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I n spite of forty years of research, it is still unclear how the mechanical
properties of paper, particularly strength, depend on the disordered
geometry of the fibrous network. Most of our understanding of the fracture
phenomena of paper is based on illustrative microscopic observations.
Theoretical models have traditionally been focused on the behaviour of a
typical element in the network. However, the failure process seldom starts
from, or proceeds through, "typical" elements . Instead, the statistical
distribution of local failures is crucial for the strength of paper. With the
ever more powerful computers it is now possible to simulate numerically
the behaviour of disordered systems such as paper. I believe that
computer simulations, in combination with new measurements and
effective data analysis will lead to a better understading and more
accurate microscopic characterization of the strength and fracture
properties of paper.
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1 . INTRODUCTION

I will discuss certain aspects of the current knowledge of the strength and
failure properties of paper. Even though the basic empirical facts have
been known for years, much remains unresolved ., It is widely accepted
that the mechanical properties of paper are related to the disordered or
statistical geometry of the fibre network, nevertheless, a satisfactory
mathematical description of that relationship is still lacking. There are
reasons to believe that the situation may be changing . For one, computer
simulations of theoretical models provide new insights that can be applied
to paper. Also, sensitive measurement techniques coupled with powerful
data processing make it possible to collect statistical information on the
microscopic failure process of paper.

The proceedings of the previous Fundamental Research Symposia
contain a lot of material on the structure and mechanical properties of
paper and provide a good overview of the research trends . In the first
symposium in 1957, "Fundamentals of papermaking fibres", beating was
one of the main topics . Steenberg (1) reviewed research on beating
effects and stressed the need to study the stress distribution in paper
under different conditions in order to understand the properties of paper
and the influence of its composition . Arlov (2) observed that the shape of
the stress-strain curve for paper remained constant with increasing
degree of beating, while changing the beater changed the shape.
Nordman (3) showed how the irreversible elongation of paper is related to
an increase in the reflectance (Fig . 1) and that the light scattering
coefficient is directly proportional to the energy loss in a straining-
destraining cycle.

In the next symposium, "Formation and structure of paper", in 1961, a
large number of interesting papers were presented on the microscopic
structure and mechanical properties of paper. Jayme and Hunger (4), and
Page, Tydeman and Hunt (5) described the structure of fibre bonds as
seen under the electron and light microscopes, respectively . The optical
contacts between crossing fibres had irregular shapes and very different
areas. Page et al.(6) also observed that most fibre-to-fibre bonds failed
only partially when paper sheets were strained to failure . The fractional
loss in bonding area was independent of beating but depended on the



1 : Comparison between a stress-strain curve and the corresponding
change in reflectance (arbitrary units), after Nordman (3) .

drying tensions and direction of the test strips . Page and Tydeman (7)
showed that the plastic elongation of the bonding sites was probably
related to the "microcompressions", or wrinkles, induced by drying
shrinkage. McIntosh and Leopold (8) measured the strength of individual
fibres and fibre-to-fibre bonds, and Higgins and De Yong (9) discussed
the effects of beating on the properties of pulp and paper.

At the same symposium, Corte and Kallmes presented their famous
theory of the statistical geometry of two-dimensional random fibre
networks, which agreed very well with the measured geometric properties
of thin paper sheets ( 10 ) . They also calculated the number of bond
failures that should occur when a two-dimensional fibre network is
strained to failure . The result was not in disagreement with that obtained
by listening to the "clicks" that were emitted from thin paper sheets ( 11 ) .
Kallmes and Bernier ( 12 ) found that measured elastic properties of thin
sheets were in fair agreement with those predicted from a model. Nissan
(13 ) contended that it is necessary to consider the statistical distribution of
hydrogen bonds in order to obtain accurate results for the mechanical
properties of paper. Sternstein and Nissan ( 14 ) derived a mathematical



model that gives the non-linear stress-strain curve of paper in terms of the
non-linear behaviour of the hydrogen bonds. Van den Akker argued on
theoretical grounds that the stresses acting on fibre-to-fibre bonds arise
from the anisotropic drying shrinkage of the fibres and the stress transfer
from one fibre to another through the bonds (15 ) . According to Van den
Akker, the latter mechanism causes the bonds to fail, which in turn leads
to the non-linear tensile behaviour of paper. Ranger and Hopkins also
explained the failure process of paper through the "peeling" rupture of the
bonds, but under compressive forces ( 16 ).

At the third symposium in 1965, "Consolidation of the paper web", the
mechanical properties of pulp fibres were discussed in several
contributions . Van den Akker, Jentzen and Spiegelberg (17 ) found that the
tensile strength and Young's modulus were high when the fibres were
dried under tension. Very similar observations were reported by Kallmes
and Perez (18 ) . Duncker, Hartler and Samuelsson ( 19 ) followed, during
drying and wetting, the elongation and shrinkage of fibres under load .
Nordman, Aaltonen and Makkonen (20 ) found that the bonding strength of
fibres was essentially constant in pulps of low hemicellulose content, while
in hemicellulose-rich pulps it appeared to increase with beating and
decrease with wet pressing . R. J . Norman (21 ) found that when forming
stock concentration was increased, the tensile strength of paper
decreased, as one would expect to happen with increasing structural
inhomogeneity . Kallmes and Perez ( 22 ) presented a mathematical model
for the non-elastic properties of paper. Algar (23 ) reviewed the literature
on the structure of paper and its load-elongation behaviour.

At the fifth symposium in 1973, "The fundamental properties of paper
related to its uses", B. Norman and D. Wahren ( 24 ) continued the
discussion of the mass distribution of paper in relation to sheet properties,
and found that the decrease in paper strength with increasing basis
weight variability depends on the web formation process. Lyne and Hatzell
used interference holograms to show that the variability of the local strain
increases with that of the local basis weight ( 25 ) . Moffatt, Beath and
Mihelich (26 ) observed that tensile failure lines in uncalendered newsprint
pass predominantly through areas of low basis weight, but after
calendering they often pass through areas of high basis weight. Lyne,
Jackson, Ranger and Trigg (27) showed that shives and other similar



2: Thermodynamic behaviour of 100 per cent rag paper MD, after
Ebeling (32) .

defects had no effect on the in-plane tear strength (the force required to
start the tear), nor was the local pre-rupture strain field affected by their
presence . Seth and Page argued that the runnability of paper webs could
be characterized by a fracture resistance, which is equivalent to the
in-plane tear strength with a 0° tearing angle (28) .

Gottsching and Baumgarten measured the triaxial deformations of paper
under tensile load (29). Radvan (30) concluded that the layered structure
of paper has little effect on the in-plane mechanical properties . Dodson
presented an extensive review of the published works on the mechanical
properties of -paper with particular emphasis on the fundamental
parameters (31 ) . He emphasized that the statistical network geometry
governs the fracture process of paper. According to Ebeling (32 ), the
small strain elongation of paper under tensile loads is consistent with
Kelvin's thermoelastic principle, i.e . paper cools when strained . At larger
strains, heat is released due to irreversible intrafibre deformation (Fig . 2) .



Fig . 3: Strain-to-failure against relative humidity under static (dots) and
impact conditions (triangles) after Kimura et al. (35 ) . Bleached softwood
kraft pulp .

The seventh symposium in 1977, concentrated on the "Fibre-water
interactions in papermaking" . Htun and de Ruvo (33 ) showed that within
reasonable error bounds, the internal stress of paper equals the final
drying stress, and that the elastic modulus, tensile strength and
compressive .strength are proportional to it. lonides, Jackson, Smith and
Forgacs (34 ) argued that not only the solids content but also the
conditions of dewatering affect the stress-strain behaviour of wet webs .
Kimura, Usuda and Kadoya ( 35 ) measured the impact rupture properties
of paper with a dynamic pendulum tester and found them to have a
different moisture dependence than the static properties (Fig . 3) .

At the 1981 symposium, "The role of fundamental research in paper-
making", Perkins and Mark (36 ) discussed the effects of fibre orientation
and drying shrinkage on the elastic modulus of paper using a
micromechanical model. Seth and Page (37 ) presented a qualitative
model for the stress-strain curve of paper in terms of the average
(non-linear) properties of the fibres . Many different experiments were
explained with this model . The authors argued that the stress-strain
behaviour of paper does not depend on the network structure. Corte,
Blinco and Hurst (38 ), on the other hand, claimed that the statistical
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network geometry determines the stress-strain behaviour of paper.
Fellers, Westerlind and de Ruvo (39) determined the biaxial strength
envelope of paper and found it to compare well with values measured for
thick-walled paper tubes and corrugated containers. Htun and de Ruvo
(40) argued that the effect of drying shrinkage on the strain to failure of
paper can be explained using a linear superposition principle in which the
drying process is divided into stages of constant drying strain .

At the eighth symposium in 1985, "Papermaking raw materials", Page,
Seth and El-Hosseiny (41 ) reported how the strength of wood pulp fibres
varies with the chemical composition . Page, Seth, Jordan and Barbe (42)
also argued that various fibre defects like crimps, kinks and
microcompression together with fibre curl have a strong influence on the
mechanical properties of paper. Retulainen and Ebeling (43) reported
measurements for the load-elongation behaviour of fibre-to-fibre bonds,
and Steadman and Luner (44) results for the effect of wet fibre flexibility
on the apparent density of paper. Jantunen (45) measured wet web
properties under dynamic conditions and found that the rate of stress
relaxation was roughly independent of the solids content, except above 80
%, where it decreased with increasing solids content. Back (46) showed
that the compression strength of paper decreases with increasing
moisture content much more rapidly than does the tensile strength . The
effect of moisture on the compression strength was also reported by
Fellers and Brange (47) . The effects of fillers, coatings and sizes on
paper properties, including tensile strength, were discussed in several
papers .

At the ninth symposium 1989, "Fundamentals of papermaking", Page
reviewed the literature on beating and its effects on fibre properties (48).
The effect of beating on wet fibre flexibility and sheet properties was
discussed by Abitz and Luner (49) . Nanko and Ohsawa (50) carefully
analysed the structure of fibre-to-fibre bonds under an electron
microscope and a confocal scanning laser microscope . The structure of
the bond was found to be strongly dependent on the degree of beating.
Ritala and Huiku (51 ) gave a few examples of the application of
percolation theory and scaling arguments to paper, and described results
of a computer simulation of fracture in a model system .



We can thus see that from the very beginning of these symposia, the
focus has been on the basic mechanisms that relate the mechanical
properties of paper to those of the constituent fibres and bonds and to the
structure of the fibrous network. A lot of information describing the
microscopic geometry has been obtained and the significance of the
statistical network structure for the mechanical properties of paper has
been demonstrated in many different experiments. The elongation
behaviour of individual fibres and bonds is reasonably well understood, at
least from a physicist's point of view. It is much less clear how the
statistical distribution of these phenomena translates into the macroscopic
properties of paper. This lack of understanding is clearly indicated by the
on-going discussion of how beating affects the properties of paper.

On the other hand, it is also clear that the emphasis has spread from the
fundamental tensile strength properties of paper to various other
mechanical properties, such as the anisotropy of the elastic properties,
viscoelastic behaviour and effects of moisture, and fracture properties . In
practice, of course, many different requirements are imposed on the
mechanical properties and strength, depending on the purposes the paper
is to be used for . Two very obvious practical examples are the runnability
of paper webs and the load endurance of packaging materials. The two
cases illustrate how very different structural and functional aspects are
relevant to the practical "strength" of paper.

In the first case, the paper web is run at very high speeds and a web
failure is triggered by either a defect in the paper or a dynamic stress
pulse in the machinery. Breaks in printing paper webs are very rare
events, averaging only 2-3 breaks per 100 rolls . It is very difficult to
characterize the runnability of paper by means of laboratory tests and
perhaps even more difficult to quantify the structural factors of paper that
govern runnability. The statistical nature of paper strength and the
dynamics of crack propagation are critical for the runnability of a paper
web.

In the case of load endurance, complicated static stresses may exist in the
package because of its shape. The performance of the box is then
governed by the elastic properties and failure envelopes of the
paperboard . The statistical nature of these properties is of lesser



649
importance . There are many excellent reviews dealing with these
questions, including the compressive vs. tensile strength properties of
paper (52-55 ) . Interesting here is the observation that cyclic humidity
changes greatly accelerate creep, which has to be taken properly into
account when assessing the load endurance of paper and board (56 , 57 ).

In the next sections I shall focus on the structure vs . strength relationship
of paper under tensile loading conditions . In addition to the traditional
paper physics literature, I will quote some more theoretical investigations
on the general behaviour of disordered systems. These provide useful
insights and, in some cases, can be directly applied to paper. Instead of
trying to cover all the different aspects of paper strength, I will concentrate
on the fundamental aspects, from which something rather more than mere
speculations can be concluded. Although the strength of paper can often
be improved most directly through the furnish properties and chemical
additives, I shall consider such factors only in terms of their effect on
paper structure. Numerous reports have been published on how the
furnish and additives affect paper properties. For example, Seth (58)
discussed in detail the effect of fibre characteristics and Retulainen et al.
(59) studied the effect of fines and starch on the mechanical properties of
paper.

