiffness of sandwich panels by measurement of the twisting
stiffness of long strip samples.

In particular this analysis examines corrugated core structures,
representing the more complicated case . However, the techniques
explained here are also applicable to sandwich panels of solid core
construction .

Definition of MD Shear Stiffness

Shear stiffness is a fundamental structural property of a sandwich
panel and is defined by

DO = Q

	

(1)
V

where Q is the MD shear force on the panel per unit width (kN/m), y is
the shear strain and DQ is the MD shear stiffness (kN/m). Details of
geometry are shown in Fig 2, where h is the distance between the mid
plane of the facings . For a corrugated core, p is the pitch of the
corrugations .

Relationship between MD Shear Stiffness and Twisting Stiffness

Pure shear deformation, described in the previous section is
difficult to achieve in practice without introducing spurious boundary
conditions, which complicate attempts to accurately measure the true
shear stiffness (1-2) . If bending techniques are used to measure shear,
the bending deflections dominate and it is difficult to accurately isolate the
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shear component from the total deflection .

Figure 2. Geometry of the fluting cross section, in the undeformed state,
and under machine direction (MD) shear .

However, by twisting a long strip sample of the panel material, it is
possible to introduce large shear deflections in the core of the panel, but
without large shear strains occurring in the facings, because these are
always relatively stiff (Fig 3) . Obviously the total twisting stiffness is a
parallel combination of twisting stiffness from the liners and the core . If
the angle of twist is kept sufficiently small, non linear twisting moments
that develop in the liners under large deflections can be neglected . Also
for simplicity of analysis the twisting moments of the liners themselves
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have been assumed negligible . This will be a good approximation if the
liners are thin relative to the panel thickness h, and the amount of twist is
kept small . In any case these twisting moments can be easily calculated
from first principles and added to the analysis .

Figure 3 . A twisted strip, which introduces shear strains into the core .

The main issue to be resolved is how to handle the complicated
geometry introduced by twisting and relate this back to a force balance in
the structure, in terms of the shear stiffness of the core and liner
materials . This will be done in the following sections .

METHOD

In the development of this work, the basic approach has been to
combine the capability of differential geometry Q-5) and its powerful
techniques for describing twisted and curved surfaces, with the perhaps
more familiar discipline of continuum mechanics (6) . The notation used
here is chosen to be consistent with the above references .

Adopting a differential geometry approach allows an intuitive (and
satisfying) visualisation of the displacement field, such that an orthogonal
grid aligned with the undeformed sample is transformed (or mapped) into
a distorted grid .
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For example, it is easy to visualise the liner as being under shear
between the flute tips, with a resisting moment required at the flute tip to
maintain equilibrium under this shear loading . The boundary conditions
are that of a cantilever beam as shown in Figure 4 . In this picture the
undeformed liner is shown dotted and the deformed grid is shown in
heavy lines .

Figure 4 . The liner displacement field, under a shearing action between

the flute tips at x2 = ± p/2 .

Under shearing stresses, a vertical line of the undeformed grid
becomes curved . Consider for example the line AB, corresponding to the
undeformed points at x 2 = 0 . Also observe that shear stresses will distort
rectangles into parallelograms, (shown shaded), as in evidence along the
X2 centre line . Thus X2 , the displaced location corresponding to X2, must
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be an odd function in x 1 , and meet the edge of the liner at right angles,
as no shear is possible at an edge . The simplest function that meets this
criteria is a cubic expression, which is anti symmetric about x' = 0, (that
is, becomes zero at x' equal to td at points E and F, where d can be
chosen to ensure zero shear at the liner edge). The amount of shear
introduced by this expression can be adjusted by a suitable scaling factor
y, to be determined .

Notice that in moving toward the flute tip (line CD), the cubic curve
introduced above must rotate, so that line E'F' remains orthogonal to the
facing centre line (x2 axis) . This can be allowed by introducing an a
term, such that the rotation increases in proportion to (x2 ) 2 , this being
the gradient of the x2 axis .

The distorted field of Figure 4 must be mapped onto a twisted
surface, as the liner itself is twisted . Continuity of cross sections in the
vertical x', x3 plane may require that this whole field be rotated in the

y,x', x 2 plane . Such rotation can be allowed, by introducing a suitable
rotation factor, yi .

