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I. INTRODUCTION

Reinforcement fibres (RIF) are added to paper- to improve its mechanical prop-
erties and runnability on the paper machine, in converting or end-use operations .
High fibre length, conformability, bonding capacity, strength and perhaps ductility
are believed to be essential for a good RIF . They increase the fracture toughness of
paper, its ability to resist crack propagation . Much the same fibre properties also
increase the tensile strength and elastic modulus of paper .

Reinforcement pulps are relatively expensive and therefore used in low concen-
trations . High-performance RIFs could offer potential savings in the furnish costs .
Unfortunately experiments where the RIF mass fraction is varied are not only te-
dious but also difficult to interpret . The properties of papers with varying RIF
content show often, though not always nonlinear behaviour and the reasons for the
nonlinearities are not understood . One does not know if the addition of RIF has
the same effect in the machine-made paper as it has in handsheets . Since the RIF
performance cannot be accurately characterized , RIFs are usually compared sim-
ply by measuring the properties 100-% RIF handsheets . One assumes then that the
RIF with the best properties in the pure handsheet also gives the best reinforcement
effect when mixed with any mechanical pulp .

Different explanations have been given for the non-linear behaviour of the prop-
erties of pulp mixtures as a function of the RIF mass fraction . According to the per-
haps most common explanation the bonding properties of mechanical and chemical
pulps differ . There are then three kinds of bonds in the mixture . Their relative pro-
portions vary when the RIF fraction is increased and lead to the nonlinear changes
in the paper properties . The nonlinearity would be most obvious if the mechanical
and chemical pulps formed two nearly independent fibre networks [1] . This is un-
likely to happen in reality, among other things because the uniform distribution of
fines in all bonds tends to smear out the bonding differences that pure pulps would
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have.

Another possible explanation is that only the location of the failure point on
the load-deformation curve is nontrivial and otherwise the shape of the curve for a
pulp mixture can be calculated as the appropriately weighted average of the curves
describing the components [3] . However, then the elastic modulus should be linearly
related to the RIF content, a postulate that can be easily demonstrated to be invalid .
It is also quite possible that the sheet structure itself and particularly the relative
bonded area is nonlinearly related to the RIF content . For example, the degree of
collapse of the RIF could be a nonlinear function of the RIF content [2] .

Published studies of RIF performance in paper ( [1,3,2]) have all simplified the
real situation by assuming that the network geometry or the mechanical properties

of the mechanical pulp fibres do not change when the RIFs are added, or that the
mechanical properties of the mixture are given by the average of the two components .
In other fields of material science, particularly composites and disordered systems,
it is well-known that none of these assumptions is generally valid. In this paper

we use physical arguments in an effort to analyze systematically the property re-
quirements of RIF . The treatment is divided into three parts : geometry, mechanical
compatibility and toughness mechanisms .

The geometrical aspects of the problem arise from the need that the RIFs, should
tie together the matrix of the other (mechanical) fibres . Much confusion has arisen
from the incorrect assumption that there would be an abrupt change in paper prop-
erties precisely at the percolation consistency of the RIF. Furthermore, the perfor-

mance of different RIFs in a given mechanical pulp network network can be much
more dependent on the relative mechanical properties ofthe fibres and bonds than it
is on the geometric percolation of the RIFs . The application of the two-dimensional
percolation problem to paper [4] is well-known but it is invalid if delamination of
the fibre network affects the reinforcement mechanism. One must then consider the
full three-dimensional problem where the RIF's are bonded directly to one another.
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We have developed a numerical simulation model [5] that can be used to study this .

The model includes fibre conformability as a parameter . We show how the relative

area of different types of bonds depends on the RIF content and sheet grammage .

Next we consider the issue of mechanical compatibility. Its significance is demon-

strated by the fact that with the addition of a RIF pulp to mechanical pulp it is not
uncommon that the tensile properties of paper decrease at first and increase only

later . The phenomenon is well-known in composites . What happens at the fibre

level is that it is easier for the network to strain more at the "soft" - low-modulus
- mechanical fibre matrix and less at the stiff RIFs . As a result the RIFs do not

carry "their share" of the external load and the matrix fails at a smaller load than

it would in the absence of the RIFs . The opposite phenomenon, transfer of strain
from RIF to matrix, happens if one adds low-modulus fibres to a proportionately

stiff matrix where the network modulus does not decrease in direct proportion to

the concentration of the soft fibres .

It is well documented that the conductivity (i .e . electrical analoque of elastic

modulus [G]) of disordered binary mixtures differs from the linear 'rule of mixtures'

behavior only if the conductivities of the two phases are 'sufficiently' dissimilar [7] .

Things become more complicated if one considers strength properties . For instance

in the computer simulations of Duxbury et al . [8] of resistor networks, percolation-

related scaling behavior was observed only if the elastic moduli and strength of

the two components were very different . When the components were similar in
properties, no such effect could be seen .

Finally we analyze the reinforcement mechanisms related to fracture toughness

at the fibre level . Regarding the RIF performance the worst case scenario is the one

discussed above where the RIF prematurely trigger the matrix failure . The situation

is better when the RIFs pull out of the mechanical fibre matrix . This is analyzed in

terms of a stochastic theory for fracture toughness . Perhaps the "best" situation is

achie~, ed if' the RIF are not too stiff but ductile and stretch plastically at the same
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time as the bonds fail one after another . The phenomenon one then encounters is
called crack-bridging . We also discuss crack deflection that dissipates energy at the
fibre level and thereby imbedes crack propagation .