Our understanding of why paper strength can be improved by a particular
technical approach is usually based on three types of information :
microscopic observations, indirect measurements and intuitive arguments.
Perhaps cynically, I believe that the last two sources of information are at
best unreliable if - or since - one does not know how the disordered
structure of paper affects its macroscopic properties. In the following
sections I will present my own view of how the situation might be
improved. The first step will be to consider what is known experimentally
and through models about the small-strain mechanical behaviour of paper
(subsections 2.1 and 2.2). I shall then present a simulation-motivated
stochastic model for the pre-rupture properties of paper (subsection 2.3) .
The phenomenological models developed for the tensile strength of paper
will be analyzed in terms of their abil ;ty to predict the structural
mechanisms. of paper strength in subsection 3.1 . Computer simulations of
elastic models will then be discussed to demonstrate the generic effect of
the disordered network geometry (subsection 3 .2) . Much less can be
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firmly said about the strength properties of disordered fibrous networks,
though a relationship between paper strength and modulus may yet prove
useful (subsection 3.3) . The effects of formation will be considered in
subsection 3.4 . The literature on the mechanical runnability of paper will
be reviewd in subsection 4.1, the linear elastic fracture mechanics in
subsection 4.2 and the non-elastic fracture toughness of paper in
subsection 4.3 . Finally, paper toughness against structure will be
considered in subsection 4.4 .

2 . PRE-RUPTURE PROCESSES

When the elongation of a paper sheet is increased starting from zero,
microscopic or submicroscopic failures occur. These may involve the
internal structure of the fibres, leading to a small permanent elongations,
while only few fibre segments fail completely . The fibre-to-fibre bonds also
rupture either in a brittle manner or gradually, through the cutting of fibrils
and polymeric molecules. One may even view the entire failure process as
corresponding to rupture of the hydrogen bonds (60-63) . Whatever the
nature of the failures and size of the related elements, the plastic,
irreversible behaviour of paper is governed by microscopic failures. In
order to understand what this means to paper properties it is not
necessary to predict which elements fail . If desired, this can be
determined by direct observation . More important is to be able to
characterize the pre-rupture failure processes in paper in terms of
measurable macroscopic quantities .

As a result of the microscopic failures, the local stresses in the network
change during elongation . Stresses relax in some elements and increase
in others . Each time a microscopic element in the paper sheet fails the
local stress increases in the neighbouring elements in the lateral direction.
Sooner or later most of the new failures occur sufficiently close to the old
ones so that the entire sheet ruptures. The tensile strength and the
macroscopic fracture of paper will be discussed Sections 3 and 4. Before
that I shall concentrate on the initial "pre-rupture" behaviour of paper and
discuss the related experimental observations and model calculations . I
shall also describe how the stochastic nature of paper behaviour can be
modeled with microscopic stress distributions .
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2.1 . Experimental observations

Working with very thin, really two-dimensional sheets, Corte et al. ( 11 , 64 ,
65 ) were able to detect the failure of individual bonds when a sheet was
strained . This was accomplished by mounting the sample on a slide
projector so that the bond failures could be seen on the screen . Each
bond failure was accompanied by a faint but audible "click" . When the
samples were strained at constant rate, a sudden drop was observed in
the load-elongation curve each time a bond failed (Fig . 4) . At higher, or
normal, basis weights there are so many bond failures that they can no
longer be distinguished in the load-elongation curve.

Page, Tydeman, and Hunt studied individual fibre bonds of a normal
paper sheet under a light microscope (5, 6) . They found that in contrast to
the thin sheets studied by Corte, the bonds ruptured only partially when
paper was strained to failure . In most cases the bonded areas were rather
irregular . Beating made the bonds more regular but did not change the
distribution of the bonding area loss (Fig . 5) . The same qualitative
observation was made when a sheet was strained cyclically, the fraction
of partially opened bonds increasing steadily with increasing maximum
strain while the number of completely broken bonds increased only little
(66). The irregular shape of bonded areas obviously leads to stress
concentrations within them . If the sheet strain is increased, the regions of
highest stress fail first .

Fig. 4: Load-elongation curves of thin paper sheets, after Corte (65 ).
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Fig. 5: Distribution of the degree of loss in bonded area at sheet rupture,
after Page et al. (6).

Giertz and Roedland (67) measured the local strains as a function of the
external elongation of a paper sheet. At first all fibre segments and bonds
elongated fairly uniformly, but then some bonds started to open . Bonded
fibre segments elogated generally more than free fibre segments (Fig . 6) .
I n this case, too, it was observed that the bonds did not rupture
completely . The bonds that yielded at small strain often did not deform
more at higher strain . When the external load was removed, permanent
elongation was found to have taken place primarily in the bonded areas of
fibres . The free fibre segments relaxed elastically except in freely dried
paper, in which the free fibre segments also underwent irreversible
elongation . In summary, the bonded fibre segments seemed capable of
governing the load-elongation behaviour of paper, which lead Giertz to
propose the "bond strain theory of paper strength" (68 ).

The partial rupture of the bonds can be explained not only by the irregular
shape of the bonded area but also by the stress distribution induced by
drying (15 ) . The anisotopic shrinkage of the fibres leads to shear stresses
even when then bond is regular, as illustrated by the arrows in Fig. 7a .
External load will cause a stress concentration on one edge of the bond
(Fig . 7b), and the bond will first fail there. This may relax the shear
stresses sufficiently so that the bond fracture stops, especially if the
debonded fibre segment yields plastically ( 15). Even an axial stress along
a fibre can lead to bond failure . Suppose that the axial strain is increased
in fibre B, Fig. 7a . Then the shear stresses increase, too, and eventually
exceed the failure threshold at the edges of fibre A.
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Fig . 6: The elongation of bonded and free segments (top and bottom)
against the external strain of freely dried and plate dried sheets, after
Giertz and Roedland (67) . The segments were divided in three groups
according to their behaviour.

From above, it is clear that bond failures must play an important role in the
response of paper to external elongation . However, measurements on
single fibres show that typical papermaking fibres, too, can elongate
plastically, much like paper (37 , 69 ) (Fig . 8) . The irreversibility may be
caused by fibre curl and defects such as crimps, kinks and
microcompressions that are induced by the pulping and paper- making
processes (42). In contrast, fibres wit'' i no defects are linearly elastic or
nearly 'so (37 , 70 , 71 ). One can adopt the view that the irreversible
elongation of bonded fibre segments, as discussed above, is also a
manifestation of the non-linear behaviour of the fibres . For example, Seth
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Fig . 7 : Shear stresses on a interfibre bond as induced by the anisotropic
shrinkage of the fibres, a, and by an external load, b, after Van den Akker
(15 ) .

and Page (37 ) argue that the load-elongation curve of paper can be
explained entirely in terms of the average fibre properties with no
reference to the statistical network geometry . This approach allows a
plausible explanation to be given for very many experimental observations
(37).

The experiments quoted above make it clear that when paper is stretched,
fibre segments become permanently elongated and fibre-to-fibre bonds
rupture, both in small steps. Complete failures are rare events. The failure
process is stochastic, the occur in a seemingly random sequence
throughout the sheet. The partial bond failures and the related yielding of
fibre segments relax the local stresses, and the elastic modulus (or elastic
energy at constant strain) of the network decreases. I n some cases it
happens that initially unloaded elements in paper become loaded when
segments stretch and bonds fail around them . Then the elastic modulus of
paper increases at small strains rather than decreases (67 , 38 ) . The local
network geometry is crucial for this kind of activation effects. Although
probably minor in well bonded papers (37 ), activation may be much more
significant in loosely bonded mechanical papers (67 , 72 ) .
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Fig . 8: Typical stress-strain curves measured by Dumbleton (69) for
holocellulose fibres, dried under no drying strain and under 10%
compressive strain.

In summary, the "pre-rupture" behaviour of paper is governed by the
heterogeneous mechanical properties and random arrangement of the
fibres and bonds. Still, it is quite possible that the statistical network
geometry has no practical significance . I shall consider this question in the
next two subsections .

2.2 . Theoretical studies

Perkins and coworkers (73 -76) have developed micromechanical models
that may also be viewed as computer simulations of paper behaviour. The
deformations of a typical fibre, treated as a mesoelement, are solved
using the finite element method . This can be done by first integrating over
the statistical distribution of the fibre segments to which the mesoelement
is bonded . The model is thus essentially an effective medium
approximation in which a uniform background or matrix is assumed.
Combined with the finite element method, the micromechanical models
allow very realistic fibre and bond dimensions and mechanical properties
to be included and their effect on the elastic and plastic properties of
paper to be described.
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Because of their effective medium nature, micromechanical models
cannot describe how the disordered network structure affects the fracture
behaviour. They treat only the mean distribution of fibre orientations and
the stress distribution along fibres . The non-linear mechanical behaviour
of the fibres and bonds must be put in "by hand". The model output is a
weighted average of the inputs, determined by the mean geometry of the
network. In this respect the various closed-form models for the
load-elongation curve of paper that have been proposed over the years
( 12 , 22 , 37 , 77 , 78 ), are very similar to the micromechanical models . The
statistical nature of the microscopic failure process is ignored.

A completely different approach was taken by Nissan ( 14, 60 ), who
expressed the small strain behaviour of paper as a sum over the
reversible deformations of hydrogen bonds. Within a two-dimensional
approximation this led to the following expression for the stress-strain
curve of paper

a = const [exp(-F_/Eo) -exp(-2F,Jco)]

const

	

[CEO - 2(x£0)2]

	

(1)

This expression is of course valid only when no bond failures occur. Also,
the model should be derived for a three-dimensional assembly of
hydrogen bonds, but then the mathematics becomes quite complicated
(14 ) . The point I want to make about Eq . (1) is that even the reversible
behaviour of hydrogen bonds gives rise to a non-linear stress-strain
behaviour closely resembling that of paper. Various mathematically
convenient expressions are also often used to fit the elongation behaviour
of paper (e.g .79 , 80 , 81 ) . Such models have no microscopic interpretation
but they may be useful in practice .

Dodson (82) was the first to derive a true statistical model for the
pre-rupture failure process of paper. He assumed that, during elongation,
the rate of energy dissipation is proportional to the stored energy, and that
the dissipated energy per bond failure, e, is constant . From these two
assumptions follows the cumulative number of bond failures, B:

eB = U -1 + exp(-U) =U -1, when U >> 1

	

(2)
F F

	

F F

	

F
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Fic . 9: Number of bond failures, B, against external work, as given by Eq .
(2), a, and as measured for paper samples, b, after Dodson (82) .

Where U is the external work done on the system and F is an adjustable
scale parameter. Thus, in the end, all the work goes into the breaking of
bonds (Fig . 9a). Dodson compared his model with experiments on thin
paper sheets and found reasonable agreement (Fig . 9b) when B was
taken to equal the number of discontinuous drops in the load-elongation
curve. However, sample-to-sample variations are quite large with thin
sheets. Also, Eq . (2) only applies to the small strain behaviour before the
macroscopic fracture has begun.

In recent years, the elasticity and fracture of disordered systems have
been studied extensively with simulation models defined on a lattice . It is
possible to present only a small fraction of this material in this review; for
those interested in learning more I recommend the book of Herrmann and
Roux (83) . In the computer simulations an underlying lattice greatly
enhances the computation speed since the number of couplings per site is
small. For this reason the simulations have mostly been limited to elastic
lattice models with brittle failure of the bonds (links, segments) connecting
nearest neighbours . On the other hand, lattice geometry is expected to
have little significance. Disorder is implemented either as a random
segment occupation or a random breaking threshold. To put it simply, in
the first case (i.e. dilution) the local elastic modulus varies, while in the
latter case the local breaking thresholds are random .
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Fig. 10 : Computer simulations of stress-strain curves (arbitrary units) for
two-dimensional fibre networks: triangular lattice model (85), fibre length
If E [1, 5] and l, = 3 (upper and lower curve, respectively), a; random
network (86), tr; "random vertex" model (89), c. Fibre segments failed in a
and c, bonds and segments in b.

A very good example of the computer simulation approach is the study by

Alava and Ritala ( 51 , 84 ), who placed fibres of constant length If at

random on a triangular lattice . The fibres carried axial and shear loads.
Alava and Ritala (5J5 also studied the case where fibre length was taken
from a uniform distribution - If e [ 1, 5 ] . Except for low densities p, the
length distribution appears to change only the elastic modulus and not the
stress-strain curve (Fig . 10a) . The density p is defined as the total fibre

length per unit area . The authors concluded that it is the longer-
than-average fibres that determine the mechanical properties . This is
because the percolation threshold density p, is inversely proportional to
the r.m.s . average of fibre length and because the relative density p1p,
governs the mechanical properties (more on this in subsection 3.2) .
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TENSILE STRAIN

Fig. 11 : Number of bond failures against external strain for the layered
fibre network model of Hamlen (87), basis weights 1 .0 and 2.5 g/m2 (lower
and upper curve) .
Systems in which the geometric structure is disordered form another class
of simulation models . Such models include two-dimensional random fibre
networks (86), their layered generalizations (87 ) and "random vertex"
models (88 , 89 ). I n a random fibre network the centre of mass and
orientation of the fibres is random. A vertex model is composed of a
random set of points that are each connected at random to a number of
other points . The connection probability decreases with distance .