When shear is allowed in the core, it is found that the points F,A, B
and E do not necessarily lie on the x' axis, but must be displaced from it
by a ,Bx' term, so that vertical sections through the x', x 2 origin are now
twisted by a factor ,8 .

By the means illustrated above, all the necessary displacement
and continuity requirements can be visualised independently, and
combined together as required to specify the complete displacement
field, in terms of unknown constants . This will be done in a more formal
way in the following sections .

Finally, these constants are determined, such that the overall
boundary and force equilibrium conditions within the twisted sample are
satisfied, at least globally .
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SHEAR TWIST ANALYSIS

Consider in Figure 5 a coordinate system x' aligned with the axis
of symmetry of an untwisted shear twist sample of width w and thickness
h .

Figure 5 . Geometry of the undeformed sample .

The sample is twisted by rotation about the x 2 axis, (Fig 6) . Point
P in the untwisted sample, located by the vector (x',x2,x3), moves with
the twisted material to a new location P defined by the vector r =
(x',x 2,x 3 ) .

	

Point P is mapped to point P by the equations (1) - (3) as
follows .
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X1 = X1cos(IOCZ)-X3sin(kx2)+OX3(X2)3+WX2X3+~(X1)2X2X3

x 2 = x2
+(

	

' -

	

' (x2)2-Vx' (d-x1 )(,5+x' )]X3-WX1X3 (1)-(3)

x 3 = x 1 sin (IoC 2 ) + x3cos(IOC2)

The above mapping is chosen to satisfy the required equilibrium
and boundary conditions of the liners under the twisting action, as
discussed in the previous section, over the range
x' = f w/2, x2 = ± p/2, x3 = f h/2 . Here k is the rotation per unit
length in the x2 direction and 0 V a fl d y and ~ are constants to be
determined by equilibrium of forces within the structure .

Figure 6. Location of material in the twisted sample .
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Note that flute tips (glue lines) are assumed to be located at
x 2 = t p/2 on both facings, which is not strictly true for corrugated
board . There is no loss of generality in this assumption however, as
symmetry allows the deflected shapes above and below the x3 = 0 plane
to be shifted by half a flute pitch, to satisfy the requirements for the
corrugated board case .

The liners of the sample are distorted under the twisting action
with local changes in geometry defined by the metric g;j as follows :

r ; =

	

a r

	

(4)
ax~

g;; = r ; . r;

	

(5)

Deformation of the twisted sample is specified by the strain tensor
16;j defined as

a;;

	

=

	

2(g; ; -

	

a;i)

	

(6)

To a first order approximation it can be shown, by applying
equations (4) and (5) that

911 = 1 + 4 ~x'x2x3

	

(7)

9,2 = { (30-a) (X2)2
- V[d2-3(x l )2 ~

	

+ ((X
,
)
2
+

	

- k }X3

	

(8)

g,3 = {

	

+

	

p(X2)2 +. ~(X')
2
} X2

	

(9)

922 = 1

	

- 4ox1x2 x3

	

(10)

923

	

a(x2)2 _ y[62_(XI)2) + k) x,

	

(11)

933 - 1

	

(12)
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Liner Boundary Conditions

In analysing the stress/strain field in the liner (x3= ± h12), the
simplifying assumptions are made of :-

1 . Small strains .
2 . Plane stress .
3 . Orthotropic material properties .

Under these assumptions, the compatibility equations &), which
ensure a continuous and single valued displacement field, have already
been satisfied by a sensible choice of functions, equations (1) to (3) .

For equilibrium of forces in the plane of the liner, the equation to
be satisfied is

U;,,, = 0 (13)

Solution of the compatibility and equilibrium equations are often
obtained through use of the Airy stress function (6) . It is evident that at
the edge of the facings (x' = ± w12), both the tensile stress Q� and the
shear stress a12 are zero . Examination of suitable Airy stress functions
shows that these boundary conditions are satisfied with a� = 0
everywhere, and a shear stress distribution which is parabolic in x' and
invariant with respect to x 2 .