The non-linear behaviour of paper properties that is often observed with RIF ad-
dition could arise from geometric factors . Either there may be a transition related
to the percolation of the RIF or the bonding degree of the different furnish compo-
nents may be non-linear . The quantitative consequences of these explanations are
considered in the next two chapters .

A . RIF percolation

Suppose that the non-linear relationship of paper properties to the RIF content
is caused by a percolation transition, which occurs at a critical value qh . One

would then expect a noticeable change (a bend in the curve etc .) [4,9] at some
point well above the transition point so that the concept of 'percolation behavior' in
paper properties is rather ill-defined [10,11] . One does not know how many bonds
per fibre are needed for the change to occur or what is the critical RBA-value.

Naive application of elastic modulus simulations [12,13] suggests that a change in
the mechanical properties of paper happens at 2-4 times the percolation threshold
but this merely a guess . In any case, on this basis the cross-over in mechanical
properties occurs at ca . 10 bonds per a RIF since at the percolation threshold there
are, on the average, 2.7 bonds per fibre [12] . Notice that 10 bonds per fibre is far
from a 'dilute' limit of non-interacting RIF . The corresponding RBA is given by
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RBA, = IOwf/21fwf = 5wf/l f where lf and wf are the length and width of the
RIF . Scandinavian pine has lf = 2 .5 mm and wf = 40 ,cm, which leads to RBA ^-'
0 .1 as a rough order-of-magnitude estimate of the cross-over point .

Regarding the bonding of RIF there are three alternatives when the RIF network
becomes stiff:

" assume that the ZD shear stiffness of the entire network is high . Then it is
enough that the 2D projection of the RIFs forms a percolating network .

" assume that mechanical fibres prevent strong bonding between the RIFS but
that fines mediate or even reinforce the RIF-RIF bonds .

" assume that only the pure RIF-RIF bonds are strong enough . This includes
RIF-R.IF bonds via chemical fines but not via mechanical fines

The first, case is essentially a two-dimensional problem . The presence of the
mechanical pulp can be ignored . The percolation threshold [14] can be expressed as
a critical granimage . m, :

m, =5.71C/If

where C is fibre coarseness (mass per unit length) . Using typical values for RIF we

find m,, = 1 rl/m 2 so that a change in the mechanical properties of paper might be
observed when the RIF grammage is 3 g/m2 (assuming 10 bonds per fibre at the
cross-over) . It is important to realize that this threshold is completely independent

of the m!erall grammage of the sheet . In terms of the mass fractions, the threshold

means less than a TI., = 5 - 10% RIF content in printing papers . We use the subscript
"x" to emphasize the difference from the geometric percolation point .

In the second case of RIF-RIF bonding with intervening fines allowed, there are
two factors that complicate the evaluation of RIF connectivity. First, the finite bend-
ing stiffness of fibres makes the sheet structure porous . The bending stiffness couples
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to the thickness of fibres and other particles : if the thickness of all particles were zero
then fibre stiffness would be irrelevant and the network would be two-dimensional .
The other complication is the shielding of RIF-RIF bonds by mechanical fibres that
happen to lie between two RIFs that would bond together otherwise . Both of these
problems can be dealt with using numerical computer simulations .

We have developed a simulation model [15], "KCL-PAKKA", that "packs" fibres,
fines and fillers in to a random structure closely resembling real paper . In the model,
fibres are deposited at random and one by one on a two-dimensional square lattice
of 10 by 10 ¡gym cells . The discretization does not affect the generic features of the
statistical network geometry. The fibres have a given length, width and thickness,
If, wf and tf, as well as "flexibility" Tf . When adjacent cells are compared, fibres
can be displaced in the z-direction, up or down, by an amount not exceeding Tf .
The fibres are pressed down onto the underlying, already formed network as far
as possible while still obeying the flexibility constraint Tf . More details of the
simulation model can be found elsewhere in these proceedings [5] .

Figure 1 shows the computed RBA of a Scandinavian pine kraft pulp when mixed
with a. groundwood pulp . It is assumed the GW fines can mediate the RIF-RIF
bonds . At grammages above 30 g/m2 , a RIF content of q., = 10% is enough to reach
the cross-over threshold RBA, -= 0 .1 . At lower grammages a higher fraction of RIF
would be needed . In our simulations, Fig . 1 would remain practically unchanged if
GW were replaced with a Scandinavian TNIP or PGW. However, it is quite possible
that there are other mechanical furnishes that would lead to different results . In
Fig. 1 RBA is essentially linear as a function of q . Hence if the threshold RBA.,

were higher, say by a factor of two, then one would need qx = 20% for the cross-over .
A higher threshold would apply to shorter- or wider fibres . A higher- threshold would
also be justified if the above estimate for the location of the cross-over point was
simply too low .
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FIG. 1. The relative bonded area computed with the KCL-PAKKA model for a
mixture of a Scandinavian pine kraft pulp and a groundwood pulp (CSF42). Both
furnishes are modeled with four Bauer-McNett fractions (+28, +48, +200, -200), whose
fibre properties have been adjusted in order to match the optical properties and bulk ofthe
model sheets with the values measured from real handsheets made of the corresponding
SWK and GW. The computed RBA includes the SWK-SVVX bonds between three ofthe
fibre fractions either directly or with intervening SWKor GW fines .