All the different models give qualitatively very similar results for the
stress-strain curve, as illustrated in Fig. 10 . The results also closely
resemble those obtained for low basis weight paper sheets (Fig . 4), even
though the models are linearly elastic and the non-linearity in the
elongation behaviour arises from microscopic failures . The similarities also
hold for other properties. For example, the simulated number of inter-fibre
bond .failures, 8, against external strain is shown in Fig. 11 for the layered
fibre network (87) and in Fig. 12 for the two-dimensional network (86). In
both cases, the number of bond failures at a given strain is small when the
fibre segments are flexible . In this respect an interesting observation was
made by Hamlen (87), who found that when the fibre and bond properties
of the model were taken from experiments, only a very small number of
fibre segments failed . This agrees with the experimental observation that
inter-fibre bond failure is the prevalent rupture mode in paper.

The examples quoted above clearly indicate that it would be difficult to
discriminate between models for paper behaviour by means of the shape
of the measured stress-strain curve. It is also clear that the stochastic
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Fia._12 : Number of bond failures against external strain for two-

dimensional network model (36), p = 4p, stiff and flexible fibres (fibre

width-to-length ratio wllf = 0.01 and 0.06, respectively) .

nature of the bond failures, even partial, must be crucial to the shape of
the curve. However, if paper sheets of normal basis weight are
considered, the stochastic rupture sequence leads to a smooth behaviour
that may be fairly similar in different papers . Thus one may equally well
argue that the statistical phenomena can be ignored and assume that all
bonds and fibres are equivalent (37). One must know how the stochastic
structure affects paper properties, otherwise the whole notion is of no
practical significance .

The above applies also to the use of microscopic fracture sequence to
determine the microscopic strength properties by measuring thin paper
sheets . For example, since each inter-fibre bond rupture gives a drop in
the load-elongation curve, one can try to determine the work of rupture.
Fig. 13 shows the measured work against the number of breaks (90) . It
could then be assumed that Eq . (2) holds, in which case the asymptotic
(large n) slope of the curve should be equal to the work of rupture per
bond . There are, however, several problems with this approach . For
example, sample-to-sample variations are large and it is not at all clear
that the measured curve does in fact follow a straight line. From
subsection 2.1 we also know that the failure process in thin sheets is
different from that in ordinary paper (complete vs . partial rupture of
inter-fibre bonds) . A simulated curve for the work against the number of
failures is shown in Fig. 14 . It should correspond to the experimental ones
in Fig. 13 . It can be seen that there is a change in the slope at about B =
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Fig. 13 : External work against number of bond failures for handsheets
made of beaten, a, and unbeaten, b, Southern softwood kraft pulp, after
Smith and Graminski (90 ) .

Fig. 14 : External work against number of bond failures for two-
dimensional network model (86 ), p = 4p,, wllf = 0.06.

80 bond failures . This "kink" corresponds to the onset of ultimate,
macroscopic failure of the network. When this happens the nature of the
failure process changes and the macroscopic stress starts to decrease
(83 , 91 ). The same phenomenon occurs in the experiments (see Fig. 4)
as a clear-cut or smooth cross-over in the load-elongation curves . In fact,
the measurements of Smith and Graminski (90 ) (Fig . 13) were almost
exclusively made in this region . Thus they do not characterize the small
strain behaviour of paper at ordinary basis weights, nor does the model
Eq . (2) apply in this case .
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To determine the microscopic pre-rupture properties, it is necessary to be
able to analyse paper of ordinary basis weights. I n other words, one must
be able to link mathematically the stochastic failure process to the
measurable properties of paper. In the next subsection, I will describe one
possible approach to this problem .

2.3 . Stochastic model for the elongation of paper

The computer simulations of disordered systems that have been reported
in the literature show conclusively that at small external elongations the
microscopic failures are independent of each other (or "random") if the
disorder is sufficiently "strong" ( 51 , 83 ) . The initial random sequence of
microscopic failures is determined completely by the stress distribution of
the microscopic elements at infinitesimal external strain, prior to any
failures . The elements that will fail first with increasing external elongation
are those for which the stress over the breaking threshold is largest. Even
though the local stress increases close to each failure, in a large system
there are other elements far away . that have the next highest
stress-over-threshold and will therefore fail next . Of course, as more and
more failures occur, the mean distance between failed elements
decreases and the failures gradually become more correlated . Eventually
the system fails macroscopically. The extent of disorder in the local
stresses or breaking thresholds determines how far the non-correlated
failure process continues (92 ) . In some cases, failure processes can also
be classified by certain characteristics of the threshold distribution (93) .

In paper, the validity of the above state of affairs has been demonstrated
through direct observations (cf. subsection 2.1). In other words, no crack
propagation occurs in paper at small strains . One explanation for this is
the residual bonding: cracks do not propagate if the local failures are
incomplete . This has been demonstrated explicitly with a lattice model in
which the elastic modulus of the bonds was given a non-zero value even
after the failure (94) . This is obviously the case in paper as the inter-fibre
bonds fail only partially. Even complete bond breaking leaves behind
residual strength since there are other bonds along the fibre that have to
be broken, too. In the case of segment breaking, the residual strength
arises from the layered structure and the continuous distribution of fibre
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Fig. 15 : Initial distribution of inter-fibre bond strains for two-dimensional
network model (86 , 96 ), p = 4p, w11,= 0.06. Strain values are in units of
external strain .

orientations . Next to a broken segment there is usually another one which,
because of its orientation, fails much later (91 ) .

The non-correlated nature of the initial failure process is important,
because it allows the mechanical behaviou of papery to be calculated from
the stress distribution P of the microscopic elements (95 ) . Furthermore, P
seems to be an exponential distribution, as will be discussed shortly.

As a concrete example, let us consider what happens in the random
network of linearly elastic fibres (86) . The simulated distribution of strain
increments E s across the inter-fibre bonds is shown in Fig. 15 for a small
external strain, at which no bonds have yet failed . The distribution is
reasonable well reproduced by (96 )

P(ES) exp(-RSE s	(3)
RS

The quota x =--/Ex is independent of the external strain EX because of
linear elasticity . The parameter PS depends on the fibre properties and
network density. The strain increment, "bond strain", ES is defined as the
change in the axial strain of the fibre across the bond, i. e. ES = rA, /E, A, ,
where r and Ab are the shear stress and area of the bond, and A, and E,
are the cross-sectional area and Young's modulus of the fibre,
respectively .
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Fia. 16 : Schematic illustration of how the microscopic strain distribution in
shown Fig. 15 should change when external strain is increased.

The distribution of axial segment strain Ea appears to be slightly more
complicated (96) :

m-1
REa) °`

	

Ea

	

exp (-Pa -E-a )

	

(4)Ex

	

ex

However, the difference in the strain distribution function turns out to be
insignificant for the small strain behaviour of the network (97 ) . The
exponential strain (or stress) distribution P, Eq . (3), appears to be rather
general in systems of random geometry . It characterizes, for example,
diluted resistor (spring) lattices ( 98 ) and real fibre networks made of
rubber bands (99).

If the threshold for bond failures E, is constant, then at small external
strain or stress (ex or 6X ) all the bonds are broken for which £S > e, , or

x> x,,~ - E,,: /EX .

	

(5)

As long as only a -small fraction of the bonds have broken, the large strain
(large x) end of the distribution P(x) can be expected not to change,
except that P(x > xd becomes zero (95 ) (cf. Fig. 16). Of course, some
elements relax and others activate, but, this should affect foremost the
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small stress end (x«l) of the distribution and hence give only a small
contribution to the total elastic energy. At large external elongations the
distribution changes more dramatically as the failure process localizes
(96).

The fraction B of broken inter-fibre bonds is (Fig . 17a)

B= J dxP(x) = exp(-RIEx)

	

(6)
0

Where P

	

E, . The load-elongation (6x - Ex ) curve of the network can be
calculated from the fact that each time a bond fails, the elastic energy of
the system decreases by aes2 where the constant a accounts for the
stress relaxation around the failed bond (96):

6x = EX f 1 -apex) 2 exp(-RIEx) 1

	

(7)

The calculated stress-strain curve (Fig . 17a) is surprisingly linear at small
strains and then starts to deviate rather abruptly . After all, there is no
pre-set "yield" strain in the model. This character of the stress-strain curve
is a direct consequence of the exponential dependence on inverse strain .

Before making a comparison with experiments, it should be pointed out
that the above equations ignore the plastic deformations of fibre segments
and the gradual failure of bonds. However, for the sake of argument it can
be assumed (97) that Eq . (7) is still valid when the macroscopic strain Ex is
taken as the elastic strain of the network. I n addition, each time a bond
fails in part, the length of the corresponding fibre segments can be
assumed to increase by a small amount y. The irreversible, plastic, strain
of the network is then proportional to B and the total external strain of the
network, ex, tat is

Ex, rot - Ex + yB	(8)

The stress and the number of broken bonds against the total strain are
shown in Fig. 17b.
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Fig . 17 : Model results, Eqs. (6)-(8), for stress a and number of broken
segments B against elastic strain E, = Ee, , a, and total strain Etot , b; and for
external work W against plastic strain £tot, c. Model parameters are a= f3
=1, y= 10 .

Detailed comparisons with experiments remain to be made, but the
predicted behaviour is clearly very similar to that of real paper. To be
honest, the same can be said about many other models, too. The virtue of
the present one is that it offers a mathematically tractable description of
the stochastic behaviour of paper under an external load . For the sake of
illustration, Figs . 18 show examples of measured load-elongation curves
for different industrial papers together with the plastic component of strain
against the total elongation . The main point here is that the plastic strain
(Fig . 18b) is very small at small external elongations and then very
abruptly starts to increase almost linearly. This compares well with the
model result for B, Fig.-,17b . The plastic strain curve in Fig. 18b is very
similar to the reflectance curve in Fig. 1 . I n fact, Sanborn ( 100) has shown
that the light scattering coefficient increases linearly with the plastic
component of external strain, in perfect agreement with Eq . (8) . Also, Fig.
19 shows that if the external force is plotted against elastic strain, or work
against plastic strain, then measurements with real paper yield curves that
are almost linear . Comparisons with Figs . 17a and 17c show that the
stochastic model is consistent with these observations, too.
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E~ig.. 18_ : Load, a, and plastic elongation, b, against total elongation (MD)
for different industrial papers, each shown by its own symbol, after
Gottsching and Baumgarten (29).

It must be kept in mind that, in spite of the agreement with experiments,
the model ignores many aspects of real paper. The gradual failure of
bonds and the related plastic elongation or even activation of fibre
segments should be treated properly . Also, in real paper the failure
thresholds have a distribution, while in the model they were all taken to be
equal. Factors like density, fibre orientation and drying shrinkages have
not been considered ; presumably they would affect the model parameters
a, 0 and y. Because of all the simplifications, the above equations will
probably have to modified later. It should also be remembered that the
non-correlated failure process ceases to be valid before macroscopic
failure commences. The model itself does not indicate when this happens
and therefore does not predict the breaking stress or strain .

2.4 . Conclusions

On the basis of the available experimental and computational evidence,
the behaviour of paper at small strains can be characterized as a
sequence of random failure events . The "random" events are not
correlated, one failure does not imply the next. This state of affairs is
independent of the nature of the microscopic failures, whether it is the
fibres or bonds, or even the hydrogen bonds, that fail partially or
completely . However, as the macroscopic elongation of paper is
increased, the two-dimensional stochastic process changes over to the
final localized rupture process. In the next chapter I will discuss the
structural factors that govern the tensile strength of paper.
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Fig . 19 : Stress against elastic strain, a, and external work against plastic

strain, b, for softwood kraft handsheets, after Paetow et al. ( 101 ) .

The non-correlated fracture process at small strains is important since it
means that the properties of paper can be understood in terms of a
statistical distribution of the microscopic failures, with no reference to their
spatial arrangement. Above I have shown of how this picture can be used
to describe mathematically the load-elongation behaviour of paper.

The exponential strain (or stress) distribution, Eq. (3), follows from the
disordered network geometry . Furthermore, in a linearly elastic system the
local elastic strains are always linearly proportional to the macroscopic
elastic strain . This means that if the irreversible elongation of such a
system arises from failures at some structural level, then that behaviour
must be given by a function of the inverse external strain . From this point
of view it is generally rather questionable to model the load-elongation
behaviour of paper with analytic' functions of the external elongation .