In a plane stress situation it is convenient to use a contracted, but
obvious notation for the elastic modulus . (El 111 = E� , E� 22 = G, 2 etc .)
Thus under conditions of plane stress

=all

	

E"
(E

	

+

	

v�

	

2211 E22 )
9

(14)
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where E� is the elastic modulus of the liner in the CD (cross machine
direction), and g =

	

1

	

-

	

v� 22 V 221 1

	

.

The strains E� and E 22 can be found by applying equation (6) to
equations (7) and (10), giving

Ell
= 2 ~XIX2X3 (15)

E 22 = -2 ax 'x2x3	(16)

therefore

-
a l 1

	

2E� (~~-v
2211 a)x'x2x3

9
(17)

Now as already indicated, the boundary conditions within the liners
(x3 = ± h/2) can only be satisfied with a� = 0 everywhere . This gives,
by equation (17)

-

	

V221 1a

	

(18)

Applying equation (13) in the x' direction (i=1) gives

a, l,', + or12,2 = 0

	

(19)

Now as a� = 0 everywhere, a� ,, = 0 which implies that

a l 2 .2

	

=

	

0

	

.

This means a12 and therefore 912 can not be a function of x 2 .
Thus from equation (8)
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a=30 (20)

Also at the edge of the liner

	

(x I =

	

± wl2, x3 =

	

f h/2)

	

shear
stresses are zero, that is

a 1 2

	

= 912

	

=

	

0

Therefore from equation (8)

2
~_ k _ ya 2 _ -(3y+O

[
w
2

(21)

This gives, in the general case, after substituting equations (20)
and (21) into (8),

2
912 = _( 3y+o

	

w

	

_ (x1)2 x3

	

(22)
2

Liner equilibrium in the x 2 direction, ( i=2 in equation (13) ) gives

23

Now a, 2

	

=

	

U21

	

=

	

G12Y1 2

= G12912

where y;j = 2 E;; = g;;

and G12 is the in-plane shear modulus of the liners . Therefore

z
Q,2

=
_(3y+OG12

	

w

	

_ (x 1 ) 2
x3

	

(24)
2
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and

U2,,, = 2(3y+~)G,2x1x3

	

(25)

Also

a22
=

	

E22
(E22

+ v
11 22-Cl , )

9
(26)

where E22 is the elastic modulus of the liners in the x 2 direction .

Substituting equations (15) and (16) into the above equation gives,

-

	

2E22

g

	

(V- a)x
yx2x3

	

(27� 22 ~

	

)

but substituting for ~ from equation (18) finally gives

0122 = -2aE22x'x 2x3	(28)

Differentiating 0122 gives

0122,2 = -2aE22x 1x 3

	

(29)

Substituting equations (18), (25) and (29) into (23) gives

r 0

	

(30)
3y G12

	

E22-v221I G 12

As the sample twists, symmetry requires that cross sections
defined by the x' x3 plane and passing through a flute tip can not
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undergo shear along the cross section centre lines . This requires that
913 = 0 at x'

	

= 0 ,x 2 = p /2 where p is the pitch of the flutes .

gives
Applying this condition to equation (9) and using equation (20)

f l 2

31 21
(31)

Equilibrium of the Glue Line

The glue line is in equilibrium under the action of forces from the
liner and medium .

Consider moments on the glue line (at x 2 = p /2) arising from
forces on the liner segment ABCD, (Fig 7) .

Along lines AB and CD (at x 2 = 0 , p), Q1 , and u2 2 make no nett
contribution to moments about E because of symmetry . Thus the total
moment on the glue line from the liner at x 3 = + h/2 (defining anti
clockwise rotation positive), is

W

	

W

ML = -t

	

w~, 2 p dx'

	

_ -2t

	

-7U, 2 p dx'
-~

	

o
(32)

where t is the thickness of the liner . Substituting equation (24) into the
above and integrating gives

M = YW3
tG,2ph e

	

(33)
4
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Figure 7 . Location of the glue line connecting fluting and liner .

Consider now forces on the glue line from the medium, (Fig 7) . We
can examine a section BCHJ at the edge (x' = w/2) or at any other x'
value . The rectangle BCHJ will be distorted to a parallelogram B'C'H'J'
as shown in Figure 8 . A section of width dx' under shear forces dQ will
develop a shear strain, designated V23 .