In the third case listed above, one accepts only RIF-RIF bonds with no inter-
vening mechanical pulp component. In addition to pure RIF-RIF bonds, bonds
mediated by chemical fines are accepted . In this case the corresponding RBA is

much smaller than before (Fig. 2) and 77,, = 33% is required for the critical level
of RBA, = 0.1 almost at all grammages. RBA,, = 0.2 would imply 77., = 54% .
The crucial difference to the previous case is the shielding of the RIF bonds by the
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mechanical pulp. This effect depends on the surface area per unit mass of the me-
chanical pulp . (N.B . fillers would shield bonds in the same way.) In this case there is
more variability between mechanical pulps than above. For example, if GW would
be replaced with TMP in Fig. 2, 71~ < 30% would suffice to reach RBA,, = 0.1 .

FIG. 2. The same as Fig. I except that now the SWK-SWK bonds with intervening
GW fines are excluded from RBA.

To summarize, the stiffness threshold 71,, of the RIF network depends on nature
of the bonding between the RIFs . The guess of RBA, = 0.1 leads to 77, = 30% when
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pure RIF-RIF bonds are necessary and to q., = 10% if intervening fines (of any type)
do not weaken to bonds too much . In the other extreme is the case where percolation
the in-plane projection of the RIF suffices . The stiffness threshold is then expected
at the RIF grammage of 3 g/m2; for any overall grammage of the sheet . It must
be understood that these estimates are based on a guess about the distance from
the percolation point to the concentration at which a non-linear change in paper
properties occurs .

B. Relative bonded area against RIF content

In this section we demonstrate that changes in the RIF content 'q can lead to
non-linear behaviour in the bonding degree of the RIF and the mechanical fibre
furnish . Since the RBA of furnish components cannot be readily measured we
use the KCL-PARKA model for demonstration . The computed RBA of RIFs and
mechanical matrix against q at 52 g/m2 are shown in Fig. 3 . The bonding degree
of each components includes all bonds of the fibre to other fibres, independent of
the type of the fibre with which the bond is formed . Bonds with intervening fines
particles are included but the bonded area of fines is not included in the calculation
of RBA . Also shown in the figure is the RBA -curve for pure RIF-RIF bonds.

It is interesting to observe that the RBA of both the RIFs and the mechanical

fibres increases almost in the same manner when the the mass fraction of the former
increases. The bonding degree of the mechanical fibres increases because they form
bonds more easily with the flexible RIF than with other mechanical fibres . Hence
there is a synergistic effect in the geometry of the network when 77 increases. Only
in the pure RIF-RIF bonding the shielding by the mechanical furnish causes the
antagonistic effects with increasing r7 .
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FIG. 3. The relative bonded area computed with the KCL-PAKKA model for the same
SWK and GW furnishes as in Fig . l, at grammage 52 g/m2 . The total bonded area ofthe
SWK fibres and GW fibres to any fibre type is given by the open squares and crosses,
respectively. Bonds mediated by fines are included in both. The black squares show the
same case as Fig. 2.

The RBA curves of the RIFs and the matrix could be used to calculate the me-
chanical properties of paper as a function of 77 . For example, the shear-lag equation
[16] could be applied to the elastic modulus of both components and the Page equa-
tion to the tensile strength . These would then be weighted by the mass fractions
77 and 1 - 77 . The net result of such an exercise would give the same convex curva-
ture for the 7J-dependence of the mechanical properties as is shown in Fig. 3 for the
RBA components . Only the overall trend would vary depending on the properties
of the pure one-component sheets . The situation would be different if the pure RIF-
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RIF bonding had an additional, separate effect on the mechanical properties of the
mixture.

The above results have been calculated for mixtures of a softwood kraft and a
groundwood pulp . The quantitative details and even the curvature of the curves in
Fig. 3 could change if different furnishes were considered . In particular the curvature
would change if the collapse of RIF would occur only above a critical RIF content,
as Fernandez and Young [2] propose happens in mixtures of TMP and springwood
SWK. In that case an antagonistic ?ï-dependence would be observed in RBA. How-
ever, in the absence of such a co-operative effect in the network geometry it seems
probable that the synergistic effect displayed in Fig. 3 is common to mixtures of
slender flexible fibres and coarse stiff fibres .

In summary, the relative bonded area of pulp mixtures is probably always some-
what nonlinear as a function of the mixing ratio and this causes deviations from
the linear "rule-of-mixture" behaviour of paper properties . Unless there are abrupt,
changes in the network geometry at some critical rl, the changes in RBA alone seem
to imply smooth and synergistic deviations from the rule-of'-mixture behaviour of
the mechanical properties of paper.