The statistical accumulation of microscopic failures can be analysed from
experiments. The acoustic measurements of Corte (38 , 64 ) and the
microcalorimetric measurements of Ebeling were the first in that direction
(32 ). More recently, the acoustic measurements have been developed by
Yamauchi and Murakami (102-105) . The amplitude distributions (Fig . 20)
give direct information on the elastic energies that are released at bond or
segment failure. The same authors have also used infra-red technique to
measure the heat dissipation when paper is strained (104 , 106). Both of
these measurements could be compared with the stochastic model

1 The function exp(-11x) is not analytic, i.e. it cannot be expanded in powers of x « 1 .
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Fig-20: Maximum amplitude distribution of acoustic emission during
tensile straining of unbeaten and well-beaten softwood kraft handsheets
(thick and thin line, respectively), after Yamauchi et al. (103).

described above or with a more refined theory . The same applies to the
tensile testing of paper, e.g . changes in the reloading modulus and the
plastic strain component against the total external elongation (59 , 101 )
have direct interpretation in terms of the microscopic failures . "

So, is the stochastic failure process relevant for the load-elongation
behaviour of paper? My answer is yes. For example, the effect of network
geometry gives a plausible explanation to the fact that the load-elongation
curves of different papers are alike, much more so than the greatly
variable curves of the constituent fibres and bonds. Because of this
similarity or "universality" it is even possible to describe paper properties
with models that completely ignore the microscopic failure phenomena.

3. TENSILE STRENGTH

The strength of paper is governed by two factors. First, paper fails through
the partial breaking of fibre-to-fibre bonds and fibre segments . In simple
terms, fibre breaking is the critical factor for paper strength only if the
bonds are very strong . Second, the large-scale sheet structure (formation)
governs the macroscopic fracture path and the small-scale structure the
microscopic failures. We expect that uniform paper tolerates higher
stresses than non-uniform paper. This section considers the effect of the
disordered paper structure on tensile strength .
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3.1 . Strength phenomenology

The simplest estimate for tensile strength can be based on the
assumption that fibres are solely responsible for the failure of paper. The
tensile strength of paper would then be given by

T= spaf= Ef

	

(9)

where of is the tensile index and e, the breaking strain of the fibre, and p
and E are the mass density and elastic modulus of paper, respectively .
The factor 1/3 follows from the isotropic distribution of fibre orientations
( 107). Eq . (9) merely states that paper fails when the axial strain first
exceeds the breaking threshold in those fibres that are parallel to the
external strain . The inhomogeneity is ignored.

The failure of fibre-to-fibre bonds is usually at least as important as that of
the fibres themselves, because the bonds are relatively weak. There are
several reasons for this, such as mismatching between the bonding
surfaces and the polymeric bonding molecules, and stress concentration
on the bond periphery ( 15 , 108, 109) (cf. Fig . 7) .

Bond failure is usually explained by the "shear-lag" mechanism of Cox
( 107), according to which the stress is transmitted from one fibre to the
next through the bonds. The axial stress in a fibre is zero at the ends and
increases to a constant maximum value in the middle, while the shear
stress on the bonds is largest at the fibre ends and decreases to zero in
the middle (Fig . 21a) . The bonds at the fibre ends should fail first. Signs of
this have been observed in practice (43). However, because of the
randomness in the network geometry, bonding and fibre curl, considerable
shear stresses may even be induced on bonds that are far from fibre
ends . In addition, as was explained in subsection 2.1, bonds may also fail
if the axial stress along a fibre becomes too large. There seem to be
several possible mechanisms for bond failure .

On the other hand, inter-fibre bond failure in paper is usually only partial
and is associated with a plastic yielding of the bonded segments . One
may then assume that the tensile strength of paper is governed by some
kind of a yield limit of the bonds. In o+her words,

	

paper fails when the



Fig . 21 : Axial stress, a, and the corresponding shear stress on the
inter-fibre bonds, T, from fibre centre (x=0) to one end (x=1). Cox model
( 107), a, and Shallhorn and Karnis model ( 110), b, where breaking
thresholds for fibre and bond are a, and rY , respectively .

external stress equals the bond yielding threshold. This situation has been
analyzed using various phenomenological models, in which the behaviour
of typical fibres and bonds is considered . The description by Shallhorn
and Karnis (110) is particularly pedagogical . They considered only the
fibres parallel to the external strain and assumed them 'to be bonded to a
homogeneous background . If they cannot break they must be pulled out
of the sheet at the rupture line . I n an ideal elastic-plastic system, all
partially failed bonds carry a shear-lag stress z that equals the yield limit
iY of the bond . At macroscopic failure the shear stress along the entire
fibre must be r = zY . The axial tension aincreases linearly with increasing
distance from the fibre ends with the slope daldx = 2z~r (Fig . 21b), and
the average tension of the fibres is equal to the tensile strength T of
paper' :

T = Nirrry 1, /2 .

	

(10)

This applies if only the bonds fail . However, if the yield stress of the
bonds, ry , is large, fibres break rather than pull out. Therefore, the axial
stress a is limited by the breaking threshold a= a,, while at'the fibre ends
a decreases linearly to zero over a length x, that is determined by a, _
2iyx lr. The tensile strength of paper is then given by

' Here r is the fibre radius and l, the length, and r the shear force per bond area .
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Fig. 22 : Tensile strength of paper against the shear strength of bonds for
different fibre lengths 1 according to Shallhorn and Karnis (110) .

T = N7rrz6f (1 -6f r12 i,,l)

	

.

	

(11)

The smaller of the two values given by Eqs. (10) and (11) defines the
tensile strength of paper for any particular combination of fibre and bond
properties. The result is illustrated in Fig. 22 .

Page, on the other hand, derived his often quoted model starting with the
assumption that tensile strength is proportional to the fraction of fibres that
break along the rupture line (111 ) . This assumption, motivated by
experimental observations (112, 113), can be expressed as

T= of Nnr2af

	

(12)nf+ np

where o f and np are the numbers of fibres that respectively break and pull
out intact . The second ad hoc assumption was

np 26fr of

f

	

i71f

	

'ry (13)
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Fig. 23 : Inverse tensile strength of paper against inverse relative bonded
area according to Page (111 ), figure after ( 117) .

Finally, Page linked the fibre strength to the zero-span tensile strength Z
via Z=(918)-Nirr26f . Together, these three equations define the Page
model, which is often written as (B is an effective bond strength)

1 9 + 1
T
-
8Z

	

B

	

' (14)

In the limit of nwn f << 1 the Page model yields T=Nzrz6f (1-26f r/ry /f) and
thus equals Eq. (11) of Shallhorn and Karnis, except that the factor in front
of the second term in parenthesis is 2 instead of 112. In the opposite limit,
ndo f >> 1, even the numerical factors are the same as in Eq . (10) . The
model of Kallmes, Bernier and Perez (78 ) also yields asymptotic limits
very similar to those of the two other models . The differences between the
models, arising from the considerations of geometry and statics, seem
fairly insignificant in comparison to the unavoidable uncertainty in the
microscopic parameters . If one is willing to accept the phenomenological
approach, then especially Eq . (14) provides a simple means to
characterize papermaking furnishes (Fig . 23).

For example, it is fairly easy to vary experimentally the relevant fibre
properties, strength and length, in a qualitatively well governed manner. In
this respect each of the phenomenological models has proven to be
consistent with experiments (78 , 110, 111 , 114,). On the other hand, Helle
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( 112) has argued that a nominal fibre strength has only limited
significance for the tensile strength of paper, as one should really know
the strength of fibres within the sheet. This property is often governed by
statistically distributed local defects, induced in the pulping, beating and
papermaking operations (42 , 5 . These defects greatly reduce the
strength of individual fibres but not necessarily the strength of the paper.
Van den Akker et al. (113 have pointed out that many fibres rupture only
after macroscopic failure (crack propagation) has commenced, so that is
possible that fibre strength has no effect on the tensile strength of paper.
Indeed, one must view fibre strength as a phenomenological property
whose microscopic interpretation is uncertain.

The fibre-to-fibre bonds in turn affect paper strength through two factors,
the specific bond strength (strength per unit bonding area) and the
number of bonds per fibre, or the relative bonded area, RBA. Stratton
( 116) has reported measurements on single bonds and has been able to
show differences in the bonding ability of different fibres . On the other
hand, Retulainen and Ebeling (43) compared different indirect measures
of the bond strength but found poor correlation between them when the

paper structure was varied . Since most bonds fail in several steps, the
microscopic interpretation of bond strength is also unclear.

The lack of well-defined microscopic properties in the phenomenological
strength models is reflected in the discussion of why paper strength
increases with beating (55 , 117) . Basically, three different explanations
have been given: beating increases either the effective strength of fibres,
or the specific strength of the bonds (bond strength per unit area), or it
increases the RBA. Some authors, see e.g. (118-12J1 favour the first
explanation, claiming that beating removes cell-wall defects and fibre curl
and increases fibril orientation . On the other hand, Helle and Van den
Akker et al. ( 112, 113) have shown that the fraction of broken fibres
crossing the rupture zone increases together with the tensile strength
when beating is increased. Thus beating should make the bonds stronger
in relation to the fibres . As to the specific bond strength, Stratton ( 116)
and Mohlin (122) found that it does not change with beating. Shallhorn
and Karnis, and Paavilainen (110, 123), among others, concluded that
beating increases fibre flexibility and sheet densification (i.e . RBA) and
therefore increases the tensile strength of paper.
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24 : Tensile index Tlp (in units Nm/g) and tensile strength T(kPa)
against apparent density p (kg/m3) for handsheets of different high-yield
pulps, data of Luner et al (129) . For each pulp, the lines connect points of
varying beating (ball mill), a and c, or wet pressing, band d, when all
other parameters were held constant.

Many other authors have sought to resolve the strength mechanisms of
beating by analyzing changes in the RBA, see Waterhouse for a review
(55 ) . The specific surface area and light scattering coefficient of paper
have been used as measures of RBA. However, this involves problems,
since the normalization"varies with beating and with fibre type ( 124 , 125) .
RBA could also be related to the apparent density of the sheet, but even
such a relationship depends on the furnish (55 , 126 . Thus the changes in
bonding area and specific bonding strength induced by beating cannot, in
general, be distinguished with certainty.

The apparent density of paper is the simplest measure of paper structure,
but does not enter directly into the phenomenological strength models .
An increase in density can raise the RBA but it can also make the bonds
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stronger. The tensile index of paper is often a linear function of the
apparent density if the latter is varied through beating ( 127. 128) (Fig . 24).
No generally accepted explanation is known for this . If wet pressing is the
controlling variable, a different but still almost linear relationship is
obtained . Even though the apparent density of paper is not a well defined
quantity, it would be useful for practical applications to understand how
density affects paper strength . In this respect phenomenological models
perform no better than empirical regression analysis (130).

In summary, the tensile strength of paper has been modelled with various
phenomenological approaches that give qualitatively very similar results.
It seems irrelevant to argue that one particular version is better than all
the others . Instead, it is important to remember that these models ignore
the random geometry of the fibre network and the random properties of
the fibres and the bonds. It is tacitly assumed that all bonds or segments
(or those parallel to external strain) reach the failure threshold
simultaneously .

3.2 . Simulation of elastic modulus

The fundamental mechanical properties of two-dimensional random
systems can be most readily studied by means of computer simulations .
Before looking at the tensile strength of simulation models, I will discuss
the elastic modulus because the effects of random structure are more
easily seen in that case. In two-dimensional model systems the modulus E
is defined as the force per unit displacement and per system width, and
the density pas the total fibre length per unit area . One example is shown
in Fig. 25 from the work of Alava and Ritala (51 , 84 ), who placed fibres of
constant length l, at random on a triangular lattice . Qualitatively very
similar results have been obtained in many other studies ( 131 -134}.

At low densities the elastic modulus obeys a percolation scaling law:

E= Eo(p-p,,) r

	

(15)

Where the exponent t depends on the "universality class" of the model
(51 , 135) . On the basis of literature (134), for paper the exponent should
be t= 4 independent of the bending stiffness of the fibres . However, if the
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'Fig. 25 : Elastic modulus against density in the triangular lattice model of
Alava and Ritala (51 , 84 ) with two fibre lengths /, . Stiff and flexible fibres
correspond to model parameters j31a = 0.4 and 0.1 (stars and squares,
respectively) .

bending stiffness is precisely zero, then p, is almost twice as high as
otherwise (132}. This higher critical point affects the elastic modulus even
when the bending stiffness of the fibres is small but non-zero, the modulus
of such systems being very low at all densities below 2p,

At high densities, p ? 2p,, Eq . (15) does not apply. Instead, the elastic
modulus is linearly proportional to density in many two-dimensional lattice
models with geometric disorder (dilution) ( 131 . 133, 134) . However, in
some cases the critical behaviour (Eq. 15) seems to extend to rather high
densities and mask the linear behaviour. In paper, this might occur if the
fibres were very flexible (cf. e.g . Fig. 3 in (51)) .

In a two-dimensional random fibre network (no lattice) the linear high
density behaviour if the shear-lag model of Cox (1~ is written as

E= 8Efp(1 -Kpclp) = 8EKp- Kpc)

	

(16)

Where E, is an effective modulus of elasticity of the fibres and K is a
shear-lag coefficient . A small K means effective inter-fibre stress transfer,
e.g . when the fibre or bond stiffness is high . Eq . (16) is 'basically the
well-known expression for the elastic modulus of paper ( 73 , 75 , 136} but
usually there is a function of the segment width-to-length ratio wlls and
bond shear stiffness (U7 in place of Kpc . The latter aspect has not been
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included in computer simulations, except for the study of Hamlen (87). All
the other simulation models correspond to infinite bond stiffness .