Under these pure shear conditions (the two dimensional case) the
shear stiffness is defined as

DQ = Q = Q

	

(34)
V23 923
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Figure 8 . Shear in the fluting (corrugating medium) .

Also for equilibrium of the section h dF = p dQ where, dQ = Q dx I

Thus

dF =

	

p
g23DQ dx'

	

(35)h

In the three dimersional case the forces dF must be transferred to
the glue line . There may be other forces acting which contribute to dF
but these are small if rotation k is kept sufficiently small . Thus the
moment on the glue line, defined by the vector (x', p/2, h/2), is
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w
MM =

	

W X 1 dF
-7

w

	

(36)

= 2pDQ f -7(9' 23 )X2= P X' dX 1
h 0 -2

From equation (11) and applying the appropriate boundary
conditions using equations (21) and (30), 923 can be expressed in terms
of y and k only .

Substituting into (36) and integrating gives

M

	

=

	

w 2pDQ (yW
3 )

	

A

	

2+

	

1

	

37M 4h

	

3 M

	

20

where

A=2k-yC (38)

and

C

	

3
[ w

	

+

	

G,2 ~ 2

	

p

	

w
21

	

Q E

	

-Pi'

	

+

	

3V221121>

	

-
zx

	

1

	

[ 2 1 )
(39)

For glue line equilibrium, taking moments about the X 3

	

axis,
requires ML = MM . This requires, after simple manipulation that

3 _

	

2Aw
2etG h 2 1

	

40
Do w 10

Moment of Twist

To twist the sample requires . a moment M.

	

Consider the forces
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on the liners as shown in Figure 9 .

Figure 9 . Moment equilibrium about the

	

x 2

	

axis.

Assuming elemental widths behave as if in pure shear, we
conclude that

Fh

	

=

	

(V,

	

+ V2 )p

	

(41)

Also for equilibrium of the liner
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w

	

w

wf

	

F x'dx'

	

= t

	

W Tpdx '

	

(42)
f--7

	

-7

where T is the shear field in the liner, which varies in the x' direction but
not in the x 2 direction . Moments about AB in a vertical plane through C
requires

w

	

w

M =

	

w(v, + v2 )x' dx'

	

+ ht
f w T dx'

	

(43)
-7

	

-7

The first integral in (43) above can be simplified, by substituting (41) and
then (42) to give

w

M = 2ht

	

T dx'

	

(44)f w

Now r = -O', 2 and is symmetrical in x', therefore

w

M = - 4ht

	

7U
f

	

1 2 dx'

	

(45)
0

Substituting equation (24) into the above and integrating gives

3
M = M tG12 h 2 e (46)

Substituting for yw 3 from equation (40) gives
M -

	

LotG1 2 h 2Aw

3

	

2QtG, 2

	

-h

	

2

	

1

	

(47)
-

Do w 10

Expressing the moment M per unit twist k, in terms of shear units,
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by the equation

DQM
_ M

3kw
(48)

it can be shown, using equations (40), (47) and (48) that

2
DQ

	

= 3 +

	

1 +a +b

	

3DQ	w

	

(49)
DQM

	

5tG, 2

	

h

where

a = G 12 V2211

	

b - 5 G 12

	

p

	

2

	

50
E22

	

4

	

6 E22 [ w

For corrugated board, the term a is a ratio of paper properties
and is a small constant, typically 0.028 .

The term b is generally small (around 0.018 for C flute) and can
be disregarded for sample dimensions such that w > 3p typical of
commercial corrugated boards used in packaging, and where the sample
width has been chosen to be 25 mm.

Equation (49) establishes a fundamental but simple relationship
between the shear twist test and the M D shear stiffness of corrugated
board. It allows measurements from a shear twist instrument to determine
pure MD shear stiffness accurately, irrespective of the choice of liner
weight .

CONFIRMATION OF ANALYSIS USING FINITE ELEMENT METHODS

The Finite Element Method has been used to confirm in detail the
validity of the mathematical analysis .

Four node shell elements (ABAQUS S4R5) were used, comparing
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coarse and fine meshes to check convergence .