III. FIBRE COMPATIBILITY

When a network containing mechanical fibres and reinforcement fibres is strained,
the stress and strain state of the two components are different. Also the state of
the mechanical fibres in the vicinity of the RIFs is different from what it would
be in a homogeneous mechanical fibre network. These effects cause an additional
and antagonistic deviation of paper properties from the RBA-dependence discussed
above. The first effect determines the RIF contribution to the modulus and the
second the contribution to the strength and toughness of paper. We consider first
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The standard model for fibre composites and paper is the Cox shear-lag theory
[17,18] . In the theory stress is transferred to fibres through shear deformations of
crossing fibres, inter-fibre bonds or a continuous matrix . The shear-lag calculations
predict that the contribution of a fibre to the elastic modulus of a sheet is pro-
portional to the fibre modulus multiplied by a geometric orientation factor and a
correction factor for the inactive fibre ends . In composite mechanics the inactive
fraction of fibres is characterized by a critical length [18] . Long RIFs increase the
network modulus more than short RIFs because the critical length is 'relatively'
shorter in the first case .

The shear-lag theory and the critical length are convenient if one wants to explain
qualitatively why or how the elastic properties of fibre composites depend on the
fibre and matrix moduli, fibre length and fibre content (mass fraction) . In random
fibre networks such as paper the theory predicts qualitatively, but not quantitatively
[12], how the elastic modulus depends on density. The theory even gives a roughly
correct form for the variation of average axial stress along the fibre axis [12,19] .

Shear- lag theories also predict high shear- stresses at fibre ends if either the fibres
are long or RBA is high . The high shear stress arise from that the stress transfer
occurs only at the fibre ends . However, recent numerical calculations have revealed
that this picture is incorrect in random fibre networks [13] . Because ofthe disordered
geometry stress transfer to and from a fibre occurs in random increments all along
the fibre . In addition, direct transfer of axial stress between crossing fibres - instead
of shear deformation of the crossing fibres -- seems to be the dominant mechanism
[13] . The failure of the shear-lag theory has also been demonstrated experimentally
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and theoretically in fibre-reinforced composites when the fibre content is high [20,21] .
Again, axial stress transfer has been put forward as the explanation for the break-
down of the shear-lag theory [22] .

In the case of paper the failure of the shear-lag theory would perhaps not be
too serious if one concentrated on the elastic properties . However, the strength
properties of paper and particularly reinforced paper cannot be derived from the
shear-lag theory. This is because the failure of inter-fibre bonds is directly coupled
to the stress transfer between fibres . There is an upper limit on the load that a bond
can transfer from one fibre to another without failing . Hence shear-lag theories would
predict that breaking strain goes to zero when RBA increases.

We construct next a simplistic model in order to demonstrate the axial stress
transfer- from the mechanical fibre matrix to the RIF. A more careful analysis of
will be given elsewhere [23] . Consider, for simplicity, a RIF and two crossing matrix
fibres all parallel to external elongation (Fig . 4) . The disturbance in the matrix is
strongest in this case. Only the fibre crossings at the ends of the RIF are included .
This is a resonable approximation at high RBA [13] .

We assume that the outer end points of the crossing segments (marked with P
in Fig. 4) are displaced homogeneously. This is the same boundary condition as
used in the Cox theory . The axial strains in the P1-P1 chain in Fig. 4 are coupled
throtigll

(If + 2ls)E, = -6flf + 2,6,1,

	

(2)
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FIG. 4. Illustration for the axial stress transfer calculation. The reinforcement fibre is
shown by the thick bar Q-Q and the two crossing mechanical pulp fibres by the lines Pl-
P2 . For clarity the latter two are drawn at an angle to the RIF even though in the
calculation they are taken parallel to the RIF and hence to the external elongation .

where lf is the length of the RIF (assuming high RBA), is is the length of segment
Q-P1, Ef and E,,, are the corresponding strains and E,, is the external strain . The
axial strain of the segments Q-P2 is 2E,; - En,, since the average strain of Q-P1 and
Q-P2 must equal to E., for the homogeneity assumption to hold . The force balance
equation reads

2(E�L - E,,:) = SEf,

	

(3)

where S is the RIF-to-matrix stiffness ratio

S = EfAfIE,,,,A_

	

(4)

with E,,,,f denoting the elastic moduli of the matrix fibres and RIF, and A, .f their
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cross-sections.

The strains in the RIF and matrix are now given by

Ef = E y (1 + SlS/lf)-1 ^ Ez(1 _
Sls

)

	

(5)if

and

'Elm =E'(1+1

	

S

	

)tiEx[1+S(1
_Si')]

21 +S1 s /1f

	

2

	

if

	

(6)

where the approximations apply for 1,11f < 1, which is valid for all ordinary papers .
The stiffness ratio S must be reasonably close to unity when ordinary wood pulps
are considered and thus also is /Sl f < 1 .

In the simplest approximation the relative contribution of a RIF to the elastic
modulus of paper is proportional to SEf/E., = S(1-S}) . The result would of course
change quantitatively if fibre orientations and RBA were included. The modulus
benefit is proportionately smaller if the RIF is very stiff (S high). Notice also that
in this approximation the matrix disturbance does not affect paper modulus because
the average strain in the two segments Q-P1 and Q-P2 equals E., .