The form of Eq . (16) is motivated by the fact that the random network
structure enters through the critical density p, . Dimensional arguments
imply that p,, is inversely proportional to the fibre length ~ . It also depends
on the symmetry of the lattice (131 or, in real paper, on factors like
flocculation (1~ and fibre orientation . For a two-dimensional random
fibre network (i. e. no lattice) p, is (139

p, = 5 .7111,

	

(17)

Since the average segment length (= mean distance between bond
centres) is is = r/2p ( 10 ), at the percolation density there are an average of
2.6 bonds per fibre.

It is clear, of course, that Eq . (16) is not useful if K varies significantly with
density. Such a density dependence could arise through the connection to
the average segment length is . However, as pointed out above, in
computer simulations the elastic modulus is generally a linear function of
density. This is, the case in Fig. 25 even though the mean segment length
does vary with density. Thus K seems to be a function of the fibre
width-to-length ratio, wll,, instead of the segment width-to-length ratio wlls.
Since the elastic constants of the model are defined with respect to the
underlying lattice, they characterize fibre properties rather than segment
properties . Furthermore, as Uesaka has pointed out ( 137), if the bond
shear stiffness is low, then it determines the elastic modulus of paper.
This implies that the elastic modulus is linearly related to the number of
bonds perfibre or to plp,

The data in Fig. 25 yields, on linear extrapolation to zero modulus', K= 1 .2
and 1 .6 for the two fibre stiffnesses . We expect that K > 1 since the
critical exponent t > 1 . The shear-lag coefficient K can also be estimated
from the results of the random fibre network simulations (86 , 96 ), which
gives K = 2-3 for fibre widths wll, = 0.06 - 0.01 (Fig . 26). Because of the
shortage of data it is not possible to check that K= K(wll,) independent of
density.

The percolation density is approximately P, = (3 1, )"' .
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2s : Elastic modulus against density in two-dimensional network model
(86), with

	

w1lf = 0.06, 0.03 and 0.01 (squares, bullets, and +'s,
respectively) .

These considerations are relevant to real paper only if the , interwoven
layer structure of paper ( 30 ) does not affect the in-plane mechanical
properties . Indeed, Kallmes et al. (140) found that ordinary and "multi-
planar" laboratory sheets have quite similar mechanical properties . The
three-dimensional computer simulations carried out by Hamlen (87) also
show that the out-of-plane deformations do not affect the in-plane
mechanical behaviour of the fibre network.

Real paper and two-dimensional models could be compared at equal
number of -bonds per fibre ( 140 ) . This number defines the network
geometry of real paper, assuming that it is sufficiently close to random
geometry. Of course, the number of bonds per fibre is difficult to measure .
Equally well, the geometry is defined by the two-dimensional density p
relative to the percolation threshold. However, no reliable connection
between the somewhat ambiguous apparent density P of real paper and
that of two-dimensional models, p, has yet been established . It is
uncertain how this connection should depend on the number of fibre
layers and the fibre flexibility ( 10 , 140 , 141 ) . The new measurement
technique for wet fibre flexibility will probably prove helpful in solving this
problem (44 , 142) . Also, Mohlin (143) has shown that the mechanical

. properties of paper at low basis weights can be explained by assigning to
the surface layers properties that are different from those of the inner
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Fig. 27 : Elastic modulus against apparent density for light-weight
handsheets with two different mean fibre lengths 1, after Hollmark et al.
(145) .

layers . Similarly, the apparent thickness of a paper sheet does not fall to
zero with the basis weight because of the finite fibre thickness (144).
There is, of course, a percolation threshold for the basis weight, too,
which also explains the observations made by Mohlin .

In any case, it is reasonable to assume that at normal basis weights the
mean thickness of one fibre layer equals fibre thickness. Then the
apparent density p of real paper is related to the two-dimensional model
density p (total fibre length per unit area) through

P = PPfW (18)

Where p, is the mass density of the fibres and w their average width. The
elastic modulus is in practice determined by measuring the force per
sample width and dividing it with the apparent thickness of the sample . All
this means in terms of applying Eq. (16) is that the ambiguity of density
affects the values of Kand p, but not the slope dEldp .

Hollmark et al.

	

) have measured the elastic modulus of very thin
paper sheets for two average fibre lengths 1, = 2.2 and 1 .7 mm (Fig . 27)
for which Eqs. (17) and (18) yield the percolation densities' p, = 101 and
131 kg/m 3. The measured modulus agrees with the linear model Eq . (16)

' With w= 0.03 mm and p, = 1300 kg/m' (145 .
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28 : Elastic modulus (arbitrary units) against density for ordinary and
"multi-planar" handsheets . Data of Kallmes et al. ( 12 , 140), unbeaten and
beaten kraft (black and white squares, respectively). Densitywas
calculated from the reported number of crossings per fibre (cm): plp c
cm/2 .6, and Efrom the measured modulus per unit mass by multiplying it
with plp c .

and on extrapolation intercepts the density axis at Kpc = 185 and 240
kg/M 3 or K= 1 .83 for both fibre lengths.

The data of Kallmes, Corte and Bernier ( 12 , 14~ for ordinary and
mult-ppaanar sheets can also be used, see Fig. 28 . In this case, the
two-dimensional density p was here calculated from the reported number
of bonds per fibre, c,, Again, the measured values are consistent with Eq .
(16) . The least-square fits shown in Fig. 28 correspond to K= 2.5 and 4.3
for the unbeaten and beaten kraft furnishes, respectively. The qualitative
and quantitative match of these two experiments with Eq . (16) is
surprisingly good, given the uncertainty of the fibre properties in Fig. 27
and the number of bonds per fibre, c, in Fig. 28 .

To summarize, the computer simulations and experimental data suggest
that the elastic modulus E of paper should obey the basically well-known
Eq. (16) except at very low densities or basis weights where percolation
scaling, Eq . (15), applies. The shear-lag constant K, ranging perhaps from
1 to 4, should be a weak function of the elastic properties of the fibres and
bonds, but it should be independent of the network density (or mean
segment length IS ) ._Any change that, at a given apparent density, affects
only the network geometry can be expressed as a change in p, In
particular, the equation should hold if the apparent density p is varied
through wet pressing . If the density is varied through beating, then E(p)
may well become a non-linear function since the fibre or bond properties
change and thereby Kand E, also change .
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Fig. 29 : Conductivity G (elastic modulus) and breakdown current r (tensile
strength), squares and crosses respectively, against density for a diluted
resistor lattice after Duxbury and Li (148) . Density, conductivity and
breakdown current are = 1 in the perfect lattice .

3.3 . Tensile strength of paper as a random network

There are few computer simulations on breaking strength that could be
applied to paper. It is very difficult to obtain statistically reliable values
since the strength depends on the size of the model system . Most studies
have focused on the microscopic fracture phenomena rather than
macroscopic strength estimates. Also, perfect elasticity (brittle elements)
is usually assumed to hold all the way to microscopic failure . In most
studies, bond failure is not included and the inter-fibre bonds or their
equivalents are taken to be rigid .

As Fig. 29 shows, the ideal, maximum, strength is not reached on a lattice
until very close to the perfect system . Even small amounts of disorder
reduce the tensile strength Tmuch more than the elastic modulus E. This
is quite easy to understand since T is determined by the highest values of
the local stress, not the mean value. According to Fig. 29, the tensile
strength of a two-dimensional system is generally not a linear function of
density. The results of Alava and Ritala 84 for a triangular lattice with
brittle fibres seem to imply a linear density dependence, but the data are
so few that no firm conclusions can be drawn.
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Fig . 30 : Tensile strength over elastic modulus (alE) against the fibre
width-to- length ratio wll, in two-dimensional random network (86 ) at p =

4p, Bond and segment failure, squares and crosses, respectively .

Close to the percolation threshold the tensile strength should be governed
by a scaling law analogous to Eq . (15) with a new exponent f = 2.5 ± 0.4
( 134) in place of the elastic exponent t = 4. The percolation density p, is
the same for elastic modulus and tensile strength . Using the scaling
concepts, Ritala (51 , 146) showed that the reinforcing effect of kraft fibres
is governed by a dimensionless combination, I-' = pl, = lmc), where p is
again the two-dimensional density (total length of fibres per layer and unit
area), cc) the mass-to-length ratio of the fibres, and m the basis weight of
the fibres per layer. Using the percolation threshold I', = 5.71 /PiSe74/,
Ritala concluded that 3-12% (in mass) of reinforcement fibres are needed
in order to produce a percolating network in all fibre layers . Below this
concentration the reinforcement pulp should have little effect on the
tensile energy adsorption and other strength properties, while above it the
strength properties should improve dramatically .

The failure of fibre-to-fibre bonds in random fibre networks has been
studied by Hamlen (87 ) and Astrom and Niskanen (86 ). Hamlen showed
that if realistic values are used for the fibre and bond properties, then only
bonds fail, a finding that is in good agreement with experimental
observations (subsection 2.2 and ( 108)) . Astrom and Niskanen, on the
other hand, compared bond and segment failure at a relatively high
density (p = 4p, ) . The strength-to-modulus ratio TIE decreased with
increasing fibre stiffness, or width, (Fig . 30). An analogous conclusion may
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Fig. 31 : Elastic modulus against tensile strength, for a diluted resistor and
a spring lattice that are, respectively, equivalent to stiff and flexible fibres .
Data quoted in ( 148) .

be drawn from certain lattice simulations (Fig . 31). Thus flexible fibres (or
segments) may give the paper higher strength than stiff fibres when
compared at the same level of the elastic modulus of paper. A reduction in
network density also seemed to lower the tensile strength more when
segments failed than when bonds failed (86 ) . This is quite natural since
only a single segment failure but several bond failures are needed for a
microcrack. This applies even more to real paper, as most real bonds fail
in several steps. However, it should be remembered that these findings
are rather uncertain because of the very limited amount of data .

Computer simulations thus give inconclusive results for the strength of
paper, and more investigations are called for . It is clear that the effect of
the network density on the tensile strength is not as simple as on the
elastic modulus, Eq. (16) . On the other hand, Fig. 31 suggests that
plotting the tensile strength against elastic modulus may be a useful way
to remove the effects of random geometry . More precisely, it seems
possible that the elastic modulus and tensile index of paper at reasonably
high densities could be given by

E = E,- (p - Kp,) and
T= To . f(p - Kp,,) .

	

(19)
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Fig . 32 : Tensile strength T , a , in units kPa, and elastic modulus E, b,
GPa, against apparent density p ,kglm3 ; and strength against modulus, c,
for handsheets of different high-yield pulps, data of Luner et al. (129) . For

each pulp and degree of beating (ball mill), the lines connect points of
varying wet pressing .

Where Eo and To are constants, and f is an unknown convex function . The
results of the previous section suggest that the shear-lag constant K
should depend on the fibre and bond properties but not on the mean
segment length is (or density p) . If the hypothesis holds, then the function f
can be determined experimentally by varying the geometric properties
(density, fibre orientation, flocculation) of the network. Changes in such
properties, particularly in density, should move the data along a single
T(E) curve, while changes in the mechanical properties of the fibres or
bonds should change the curve.

I emphasize that Eq . (19) contains little intrinsically new, similar attempts
to relate tensile strength to density have been made before (55 , 147) . One
should realize, however, that quite generally the density dependence of
the mechanical properties of paper should be different at low and high
densities and thus the entire density dependence of, say, the tensile
strength cannot be presented with one simple mathematical expression .
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Fig. 33 : Elastic modulus E, a, c, and tensile strength T,b, d, as in Fig. 32,
but against a shifted apparent density dp = p - p, . Different constant p;
was chosen for each pulp and beating degree (see text for more details) .
Log-log plot in c and d, with the straight lines corresponding to a linear
and quadratic behaviour, respectively .

As an example, consider the data of Luner et al. (129), already shown in
Fig. 24 . For the sake of convenience, I have redrawn the tensile strength
against density in Fig. 32, where each pulp type and degree of beating are
again connected with a line . Shown in Fig. 32b are the corresponding
results for the elastic modulus. On the basis of these lines alone, little can
be said about why beating increases strength . However, a single curve is
obtained when tensile strength is plotted against elastic modulus (Fig .
32c) . Furthermore, the lines for both E(p) and T(p) can be made to fall on
a single curve for E and on another curve for T, when plotted against a
shifted density dp = p - p;, as shown in Fig. 33 . The required constants p;
grow monotonically with the beating, but otherwise the operation is quite
arbitrary . At high density the elastic modulus is linearly related to dp. The
zero point of dp was chosen so that E= const-dp at high density, and as a
result the tensile strength is a quadratic function of density, 'T-- const'-dp2
in the same region (Fig . 33cand 33d) . Furthermore, the curve T(dp) has a
shape similar to that of T(E) in Fig. 32c.