Two sets of boundary conditions were applied to the models . One
set applied a pure MD shear displacement, thereby determining DQ ; the
other a rotation about the MD (x

2 ) axis to determine DQM . Results were
compared using equation (49) .

Two types of glue modelling were also used to connect the liners
to the medium . In one case multi point constraints (MPC's) were used . In
the other, the tips of the medium were joined to the liners using short
shell elements . As expected, a more rigid glue connection gives a higher
shear stiffness .

In order to increase the accuracy of the finite element model, only
one flute cell was modelled . Boundary conditions were chosen to
simulate a series of connected and continuously twisting cells, compatible
with an infinitely long sample .

Finite element results are summarised in figure 10, compared to
the analytical work, equation (49) . A detailed examination of the strain
field predicted by the finite element method confirms that the first order
approximations assumed in the analytical work are adequate, provided
rotation of the twisted sample is kept in the linear range .

The results show a simple linear relationship, covering a wide
commercial range of liners (115-300 g/m 2 .) and C flute mediums (115-
230 g/m2.), demonstrating the linear form of equation (49), -and
confirming the fundamental relationship that exists between MD Shear
Stiffness and the twisting stiffness of a strip of corrugated board . For liner
and fluting combinations in reasonable balance, suitable in commercial
applications, the difference between the analytical and finite element
results is under ten percent . In situations where shear stiffness is low,
such that overall performance of the corrugated structure might be
compromised, the results fall towards the left of the graph . In this case
the difference between the results is around six percent .
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Figure 10. Comparison of analytical and finite element results .

CONCLUSION

A simple analytical relationship has been shown between the MD
shear stiffness of a sandwich panel and the twisting stiffness of a long
strip sample . This relationship is of a form which allows correction for the
effect of the liners on the twisting stiffness, to arrive at a true measure of
the MD shear stiffness of corrugated panels . The same method is
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applicable to sandwich panels with a solid core construction .

Finite element analysis confirms the analytical results for the
corrugated board case .

The twist method therefore provides a reliable and accurate way to
test the quality of sandwich panel construction . This is particularly
relevant to the manufacture and quality control of corrugated fibreboard
structures used extensively in the packaging industry .
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ANALYSIS OF THE STRAIN FIELD IN A TWISTED
SANDWICH PANEL WITH APPLICATIONS TO
DETERMINING THE SHEAR STIFFNESS OF

CORRUGATED FIBREBOARD

P R McKinlay

Dr C Fellers, STFI, Sweden
When you derive the equations for the box performance I notice that
you are using time independent elastic properties . When you model
a box can you include also a time dependence somewhere in the
equations . Could you extend the model using the isochronous
stress-strain curves?

P McKinlay
Yes . You have the facility to twist the sample and hold and get a
relaxation . You can put a constant moment a get a creep .
Translating it into information including time is very easily done.

D Gunderson, US Dept of Agriculture, USA
Does the mathematical analysis explain the dimpled appearance? In
the beginning you showed us dimples - the microbuckling that goes
between the flute lines . Does the mathematical analysis explain the
presence of those?

P McKinlay
No. The only point I was making there was as these micropanels
develop, they are tied to the fluting underneath so the stiffness of
the fluting is helping maintain that lateral stability. So when we get a

Transcription of Discussion



micropanel field develop an important part of the development of
that field is how well we can stabilise the facing against lateral
buckling . So it is an important part of box compression behaviour
which up till now has not been correctly taken into account .

Dr S Loewen, Abitibi-Price Inc, Canada
Your finite element model looks as if it could be quite powerful for
optimising the different component properties such as the liner or
the board in terms of stiffness or strength properties . Have you
used it for that?

P McKinlay
We will be pursuing that route . Until now I have built a model of box
compression behaviour based on orthogonal polynomial
displacement field and we have been using that model as a basis
for prediction which has worked out very well . We have been able
to satisfy our needs up to now with that model, but there are a lot of
things that are happening which we cannot predict and that is where
the finite element model comes into its own. It will be very important

in the description of material behaviour. I make the point that what

we have shown here in terms of differential geometry, it has taken
150 years for physicists to catch up . We have a very powerful tool
and this is one simple example of how it could be used but we are
dealing with geometry and we can make great progress if we start to
use the tools that we have .