Before proceeding it is instructive to apply the above equations to the homoge-
neous case where all fibres are alike, or S = 1. According to Eq . (6), the highest
axial strain in the network is E�,, = L5E, as long as 1,11f < 1 . In the Cox model
the highest axial strains are roughly equal to E., . The strain difference between the
segments Q-P1 and Q-P2 (Fig. 4) is equal to E2 . This implies that the first inter-fibre
bonds in the network would fail at

E~, = Ec = AbTcrit/Arn.Em

	

(7)

where Ab is the average bond area and T, the bond shear strength . The critical
strain would even be somewhat smaller if the stress transfer were shared by more
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bonds than just the two at fibre ends . The important point is that E, does not go
to zero when RBA increases as it would if the Cox model was applied .

Returning to the dilute RIF mixture, the above analysis implies that the matrix
can fail prematurely because the matrix strain Em around the ends of RIFs increases
with increasing S (Eq. (6)) . The change would be observed as a decrease in the
ratio of tensile strength to elastic modulus which is the elastic breaking strain of
paper E e l . This is similar to reinforcement-induced matrix failure in composites [24] .
In composites stiff fibres may also debond prematurely from the matrix . The same
may happen in paper ifthe RIF-to-matrix bonding is weak . From the above analysis
it follows that the external strain at which the debonding would occur is inversely
proportional to the RIF stiffness, i.e . stiff fibres debond first .

When the matrix fails prematurely at the ends of a RIF the change AEel in the
elastic breaking strain of paper can be assumed to be linearly proportional to the
relative number of RIF in the sheet in the dilute limit 17 < 1 . At the same time the
addition of the RIF raises the RBA of the network (cf. Fig. 3) and consequently the
elastic breaking strain of paper. The deviation that the premature matrix failure
causes a strain reduction given by

,~iE e t = const x r7(1 - S)/(2 + S)

	

(8)

where the constant takes care of statistical geometry and the relative weights of the
RIF and mechanical fibres . If debonding of the RIF would contribute to the sheet
failure, the factor (1 - S)/(2 + S) should be replaced with (1 - S)/S . Both these
factors are displayed in Fig. 5(a) . The combination of the strain reduction AEel with
a smooth RBA dependence is illustrated in Fig. 5(b) . Here E el(S = 0) is assumed to
be linearly proportional to RBA(q) as given by Fig. 3 and typical values, E e d =0.8%
and 1 .2% are used for the pure GW and SWK, respectively. E e l is assumed to be
constant, DEel = 77 x 0.6%.
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FIG. 5 . In (a), the relative change in the strain reduction A&,, against the modulus ratio

S, (1 - S)/(2 + S) and (1 - S)/S, for matrix failure (solid line) and RIF debonding (dashed
line), respectively. In (b) a schematic illustration ofthe elastic breaking strain ofthe SWK-
GW mixture of Fig . 3 . The solid line is calculated from the RBA-curves of Fig. 3, as
explained in the text; the dilute limit result results from adding As. ,, .,, and the dashed lines

shows the cross-over from the dilute limit to full matrix confinement at high q .

It must be emphasized that the behaviour plotted in Fig . 5(b) is a qualitative

illustration . The magnitude of the strain reduction AEet cannot be evaluated quan-

titatively from the simple model presented above . On the other hand, if the elastic

breaking strain of paper against the RIF mass fraction 71 is measured, the result

can be used to assess the mechanical compatibility of the RIF with the mechanical

fibre matrix . Additional information can be obtained from the elastic modulus of
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paper E. According to the simple model above, poor mechanical compatibility has
only a weak effect (of the order of 1 - S1,11f) on the elastic modulus. Therefore
the behaviour of the elastic modulus of paper as a function of 7? should be linearly
related to RBA(q) . In the absence of premature matrix failure or RIF debonding,
the elastic breaking strain of paper should follow a similar dependence on 77 with the
same curvature. If in contrast Eel falls in the dilute limit below the trend of elastic
modulus then a reduction in the axial stiffness of the RIFs could help .

B. Finite RIF concentrations

When the concentration of RIF in the mechanical fibre matrix increases, the
dilute limit behaviour changes and matrix confinement by the RIF starts to play a
role . Confinement simply means that the strains of the matrix and RIFs become
similar- and eventually equal in magnitude when 77 increases [24,22] . The confine-
ment also reduces the strain enhancement at RIF ends . The relevance of matrix
confinement at finite RIF concentrations has been demonstrated for fibre reinforced
composites . Early work had already proved that the mechanical properties of com-
posites are not linearly related to the RIF content [25] . Figure 6 shows an example
of local stresses in a 2D uniaxial, random fibre composite. The matrix stresses vary
spatially in a complicated manner because of interactions between fibres at random
locations . Similar random fluctuations would also occur in paper and any random
fiber network . Computes- simulations have shown that random fibre networks have
very broad stress distributions [13,12] .
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FIG. 6. Strain field plots for a uniaxial 2D fibre reinforced composite from the
computer simulation by Manette et al . (J . Appl . Phys. 75, 1155 (1994)) . Dilute case, 'n =
0.005 (top) and semi-dilute case, 'q = 0.055 (bottom). White corresponds to high stress
and black to low stress.