34 : Tensile strength against modulus for handsheets at different
degrees of beating (PFI mill), CSF = 690, 510, 225 and 120 ml (+'s,
squares, x's and bullets, respectively). Data of Alexander et al. (118), 20
mesh fractions from 48%-yield Norway Spruce springwood kraft pulp .
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Considering Eq. (19), the collapse of the lines in Figs . 32 and 33 implies
that the prefactors Eo and To must be independent of beating. The
beating-induced increase in tensile strength at a given apparent density
must have arisen from a decrease in the elastic property Kp, . Since
beating makes the fibres more conformable, it easy to accept that either
bonds become stiffer or p,, decreases. It is possible that the strength of the
bonds or fibres may change in beating, but such effects are not necessary
to explain the data . On the contrary, the analysis suggests that, in the ball
mill beating, nothing happened to the microscopic strength properties .

The above is, of course, not a general case, as the effects depend on the
type of beater. For example, it is quite possible that fibre length is reduced
in beating, which would increase p, However, such a change would not
affect the T(E) relationship, provided the strength of the fibres and bonds
did not change . On the other hand, changes in the microscopic strength
properties would affect the tensile strength at a given elastic modulus.
This seems to be the case with the data of Alexander et al. (118, 119),
who employed a PFI mill (Fig . 34). In terms of Eq . (19), in this case
beating increased the constant TQ (change of slope in Fig. 34), except for
the highest level of beating . Even in this case, however, most of the
increase in modulus and strength seems to have come from a decrease in
Kp, , i.e. from an increased elastic stiffness of the network.
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F_ ig .35: Tensile index against forming stock,,
'

	afterNorman

(21 ) . Standard specimens (strip width 15 mm) and small size waisted

strips (waist width 3 mm).

Suppose now that Eq . (19) is valid and that f is a quadratic function :

	

T=
To(p - Kpc)2 .

	

If the apparent density at a given wet pressing and the
critical density p,, both depend in the same way on beating, then it follows
that the tensile index, T/p, is linearly proportional to density. Could this
explain why tensile index often increases linearly with beating?

The discussion should have shown that even changes in the network
geometry (p, ) and the elastic properties affect the tensile strength of
paper in a complicated manner. Thus it seems very doubtful that the
tensile strength of- paper could be predicted from the phenomenological
models (subsection 3.1) even if one knew the the properties of fibres and
bonds. On the other hand, Eq . (19) may not be generally valid, and in any
case it does not describe explicitly the effects of the the elastic and
strength properties of fibres and bonds. In my opinion, the tensile strength
of paper is still very much an open problem.

3.4 . Effect of formation

In the previous two subsections I have tried to illustrate how the
disordered network structure affects the tensile strength of paper. In
practice there is little one can do to change factors like density and fibre
orientation that are dictated by other paper properties . On the other hand,
the large-scale inhomogeneity of paper, or formation, is obviously a much
more significant practical control parameter.
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36: Tensile strength against sample length with a short span tester
( 150), a, and ordinary tensile tester (154), b, softwood kraft handsheets
and kraft wrapper, respectively .

It is well known and intuitively easily accepted that the strength Qf paper
S

decreases as the basis weight of a sheet becomes more non-uniform .
This was shown by R.J . Norman (21 ), who varied the forming stock
concentration in a handsheet mould. However, when he measured the
local tensile strength using strips with a narrow neck, Norman found that
the mean value of the local strengths was independent of the forming
concentration (Fig . 35). Thus the standard tensile strength is determined
by the extreme low values of the local breaking stress . Similar results
have been obtained by many others, as at length by B. Norman and D.
Wahren ( 24 ) . I n particular, it has been demonstrated that the tensile
failure line of paper generally goes through the thin spots of the specimen
(26).

Because strength is determined by the extreme value statistics, tensile
strength is lower in long paper strips than in short ( 148, 149) but the
behaviour over short spans is determined by different statistics than over
long spans (Fig . 36). In the first case, the variation of tensile strength with
specimen length is determined by the average properties - of the network.
In other words, strength is dependent on the number of fibres that extend
across the test span (150) and on the elastic stress distribution within the
strip ( 151 , 152 , 153) . In the limit of a very long strip, on the other hand,
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strength goes to zero very slowly, if at all . Whether it does or not is, of
course, very difficult to determine experimentally . On the other hand, in
practice the local strength of paper is never zero on the scale of a typical
strip width squared (about 1 cm') .

In considering the effect of formation, it is important to remember that it is
not the local strength alone that causes the thin spots to break but rather
the local stress (or strain) over local strength . Poor formation gives low
strength because the variability of the local strain increases with
increasing basis weight variability (20 , 25 , 35 , 155, 156). Local strain is
highest in the areas of low basis weight. The strain variations explain why
tensile strength decreased when Norman (21 ) deposited stock spots on
wet handsheets . Next to a heavy spot in the longitudinal direction the local
strain should be higher than average and vice-versa if the heavy spot was
in the lateral direction. This can be demonstrated with a simple lattice
model ( 157) or with finite-element calculations (158) . Thus the topology of
the basis weight variations has a significant effect on the local strain
distribution . If one also takes into account the fact that the local fibre
orientation ( 159, 160) and density (20 ) may be connected to basis weight,
it is easy to understand why the relationship between strength and
formation may vary from one paper machine to the next .

A computer simulation study and related numerical analysis (157) indicate
that for a given formation the local strain variations should be smallest
when the inter-fibre stress transfer is effective (eg. short stiff fibre
segments). The reason for this is that a tight coupling between adjacent
local areas smooths out strain variations . Poor formation should thus be
most detrimental for the strength of poorly bonded papers . On the other
hand, if formation improves, paper may lose some of its ductility and may
tolerate fewer local, or incipient, failures . I am not aware of clear
experimental observations in this respect. It is also physically reasonable
that the tensile strength of paper is more sensitive to poor formation when
fibre strength is low (86 ) . Many bonds per fibre have to be broken before
the network fails locally, whereas breaking just one segment will cause the
same qualitative effect . In other words, for segment failure the relevant
length scale is smaller and hence the basis weight variability larger than
for bond failure .
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Paper strength is usually governed by the gradual failure of the inter-fibre
bonds, though in some cases fibre failure may also play a role . The
competition between these two failure modes can in principle be assessed
using the well known phenomenological models of paper strength, but
these models are rather difficult to apply if the network geometry changes.
In particular, beating may affect fibre strength, specific bond strength and
network geometry (degree of bonding) . I have deliberately not considered
in any detail the predicted relationships between paper strength and the
various indirect measures of RBA. Even though changes or differences in
the degree of bonding can be characterized by means of optical
measurements, I find it difficult to believe that our understanding of paper
strength can be increased in that way.

As one would expect, the disordered network structure has a strong effect
on the tensile strength of paper. This dependence on the connectivity of
the network is not properly described by the standard strength models of
paper. Nor can it yet be specified on the basis of computer simulations,
though certain clues in that direction are already available. In particular,
changes in the elastic bonding can perhaps be separated from the other
factors by studying tensile strength against elastic modulus. As a function
of the apparent density, tensile strength exhibits two different regions: at
low densities the strength is governed by the percolation threshold, while
at high densities another asymptotic density dependence is expected .
Poor formation generally leads to low strength, but the extent of strength
reduction depends on the topology of basis weight variations, on the
related variation in the local fibre orientation and density, and on the mean
elastic properties of the network.

4. FRACTURE

Tensile strength characterizes the maximum load-carrying capacity of
paper and its significance is easy to understand intuitively. However,
tensile strength tells little about the "runnability" of paper, for example its
performance in high-speed printing machines . The failure of a running
web is triggered by a small flaw in the paper or by a transient peak in web
tension. This section discusses the measurements and models that can
be used to analyze the fracture resistance or toughness of paper.
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Tear strength has been traditionally used to evaluate the paper's ability to
resist crack propagation or fracture . However, it is very difficult rigorously
to link tear strength to runnability, either experimentally or theoretically . In
other fields of materials science, where one usually deals with
three-dimensional bodies, a "tear strength" does not occur. Instead, what
is measured is fracture resistance or fracture toughness. These concepts
have also been applied to paper and many different measurement
schemes have been devised.

4.1 . Mechanisms of web failure

The mechanical runnability of paper webs is usually characterized by
reporting the number of breaks per, say, 100 rolls. Typical values in
pressrooms seem to range from 2 to 4 breaks per 100 rolls ( 161 , 162) so
that the breaks are very infrequent events . If the runnability is measured in
terms of the mean distance between breaks then the typical result is
perhaps 105 to 106 m /Roi90/. The low frequency of breaks makes the it
difficult to evaluate the runnability of a particular paper. As Page and Seth
( 161 ) have shown, breaks occur at random intervals and the number of
breaks for a given number of rolls obeys a Poisson distribution . Because
of many disturbing random factors, under normal circumstances it is
necessary to run 1000 to 10,000 rolls before it is possible to distinguish
between papers from different manufacturers. It may take months to
compile the necessary data, during which time climatic conditions and
paper properties may drift significantly.

The off-line characterization of paper runnability is difficult . Pilot-scale test
installations have been used to simulate the actual dynamic conditions
(163, 164, 165). Such tests require heavy equipment and are rather
elaborate. In some cases, experiments have also been conducted on
full-size printing machines (166). Part of the problem naturally arises from
the low frequency of flaws in paper. In order to circumvent this, high-
speed elongation tests (in-plane tear) have been performed with relatively
small flawed specimens, but apparently the results do not correlate with
the actual runnability (167) .

The runnability of paper is strongly dependent on the paper's moisture
content. At low moisture contents paper is brittle and fails easily (35, 163,
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F

	

37: Probability of web breaks is low`=if the overlap of load and strength
distributions is small (top) . Strength variations can increase break
probability even if mean strength is reduced (bottom) .

168) . Thus runnability is generally poorer in the winter than in the summer
(161 ) . When the relative humidity approaches the saturation value, the
impact rupture properties of paper become very similar to the static
properties at the same RH (35) (cf. Fig. 3) . In other words, at high
moisture contents the speed of tension variations should not have any
effect on paper runnability. Rapid stress relaxation improves runnability, or
equivalently, paper can be stretched more under slow strain rates than
high . The rate of stress relaxation increases with relative humidity (and
temperature), but even more if humidity varies cyclically (56 , 57 ) . The
moisture dependence of the relaxtion rate particularly affects runnability in
the dryer section of the paper machine but has little effect at solids
contens below about80% (45) .

A paper web fails if, somewhere in the web, either the local strength is too
low or the momentary load too high . Even if the mean strength of paper is
well below the mean load, fluctuations in either may cause the web to
break. Therefore, it is very important that the variance in strength and load
also remain sufficiently low ( 163, 164) (Fig . 37). It is clear that a low break
frequency relies heavily on the proper operation of the paper machine and
the printing press. Significant improvements have been made in this
direction, flutter has been reduced in the dryer section of the paper
machine and the web tension profiles have become more uniform
because of better moisture profiles and winder governs (163, 166, 169) .
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Fig. 38 : Newsprintweb break frequency against strain measured with a
winding instrument at 1200 ft per min, Sears et al. (165) . Linear, a, and
log-linear scales, b; 111, IV and V denote different commercial papers .

Many studies have indicated that web breaks are related to flaws in the
paper (163, 166, 168) . In newsprints, shives and calender scabs are
common causes of breaks (164, 165, 170) and the runnability can be
improved by effective screening of pulps and on-line monitoring of web
defects. Larocque ( 168) has also shown that the number of breaks
correlates with the number of "weak spots" in paper. He derived the latter
number by measuring the burst strength of single plies and calculating the
percentage of the measurements that fell below an arbitrarily chosen
value. Thus paper formation may play a role in determining runnability .

It has been demonstrated that break frequency increases with increasing
web strain or tension (164, 165, 166), perhaps exponentially (Fig . 38). The
exponential dependence has been used to estimate the break frequency
at low web tensions from measurements at high tensions ( 164) (Fig . 39).
However, it is possible that some other functional form than exponential
applies to the break frequency in which case the above estimates may be
missleading . In subsection 2.4 it was pointed out that on general grounds
failure events in an elastic system should be inversely related to the
external strain . At the fibre level failure frequency seems to obey an
exponential distribution, exp(-consYE), in which E is the external strain
(subsection 2.3) . Interesting enough, this behaviour, shown in Fig. 40, is
consistent with the measured frequency of web breaks, Fig. 38 .
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Fig. 39 : Newsprint web break frequency against web tension measured
with a pilot winder at 100 ft . per min. by Adams and Westlund (164) .
Standard tensile strength and static strength of 17 ft . long web span are
also indicated. Straight line is exponential fit used to estimate runnability
at low web tensions .

Fig. 40 : Fracture probability against external strain (arbitrary units)
calculated from an exponential strain distribution .