The percolation effects discussed in chapter TIA might play a role in matrix

confinement . There should be a cross-over concentration above which the strains
in the matrix and RIFs are indistinguishable. Above, that point even the strength
propel - ties of paper should follow the smooth behaviour given by RBA(77), as illus-
trated in Fig . 5(b) for the elastic breaking strain . The non-linear behaviour arises

from the competition between the elastic strain reduction in the dilute limit and the
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From the discussions above it is clear that the eventual cross-over concentration

77., depends on the RIF length, the nature of the RIF-to-matrix coupling and on
the mechanical compatibility in the dilute limit . The simplified analysis of Chapter
IIA suggests that at 77., every RIF would on the average bond to tell other RIFs .
Hence the mesh formed by the RIFs is already quite tight . If the RIFs are ductile
they should then be able to prevent microcracks in the matrix from growing into
macroscopic failure [24] . The phenomenon is called crack arrest .

In Fig . 6 sharp peaks are seen in the matrix stress even when there is an adja-
gent confining fibre. One can guess that it would be difficult to model or predict the
strength properties of fibre composites and fibre mixtures . Direct numerical simu-
lations have been applied to that problem by Duxbury et al . [8] . Figure 7 shows
the analoque of tensile strength for different values of a stiffness ratio analogous
to S and a corresponding ratio for the elastic breaking strains of the two compo-
nents in pure form . The composite strength drops from the one-component value
immeadiately when the other- component is added and varies nonmonotonically for
all mixing ratios . The tensile strength behaviour is determined by the elastic break-
ing strains of the components . It is smooth if the elastic breaking strains are equal
and a kink occurs if they are different . The kink resembles a percolation-induced
cross-over point . For two-dimensional model systes it occurs at the 40-60 mixing
ratio, whereas the percolation threshold is at the 50-50 ratio . For 3D systems the
corresponding 'cross-over'' takes place at a much lower RIF fraction . This might cor-
respond to paper in the case when the sheet has a low ZD shear stiffness (cf. Chapter
IIA) . A s a final note such simulations show, that if one defines ' - toughness" as the
energy consumption prior to tensile failure/maximum stress the components should
have both differing breaking strains and stiffnesses . The right combination depends
unfortunately on the volume fraction and other details .
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FIG. 7. The strength of a binary mixture against the mixing ratio P. Adopted from the
square lattice simulations of Duxbury et al . (Phys. Rev. B51, 3476 (1995)) . The stress
ratio S and the tensile strength ratio Tof the two components are S = T = 4 (squares);
S=1/4, T= 4 (triangles); S=T=1/4 (diamonds) and S=4, T==1/4 (triangles) ;

In summary, mechanical compatibility hasa complicated effect on the mechanical
properties of paper against the RIF content 7) . The dilute limit behaviour can
be qualitatively understood from the local strain enhancement at RIF ends . The
cross-over to the RBA-controlled behaviour occurs when the RIFs are sufficiently
well connected. The geometric factors that control the cross-over content n, were
discussed in Chapter IL One expects naturally that non-linearities in the mechanical
properties are smallest when 71,, and the reduction in elastic breaking strain Af-, c are

small.
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IV . FRACTURE TOUGHNESS

A. Microscopic mechanisms

One of the main motivations for using reinforcement pulp in paper is to improve
the mechanical runnability or fracture toughness of paper . It is believed that the
fracture toughness of paper can be characterized by the rupture energy per unit
length of the growing crack . On the other hand, in tough materials the energy
consumption takes place in a large area around the actual crack tip called the fracture
process zone (FPZ) . Paper is often so tough that the FPZ is large compared to
segment length and standard fracture mechanics cannot be applied [26] . The spatial
distribution of the energy consumption can be seen in e .g . the IR images ofYamauchi
[27] . However, one can still study the micromechanical processes in the FPZ . In the
following we shall briefly discuss the microscopic mechanisms that may affect the
fracture toughness of paper . In the absence of experimental material it is practically
impossible to evaluate their relative importance in practice .

The effect of a RIF addition on paper toughness can be divided in two parts :
the change in the energy spent on matrix failure, and the additional energy spent
on RIF debonding and failure. The positive effect of RIFs on fracture toughness
arises from their ability to hold together one way or another the network and prevent
crack propagation that would otherwise take place . Unless matrix delamination is
relevant, the mass fraction 77 of RIF is in practice always so high that the crack path
can not avoid crossing RIFs (cf. Chapter IIA) . Then the matrix confinement by the
RIFs usually reduces the stress concentration at the crack tip and thereby makes
paper tougher .

In the dilute limit the positive confinement effects of RIFs may be partly offset by
the premature matrix failure discussed in Chapter IIIA . Tensile strength is reduced
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but toughness may still increase . This is because the premature microcracks ahead
of the actual crack tip may increase the true crack length by crack deflections [281 .
Similarly, poor formation may lower tensile strength but increase toughness, though
no experimental verification of this is available . In general terms the best toughness
with a microcracking material is achieved if the microcracks in front of the crack tip
do not coalescence easily . In the case of reinforced paper this can be achieved if the
RIFs are ductile .

Even in the absence of RTF there is a clear difference in the shape of the crack
path in MD and CD (Fig . 8), reflecting the different nature of the fracture process in
the two in-plane directions of machine-made paper. In MD crack deflections increase
the true crack length significantly. At least superficially the crack path is suggestive
of crack deflections generated by stiff fibres in MD . Addition of stiff RIFs to the
furnish may enhance the crack deflections .