The tear resistance of paper, particularly the in-plane tear, has been
conventionally employed as a measure of runnability (27 , 171 , 172, 173) .
It is often observed that -on a particular paper machine a low tear strength
is related to poor runnability (168) . However, the general conclusion
seems to be that there exists no universal connection between tear
resistance (Elmendorf or in-plane) and runnability, nor can one predict
runnability from other conventional paper properties (161 , 163, 166, 168) .
As Roisum ( 163) points out, the correlations reported between runnability
and paper properties are usually so weak that no reliable conclusions can
be obtained from them . Of course, this is not too surprising given that web
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Fig . 41 : Web break frequency of commercial newsprints against fracture
resistance, after Page and Seth (161 ) .

breaks are closely related to flaws or weak spots in paper. After all, in
runnability tests paper fails at strains (or stresses) well below the ultimate
values measured in a tensile test (Fig . 38).

From the above, it follows that in order to analyze and improve paper
runnability one should have the means to characterize the ability of paper
to resist fracture in the presence of small faults. I n that respect it is clear
that the Elmendorff and standard in-plane tear tests do not measure the
right property since the sample is not loaded in the tensile "mode I" that
presumably governs the failure of a paper web (28 , 174, 175) . Instead one
should measure the fracture toughness or fracture resistance of paper.
This corresponds to the in-plane tear resistance but with a 0° tearing
angle. In fact, Page and Seth ( 161 ) showed that the fracture resistance of
paper correlates with runnability when different paper mills are compared
(Fig . 41). This appears to be the only case where a universal correlation
has been demonstrated between paper runnability and a strength
property. Fig. 41 is probably one of the reasons why many different
measures of the fracture resistance or toughness of paper have been
investigated recently. These developments will be discussed in the next
two subsections .
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4.2 . Linear elastic fracture mechanics

Griffith ( 176) considered the fracture of an ideally brittle, linearly elastic
material. His model forms the basis of linear elastic fracture mechanics
(LEFIVI) . Griffith postulated that during an increment of crack extension da
there can be no change in the total energy of the system . In other words,
the potential energy that is released when the new crack surface relaxes
is equal to the surface energy required for the crack increment. The
surface energy per unit crack area is denoted by y. It describes the
material's ability to resist crack propagation . As the crack grows, potential
energy is released at a rate G that depends on the loading and geometry
of the specimen .

The rate G increases with the specimen displacement even if the crack
does not grow . For crack growth to be initiated, the displacement must be
sufficiently high so that elastic energy can be released at the rate of
G=Gc:

GC= 2y.

	

(20)

For a linearly elastic material, G against the displacement d can be
determined experimentally . One just has to measure the area between the
load-displacement (P-d) curves for specimens with slightly different crack
lengths a and da (Fig . 42):

G-ip(as )P --i° l as Je

In this way, the measured G indicates how much energy is required to
increase a crack length by da . . -If the measured value of G(a,d) is low,
there is little potential energy available for crack growth at that particular
displacement. On the other hand, the fracture toughness of the material is

the critical value GC that occurs at the onset of crack growth . It is of course
necessary that the specimen is such that GC is independent of its
geometry . This is often not true, which has been one of the difficulties with
the fracture toughness measurement of paper (below).

Note that G(a,d) is high for a given displacement d if the elastic modulus
is high . However, this does not mean that the material is "tough". The
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Fig. 42 : Load P against elongation d for LEFM specimens with a crack of
length a and a+da . The rate of energy release G corresponding to the
crack growth is proportional to Pdd = ddP.

critical displacement may be small and toughness therefore low, as
G« EA2 . In comparison, the tensile strength of a high modulus material
is usually high, since P- E0 .

Another criterion for crack growth in linearly elastic materials is obtained
from the stress field 6 in the vicinity of a crack tip . This is of the general
form (see, e.g . chapter3.1 in ref . 177)

a(r, 8) _
Kk8)

	

for r ---> 0

	

(22)
~2nr

where the distance r is measured from the crack tip and 6 is the polar
angle. The crack propagates in the direction 6 = 0, where the form
function f is largest. K is the stress intensity factor, which again depends
on the dimensions of the cracked body and the external load P (or
displacement d) : K = K(P,a). For example, for a strip of width 2b, the
stress intensity at the tip of a centrally located crack of length 2a is

K= 6 i-a sec' 12( "a )

	

(23)
2b

where 6 is the tensile stress far from the crack.
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Fig. 43 : Stress distribution at a crack tip, for an linearly elastic material
(dashed line) and plastic material such as paper (solid line) . Plastic flow
occurs in the hatched region . Figure after Helle ( 175) .

While the stress does not really diverge at the crack tip, the asymptotic
amplitude K nevertheless characterizes -the stress concentration in the
linearly elastic medium . I n order to trigger crack growth, the external
stress must be increased, and the critical value of the stress defines the
critical value K, If the LEFM is valid then K, is related to the fracture
toughness G through ( 178)

G, = K2,1E

	

(24)

where Eis the elastic modulus.

The above LEFM equation (24) can be shown to hold for ideal brittle
materials such as glass. However, if it is applied to ductile materials such
as metals, inconsistent results are obtained ( 177). In reality, most of the
energy G released does not go into surface energy but is dissipated as
heat when plastic flow occurs around the crack tip (Fig . 43). The plastic
deformation has a strong effect on crack propagation since it lowers the
stress at the crack tip .

From this, one would predict that the fracture toughness of paper is
affected by plastic deformations at the crack tip and therefore LEFM
should generally not be applied to paper. For example, when a paper strip
with an initial cut is strained, the opacity increases at the crack tip over a
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Fig . 44 : Opacity at a transverse cut of a tensile strip at zero strain (A), at

intermediate strain (B) and just before failure (C), after Andersson and

Falk ( 182).

range that is comparable to the length of the cut (Fig . 44). This indicates
that plastic yielding occurs far ahead of the crack tip . The same
conclusion was drawn by Thorpe et al. (179, 180), who measured the
local deformations at a crack tip using linear image strain analysis .

In the first fracture toughness investigations of paper, the LEFM
parameters G. and Kwere determined experimentally for samples with a
small initial cut (18..1 , 182). However, the results varied with the initial
crack length and sample width. The question was then studied extensively
by Seth and Page ( 174, 183. 184). When short specimens and slow strain
rates were used, crack growth was quasi-static, i.e . the crack grew only
with increasing displacement. In a typical case the load decreased linearly
to zero with increasing displacement (Fig. 45). Assuming that LEFM can
be applied to paper, the fracture toughness was then calculated as the
work R done after the onset of fracture, divided by the total crack length . It
was found (183 that the work of fracture Requals G,

The key in the work of Seth and Page was that the plastic deformations
could be confined to a small zone at the crack tip by choosing a suitable
initial crack length and specimen width. The plastic deformations at the
crack tip are then insignificant and the fracture resistance R is
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Fi . 45 : Load against elongation for a fracture resistance specimen
(length 50 mm, width 150 mm and length of initial edge cut 50 mm), after
Seth (184) .

independent of the specimen geometry, at least for brittle papers such as
newsprint ( 183. 184). However, in the case of tough ductile papers (e .g .
woodfree writing paper) very wide specimens would have been needed to
measure R. Even then, the force T� needed to initiate crack growth is
equal to or larger than the yield stress T,, of paper (cf. Fig. 46). Thus the
applicability of LEFM seems questionable (1 $5}.

Similar conclusions concerning LEFM were reached by, among others,
Heckers et al. IU6 , Uesaka ( 187) and Steadman and Fellers (207). By
now it seems clear that linear elastic fracture mechanics cannot generally
be applied to paper, although the fracture resistance (work of fracture) R
(185) may give correct results for brittle papers .

4.3 . Non-elastic fracture toughness

From the preceding it is clear that the fracture toughness of paper should
in general be characterized in some other way than by LEFM . Rice ( 189)
showed that the so called J-integral taken around the crack tip is
independent of the integration path I: The integral is formally defined as

J =`

	

Wdx2 - T; au' ds

	

(25).~r ax,
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Fi . 46 : Fracture resistance R (circles) and net load at failure, Tn
(triangles) against specimen width for bleached softwood handsheets

after Seth ( 184). Yield strain Ty of the paper indicated by the arrow.

Where Wis the potential energy (i. e. aWraeij = ai` ), T is the traction and u

the displacement. Under certain assumptions J is equal to the energy
release rate G:

t
(a)o G (26)

This also holds for the critical value, J, = G, The point here is that plastic
deformations at the crack tip have no effect on Jwhen the integration path
I' is taken sufficiently far from the crack. This gives a justification for using
the critical value of the energy release rate J =G as a measure of fracture
toughness. Following the work of Rice, the critical value J, has become a
standard measure of fracture toughness.

In plastic or ductile materials, the load-displacement ratio of a cracked
specimen becomes non-linear before the initial crack starts to grow. To
evaluate fracture toughness, the intrinsic non-linearity of the material must
be separated from that caused by the crack growth . No general
mathematical formula can be given for this purpose. The J-integral can be
measured using multiple specimens with different crack lengths (BL
method of Begley and Landes (190)) . Several authors have applied this to
paper with good results (e.g. 188. 191 , 192, 193) . Unfortunately, the BL
method is rather tedious. Experimental work has recently been focused on
finding ways to cope with just one crack length .
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47 : Load against displacement for a notched specimen . Elastic and
plastic elongation at failure are de and A, ( 196 ) .

One of the single specimen methods tested for paper is that of Rice, Paris
and Merkel (194). It is assumed that the plastic displacement dp (Fig . 47)
of a specimen with a deep notch is a function only of the load per
uncracked width b of the specimen :

AP = bh(Plb)

	

(27)

The unknown function h should be obtained from one set of
measurements, after which the J-integral can be calculated from a single
load-displacement curve for any sample . The RPM method has been
shown to give the same results as the BL method for brittle filter paper
( 195) but not for tough papers ( 188 ), for which the RPM values depend on
the specimen geometry(188 , 192 ) .

I n order to overcome the dependence on geometry, Yuhara and Kortschot
( 196) generalized the above formula to read

AP = bh(Plbm)

	

(28)

They found that a value m = 0.8 should be chosen . The J-integral values
obtained from Eq . (28) were close to those obtained with the BL method .
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Fig. 448 : Parametrisation of load-displacement curve in Liebowitz method
(197) .

In another single specimen method, proposed by Liebowitz et al. (197),
the load-displacement P-d relationship of a notched specimen is
approximated by (Fig . 48)

O

	

MP+

	

n

~
M )

I n the absence of a crack M is the Young's modulus of the specimen . Eq .
(29) describes a strain-hardening material . With a few supplementary
assumptions the critical value J, can be calculated from the
load-displacement curve for a single specimen . Westerlind et al. (192)
found that the values were similar to the BL-values. Fellers et al. (193,
198) also obtained a reasonable correlation between BL and Liebowitz
methods, though the latter values were somewhat lower (Fig . 49).

Seth et al. (199} pointed out that all the J-integral methods suffer from the
fact that it is difficult to detect when the crack starts to grow. Sub-critical
crack growth ( 180) may lead to errors in the crack length . To overcome
these problems, Seth et al. ( 199) characterized the fracture toughness of
paper using the concept of essential work of fracture (200 . The work
done on a notched specimen is divided into two parts, the essential work
of fracture we and the non-essential work wp. The first 'part we is
consumed in a process zone where the actual fracture occurs (cf. Fig. 50),
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Fig-49 : Liebowitz fracture toughness, J,, against J-integral of Begley and

Landes for liner, sack paper and newsprint samples (bullets, squares and

triangles, respectively), after Fellers et al. (193) .

and under certain conditions we = J, (200). The latter part wp is dissipated
by plastic deformations in an outer screening region . The total work
required to break a notched specimen is

Wf = Ltwe + PL2twp .

	

(30)

Where L is the length of the central ligament of the specimen, t is paper
thickness and 0 is a shape factor that depends on the specimen and
notch geometry . Thus we and wp can be separated when the work of
fracture is measured for specimens with different ligament lengths 11981.
The method thus requires multiple specimens.

Steadman & Sloane (201 ) have used a completely different approach in
which fracture toughness is related to the plastic deformation at the crack
tip just before crack propagation (see, e.g . ( 177), Ch . 5) a c

R=4c 6y .

	

(31)

Where 6y is the yield stress of paper. Both dcand 6y are difficult to
determine for paper.
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F, ig-50 : Double edge notched specimen used by Seth et al. (199) to
measure the essential work of fracture, consumed in the fracture process

zone .

4.4 . Paper toughness vs . structure

Different fracture toughness measurements have already yielded quite a
lot of data . Although not all of these are comparable, it is perhaps still
interesting briefly to consider the results. The LEFM fracture resistance R
(indexed with the basis weight) is ca . 10 Jmlkg for newsprints and varies
from 10 to 30 Jmlkg for chemical pulps (174) . The essential work of
fracture has been found to be (199) we = 20-25 Jmlkg for copying paper
and 10-33 for kraft handsheets, while the Liebowitz method has resulted
in somewhat lower values, J, = 2-15 Jmlkg for kraft handsheets (198) .
Beating and free drying .seem to increase the fracture toughness (199) as
does an increase in the moisture content of paper ( 207) . The effects of
recycling (202) and filler (203) on fracture toughness have also been
explored . Seth et al. (198) have pointed out that fracture toughness is
closely related to the product of the breaking strain and stress of paper.