In CD the crack path (Fig. 8) is shorter than in MD but on the other hand
energy is consumed in ductile yielding . Hence the MD/CD ratio of paper toughness
is usually much closer to unity than is the MD/CD ratio of elastic modulus or tensile
strength . The ductile yielding of paper improves toughness by "blunting" the shape
of stress field ahead the crack tip . A blunt stress field spreads the damage to a wide
area and energy consumption is high . In composites a weak matrix-fibre interface
is also known to lead to crack blunting, as damage develops ahead the crack [29] .
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FIG. 8. Typical crack path in an edge-cut newsprint specimen when loaded in MD (top)
and CD (bottom) .

If ductile RIFs (i .e. fibres with high breaking strain) are added to mechanical
furnish, the stress field at crack tips may remain unchanged. Instead the RIFs can
increase paper toughness by bridging [30,31] slightly opened cracks in the brittle me-
chanical fibre matrix . Bridging is quite common in paper cracks (Fig . 9) . Marshall
and Cox [30] have analyzed in detail various scenarios of matrix reinforcement with
uniaxial fibres . They demonstrate that bridging can make a brittle material ductile .
Linear fracture mechanics is then valid only for cracks that are smaller than a critical
size [31,32] below which the cracks are 'linearly elastic' . In other words, linear frac-
ture mechanics applies to the onset of crack growth but not to crack propagation .
It is conceivable that the same could be true for reinforced paper.
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FIG. 9 . A propagating crack in a newsprint specimen loaded in MD. The crack tip is on
the right and fibres bridging the crack can be seen behind the tip .

The reinforcement action of stiff high modulus fibres can now be compared with
ductile, high stretch fibres . High stiffness may be beneficial at high RIF contents
where matrix confinement dominates . However, at low RIF contents the stress of
stiff fibres increases rapidly as the crack begins to open . Either the matrix break
prematurely at the RIF ends or the RIFs debond from the matrix . This does not
happen if the RIFs yield plastically . Then the RIFs can bridge cracks in the brittle
mechanical fibre matrix and thereby increase paper toughness . In the square lattice
simulations of Duxbury et al . [8] the highest toughness for the binary mixture was
obtained when the two components had different stiffness and different strength .

The bonding strength of fibres also affects paper toughness . It is a well-known
phenomenon in fibre reinforced composites as well as in paper that there is an
optimal bonding strength that maximizes the fracture work per RIF [33,34] . Too
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strong a bond leads to matrix rupture or RIF failure and too weak a bond leads to
low energy consumption in fibre pull-out . However, care must be excercised in how
the bond strength is varied . Increasing the bond stiffness should generally increase
the probability of fibre failure . If, instead the plasticity of the bond is increased,
fibre failure need not become more frequent even if bond strength as such increases.

The orientation of RIFs can also have an effect on the debonding and toughness
contribution . Fibres at off-axis angles seem to be most effective in increasing tough-
ness . In fibre reinforced concrete the optimum angle has been found to be 30 to 40
degrees depending on the properties of the matrix and RIFs . For long or weak fibres
the optimum angle is smaller [35] . The optimum angle arises because the energy
consumption in RIF debonding and rupture is different in bending, shearing and
axial elongation [36-38,35] .

B. Quantitative analysis

The toughness contribution of a RIF addition can be estimated from a simplified
model [391 where the fracture energy per fibre is a sum of bonding energy,gy, includ-
ing the plastic yielding per bond, and fibre failure energy . It is assumed that the
RIF pull-out is a gradual process where bonds open one after another. The process
need not proceed systematically along the fibre . The model is similar to Friedrich's
analysis of the toughness of brittle, fibre reinforced composites [401 and it can be
also compared to studies of weak fibre pull-out in composites [41,381 . The difference
between the present model and traditional shear-lag models [42,43] is that the latter
assume all the bonds to be loaded simultaneously . Then fibres break if the cumu-
lative bond contribution exceeds fibre strength . The two approaches are compared
with experiments on paper elsewhere in these proceedings [44] . If fibre breaks are
included in composites, gradual debonding takes place and the shear-lag theories
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seem to be wrong [45,21 .

Since the energy consumption in crack propagation is an averaging property, the
fracture energy per unit length against the RIF mass fraction 77 can be written as

W :"--:: Nrnwm + NfWRIF	(g)

where W, and WRIF are the fracture energy per fibre of the pure matrix and the
RIF embedded in the matrix ; and Nf and Nm the average numbers of the two
types of fibres per unit length of the crack path . At constant basis weight m of an
isotropic sheet we have Nf = r7m/2-Cf and N,, = (1 - q)m/21rC,, where C,.�, and
Cf are the coarsenessses of the matrix and RIFs, respectively . Crack deflections and
microcracking away from the crack (crack blunting) are ignored .

The model gives

T'RIF = Nfailwfail + Lpullwl .	10

where Nfail is the fraction of RIF that fail, w f the energy needed to break a fibre,
and wl is the energy needed to pull out a unit length of RIF and the average pull-out
length is

Nfaillf/4 _ (11)L~~ll

	

10g 1 -N( fail)

Thus we finally obtain

27TV/m = (1 - 77)Wave.m/Cm + 77(Nfailwfail + Lpullwl)/cf .