It is well known that fracture toughness is very sensitive to cohesive forces
acting behind the crack tip (Fig . 43). Simple models for this have been
introduced by Dugdale (204) and Barenblatt (205) . In real paper there are
usually fibres behind the crack tip that extend across the crack and hold
the network together . Micrographs illustrating this can be found in ref .
(52 ), p. 224. With respect to tear strength it has been shown that as the
crack propagates across the sheet, a significant fraction of the fibres
crossing the failure line break. Thus fibre strength is a much more
important property for the tear strength or fracture toughness than it is for
the tensile strength of paper (58 , 113, 206) .
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Li and Duxbury (94 ), working with a lattice model, showed that if a
post-fracture residual strength is assigned to all "broken" segments, crack
arrest can occur and the work of fracture increases substantially. This
means that a crack can first start growing but then stop until the external
elongation is increased . This is precisely what happens in the fracture
toughness measurements of paper: elongation must be increased for the
crack to propagate. In the model studied by Li and Duxbury, crack arrest
occurs if the residual strength was higher then 3% of the original (at p =
0.7p, ) . It is clear the structure of the fibre network, particularly the degree
of bonding, or density, has a great effect on the threshold of spontaneous
crack propagation . This has not been investigated in any detail
theoretically .

It is obvious that a better microscopic understanding of what happens at
the crack tip would be needed . The linear image strain analysis employed
by Thorpe et al. ( 179 , 180) appears promising in this respect. According to
(179), in tough papers such as kraft sack, linerboard, manila folder and
photocopy paper, the local strain field deviates from the mean far away
from the crack tip . Brittle papers, newsprint and tracing paper, have a
relatively small zone of critical strain . Quantitative measures of the zone of
influence of the crack tip might provide an alternative, intrinsic way to
characterize paper toughness. In this connection it is also worth pointing
out that measurements with an infra-red camera ( 104, 106) could yield
similar information . In this case, the crack tip is seen as a hot spot that
propagates ahead of the visible crack opening. Aside from information on
the characteristic lengths, the IR measurements could reveal the amount
of energy that is dissipated as the crack grows.

Considering the runnability of paper, one of the intuitively obvious facts is
the rapid propagation of the crack. According to Andesson and Falk ( 182),
the spontaneous crack growth in paper is slow at first but then
approaches the velocity of sound (v= ~E_lp ), whose order of magnitude is
1 km/s . This means that once at full speed, the crack should traverse an
ordinary paper web within milliseconds . Kimura et al . (35 ) found that
under impact rupture conditions the typical time to rupture of a narrow
paper strip was of the same magnitude and therefore the initial
acceleration takes a significant fraction of the failure time of a paper web.
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Fig . 51 : Breaking load of newsprint specimens with edge cut against
projected flaw length in CD, after Roisum ( 163). Orientation of the cut
relative to CD was 0°, 30° or 45° (open squares, diamonds and filled
squares, respectively) .

It has also been found that the fracture toughness of paper is independent
of the rate of elongation, at least up to 50%/min ( 182, 184, 193) . Even
though the situation may change at much higher strain rates (perhaps
above 105 %/min, see Fig. 1 in ( 108)), it seems that the toughness values
obtained with the relatively slow tests should characterize the runnability
of paper in practice .

It has also been demonstrated that formation has no effect on the fracture
toughness J,,. (208). The same observation has been made with the
in-plane tear resistance of paper (27). This is natural, since the initial cut
or notch determines the starting point of the crack. Once the crack starts
to propagate, local deviations from the "mean" structure only cause
temporary disturbances in the energy consumption, but do not change its
mean value. Indeed, the standard deviation of the fracture toughness was
found to decrease with improved formation (208) . It has also been shown
with lattice simulations that formation-type disorder has no effect on crack
propagation (92 , 157) . Once a crack starts to propagate in a system with
weak disorder, it proceeds essentially straight across the sample .

Fracture toughness, on the other hand, measures the general ability of
paper to resist crack growth . One assumes, of course, that the higher the
toughness, the larger or more prominent are the defects that a paper web
tolerates without breaking . Boadway et al. (209) measured the tension at
rupture of newsprint strips with a cut. They found that the rupture tension
was independent of the width of the strip. The relative loss in the rupture



709

Fig . 52 : Breakdown currect Ic (breaking load) for random resistor network
of width L with crack of length a at one edge ( 148).

tension was constant for a cut of given size . Sears et al. ( 165, 170) used a
special winder installation and found that shives longer than 3-4 mm
trigger breaks in newsprint. However, many shive-induced small cracks
were also found to have passed through the testing equipment without
causing a break, so a paper web can indeed tolerate even small cracks
without failing. The critical flaw size of a few millimetres was also found by
Roisum (163). The curve he obtained for the breaking tension against flaw
length (Fig . 51) agrees very well with an analogous result obtained from a
lattice simulation study (Fig . 52). The rapid decrease at small flaw lengths
corresponds to the rapid decrease in tensile strength when density is
lowered from the saturation value (Fig . 29). At larger flaw sizes, boundary
effects govern the breaking tension ( 148) .

In tensile loading the failure of a paper web (or strip) usually starts from
the edge (Fig . 53). To some extent this can be understood by the general
fact that large stresses occur at the corners of a strip when it is stretched
{151 , 152, 153) . In fact, however, in a non-homogeneous tensile
specimen, the highest stress occurs with a high probability in a narrow
region at the edges (Fig . 54). In a lattice simulation ( 98 ) the probability
that the highest stress occurs at the edge was found to diverge as L° .3 with
the width L of the system . Notice that in contrast, the probability for the
lowest stress value to occur at the edge is inversely proportional to the
width L. Thus the paper structure at the edges of a wide web is crucial to
runnability . It also seems that the elastic properties and their anistropy
must affect in the stress concentration at the edges.
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Fig. 53: Across-the-web distribution for longest shive in newsprint breaks,
after Sears et al. ( 165) .

Quite recently, Kert6sz (210) measured the fractal dimension of fracture
lines in different papers . The root mean square displacement of the
fracture line scaled as L~ with the size of the measurement window, where
the exponent ~ = 0.63 - 0.72. It is not clear that these differences in the
fractal exponent are significant enough to indicate that paper might exhibit
different types of crack propagation . However, since the exponent < 1,
fracture lines in paper are one-dimensional on large length scales .

4 .5 . Summary

Good runnability of paper is a product of two properties : web defects are
few in number and small in size, and fracture toughness is high . Many
fracture toughness measures have been developed and tested on paper.
They may give numerically different results but probably rank papers of a
given grade in the same order.- The number of defects can also be
controlled on-line. Thus it should be possible to characterize the potential
runnability of a given paper as a material . It is not surprising that this may
have little to do with the runnability observed in practice, the same occurs
with many other functional properties of paper: they cannot be predicted
precisely with laboratory measurements . Thus, fracture toughness should
not be regarded as an irrelevant property for the papermaker . On the



54 : Probability Dthat a bond at distance x from one edge of a random

resistor network (size 90x90) carries the largest current (largest stress),

after Li and Duxbury (98 ) .

other hand, the runnability of a paper web probably also depends on the
elastic properties since these control the stress distribution across and
along the web in an open draw . These questions are outside the scope of
this presentation .

5. FINAL REMARK

Systems where large numbers of microscopic variables interact are
common problems in statistical physics. The macroscopic properties of
such systems depend on the general form, or "symmetry", of the
interactions. The macroscopic, observable phenomena can then be
explained with simple microscopic models . It is not necessary nor possible
to describe all the details but the essential incredients must be included .
Above, I have done my best to show that such models can also be applied
to paper physics. With regards to strength and fracture of paper, the
crucial feature that a model must include is randomness in structure .
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STRENGTH AND FRACTURE of PAPER

K Niskanen (Review Paper)

Prof Lyne kindly pointed out that the sentence below Figure 2 on
p645 in my presentation should read as follows :
" . . . . defects had a big effect on the in-plane tear strength (force
required to start the tear), and that the local pre-rupture strain field
was affected by their presence."

I apologise for the misrepresentations .

K Niskanen

Prof C T J Dodson, University of Toronto, Canada
Thank you very much. The last point you made was one of the most
important ones, it has been made before by Heinz Corte I believe . I
would like to comment on the situation of .moving from random to
non random . The case of a flocculated structure is qualitatively
different and rather hard to cope with ; there is no information as far
as I know in the literature on the strain distributions simulated, or
actual measurements, on flocculated structures . It is quite tricky but
the point I would like to make is that from the work we've been doing
it appears that where the negative exponential distribution crops up,
we have only one parameter so you cannot change the variance if
you are going to fix the mean. In the transformation to the
flocculated situation, the gamma distribution appears to take over
and there you do have two parameters and it contains the case of
the negative exponential but if you want to have a variance change
you may at the same mean. This appears to be the key to free fibre
length distributions in the move to flocculated structures and it may
well be the key to the strain distributions of others . I notice that

Transcription of Discussion



without saying so there is some unpublished . work that appears to
be using gamma distribution in your equation 4 so we look forward
to seeing that .

(EDITOR'S NOTE : THE SPEAKER DECLINED TO RESPOND AND
TOOK THE ABOVE AS A COMMENT)

Dr C Fellers, STFI, Sweden
You have read the literature carefully, so well I have a very
provocative question for you . In your view why is the stress/strain
behaviour of paper so interesting in the first place . Is it because it is
-so easy to measure? In the real world we want resistance for long
term loading and that points to the creep behaviour or we want
resistance of fracture in the presence of defects and so on for
runnability . So why should we devote so much time to the
stress/strain behaviour?

K Niskanen
The stress/strain curve in my opinion is something that you can
hope to predict from the first principles so that if you measure the
stress/strain curve and work hard and develop theoretical
understanding then we can gain information about the microscopic
strength properties like the effective strength of fibre bonds . The
microscopic strength properties are something very difficult to
measure . I am always thinking that when we build these models
one of the motivations is to provide means so that by doing
experiments we can learn about the microscopic properties of
paper.



Dr

D Page, PAPRICAN, Canada

I

was on the committee which made the decision as to who should

be

giving these review papers and one of my comments was let's

give

the job to the younger chaps and then he'll have to read the

literature .

	

I

am delighted to see that you have done so and done a

very

fine job of it

.

	

I

truly hope that it has helped in your thinking

.

	

I
have

one comment to make and that is you have dealt with the

tensile

strength and there are three equations which you mentioned

.
There

is one which is generally called the Page

.

equation and there

are

the Kallmes, Bernier and Perez and the Shallhorn and Karnis

equations .

You make the comment that the difference between

these

models seems fairly insignificant in comparison to the

unavoidable

uncertainty in the microscopic parameters

.

The

differences

are not insignificant

.

They are actually quite substantial

and

they are very important in practice for the following reason

.
The

Kallmes Bernier equation says that when the tensile strength of

the

sheet is less than 419ths of the zero span tensile strength, fibre

strength

does not matter at all so if you have an 18km zero span

strength

when the strength of the paper is below 8km fibre strength

is

of no importance

.

The Page equation says that it is of equal

importance

to bond strength at that level

.

This has enormous

practical

importance for the permanence of paper because most

papers

are made around 8km breaking length or so and these

sheets

do lose strength upon ageing because of loss of fibre

strength .

I think Dr Priest is going to be giving a paper on

permanence

later on in our programme and I don't think his results

could

be explained -by either of the other two equations

.

	

I

have

been

through a number of oscillations of believing and not

believing

in the Page equation and I am now going through a stage

of

believing in it again

.



(Written note added after the Symposium)
K Niskanen
1 was not allowed to answer Dr Page on the spot so perhaps I may
do it afterwards. My point in making the cited statement was that as
the models are uncertain (or actually incorrect), I see little point in
arguing about which one is the best . I am not surprised to learn that
the models vary in their ability to reproduce sets of experimental

data . As Dr Page makes such a strong point in favour of his model,
I may point out why I am sure his model cannot be correct .

Suppose fibre strength is very large, in which case the Page model
predicts that the tensile strength of paper is linearly proportional to
RBA. That is wrong. Firstly, tensile strength must vanish at the

percolation threshold, where RBA N2-3 bonds per fibre (I grant this
is not very relevant for most papers) . Secondly, anyone who has
studied models with disorder knows that strength is never a linear
function of a density-type property such as RBA over the entire

range.

	

I refer to section 3.3 in my written contribution .

Dr S Loewen, Abitibi Price Inc, Canada
Do we in fact know that in printing presses, the failure mode is

usually an in plane type fracture mode? Have there been studies
that experimentally investigate the actual failure mode in a printing

press?

K Niskanen
I don't know the answer to the first part of the question , whether we
know it's in plane this failure . As to the latter part I would say that I
dohi know the answer either. I seem to remember that there isn't
very much work on that . These things are difficult because of the
nature of statistics and the amount of paper you need .