	

12

A few remarks are in order . The fracture energy 14IRIF has a non-trivial depen-
dence on the fraction of broken fibres, Nfail . The precise dependence of Nfail on
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fibre and bond properties is unknown . The pull-out energy per unit fibre length,
wj, arises from the opening of inter-fibre bonds and from the plastic elongation of
bonded fibre segments . The latter component, the energy of plastic yielding of the
fibres, is believed to be much larger than the pure bonding energy [4fi,47] . Also, the
matrix fracture energy, Wa,1, e ,m , may depend on the RIF addition through the stress
enhancement and confinement effects discussed in Chapter IIIB .

Given the uncertainty related to Nf,,ii we consider only the Nfail -4 0 . The
opposite case, Nfait -+ 1, is not an interesting case for a RIF . In the first case the
fracture toughness of paper becomes

2,7rW/m = (l - i)Wave,m/Cm + r7wilf/4Cf.

	

(13)

The energy consumed in opening the bonds, wl, should be linearly proportional to
RBA and should also increase with the drying shrinkage of paper. Well-bonded long
RIFs improve paper toughness . If the RIFs are ductile, have a high breaking strain,
their failure probability in the opening crack is low and also wl is high . Again the
ductility of the RIF and the RIF-to-matrix bonds improves paper toughness . The
increased ductility may be obtained by increasing the plastic strain component of
the fibres and bonds .

In contrast, increasing the strength of the RIFs through either the stiffness or
elastic breaking strain of the fibres is not beneficial even though it might reduce NfU,ic

to zero . At the same time the probability of premature matrix failure increases and
may dramatically decrease the energy consumed in the matrix failure, The
situation is of course different if almost all of the RIF across the crack path fail, but

such a furnish will hardly be used as a reinforcement pulp in the first place .
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V. CONCLUSIONS

We have analyzed the factors affecting the performance of reinforcement fibres in
paper. The criteria for a good RIF depend on the paper property that the end-user
is most interested in and, to some extent, on the RIF content that one is using.

The effect of RIFs on the mechanical properties of paper depends on their geo-
metric connectivity, mechanical compatibility with the matrix and ability to resist
crack propagation . To improve the tensile strength and toughness of paper, the rein-
forcement fibres should be chosen to match the stiffness of the mechanical fibres . In
this way the risk of premature matrix failure at low RIF contents is minimized. At
high RIF contents the risk of triggered matrix failure is lower and particularly the
tensile strength of paper can be improved by adding stiff and strong reinforcement
fibres . At all RIF contents the elastic modulus benefits most from stiff reinforcement
fibres .

Long, ductile and low-stiffness fibres with many ductile bonds should enhance
the fracture toughness of paper at all concentrations . If on the other hand high
strength and modulus are required, well bonded high stiffness fibers are the best .
Mixtures of more than one kind of aRIF pulp [48], 'hybrids' in composite language,
may also improve paper properties .

The geometric percolation of the RIF network may or may not be of importance .
That depends crucially on the bonding properties of the reinforcement fibres . The
mass fraction of RIF necessary for the 'percolation effects' to appear can be quite
high, 30 % or even more .

The effect of distributed RIF properties has been ignored above. One could
consider variable fibre length and strength, to name but two. In the first approxi-
mation, assuming that all the RIFs bond in a roughly similar manner, variations in
fibre length should not play any crucial role. On the other hand a wide distribution



of fibre strengths and moduli may reduce or even increase [8] the fracture toughness
of paper . However, since the weakest spot of a fibre may be shielded behind bonds
that have to opened first, it is also possible that the width of the fibre strength
distribution does not affect toughness.

Finally, the mechanical compatibility of the reinforcement pulp with a given
mechanical pulp can be evaluated from the mechanical properties of paper measured
at small RIF contents 77 . The asymptotic dependence of strength, elastic modulus
and fracture toughness on 71 --+ 0 gives information on both the fibre compatibility
and the RIF-to-matrix bonding.
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Your last two slides showed the effect of fibre strength and bond strength on fracture
energy . Did you really have strength or failure load or did you actually have failure
energy of these constituent fibres and bonds in these figures?

Petri Kdrenlampi

So . have we solved the problem between the failure energies and the fibre failure
probability, the answer is No - we know hardly anything about that .

Mikko Alava

Mikko JAlava, Helsinki University ofTechnology, Finland

Petri Kdrenlampi, Champion International Corp, USA

Mikko Alava

The figures were based on a simple argument which we had in our paper which basically
related to the fibre failure probability to the strength of bonds and the fibres. This exercise
on calculating fracture toughness is based on simple arguments and it has one largish hole
in it in that it uses the quantity which is the probability of a fibre to fail in crack
propagation which is rather hard to calculate from first principles . The figures shown
include an argument of how that probability should actually depend on the strengths of
the bonds and fibres, respectively .

That statement is accurate to my mind .

DrJohn Parker, Messmer Büchel, UK

Performance ofReinforcement Fibres in Paper

It has been assumed during this discussion that the structure ofpaper is random, whereas
the presence offlocs suggests that it is not . I have made observations which indicate that
if the stock is moving relative to the wire of a Fourdrinier the flocs tend to rotate. In
doing so they would be expected to gather up longer reinforcing fibres into their surfaces .
This would decrease the number of such fibres between the flocs, simultaneously

decreasing the strength ofthe web .
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