
'KCL Paper Science Centre, Box 70, 02151 Espoo, Finland
'

	

and
2Laboratory ofPhysics, Helsinki University ofTechnology, 02150 Espoo,

Finland

ABSTRACT

KCL-PAKKA: Simulation of the 3D structure of paper

Kaarlo Niskanen', Niko Nilsen', Erkki Helleng and Mikko Alava2

We present a novel approach to study the three-dimensional network structure
of paper . In the KCL-PAKKA simulation model, the porous sheet structure is
compiled from the different papermaking raw materials, fibres, fillers and fines .
The model geometry is simplified in order to enable effective numerical
experiments with arbitrary composition and layering. The KCL-PAKKA model
gives realistic predictions for many paper properties . In this paper we describe
the cross-over that occurs with increasing grammage from a thin strictly two-
dimensional network to a thick layered networks . According to our simulations
the cross-over occurs at low grammages, around 20 - 30 g/m2, for papers made
of stifffibres (e.g . mechanical pulp) and at higher grammages, 40 - 80 g/m2, for
flexible fibres (e .g . beaten kraft) . We discuss the statistical properties of the
three-dimensional but layered random fibre network, particularly the bonding
degree and pore geometry . In thick networks the pore geometry . i s isomorphic
and only the length scale ofthe pores depends on fibre properties.
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INTRODUCTION

The statistical geometry of two-dimensional random fibre networks is well-
known from the work of Corte and Kallmes (1,2) . Many features can be calcu-
lated exactly and others have been determined numerically (3) . The two-
dimensional approximation describes paper at low basis weights when all fibres
that cross also bond to one another.

At normal basis weights paper contains pores between fibres that are not in-
cluded in the analysis of Corte and Kallmes. Some attempts have been made to
extend the analytical theory to real paper. In the "multiplanar model" the sheet
is assumed to consist of a few layers each of which obeys the two-dimensional
statistical network geometry (4) . Recently this model has been developed fur-
ther to describe the effects of fibre flexibility on paper density (5-7). The mul-
tiplanar model is not rigorous in the same sense as the Corte-Kallmes theory .

The structure of real paper is complicated, not only because of the random, in-
tertwined and porous geometry, but also because of the many different constitu-
ents that paper is made of. Each furnish component contains fibres of different
sizes as well as fibre fragments and fines . In practice paper properties are opti-
mized by mixing together different furnishes. The structure of such a system
cannot be readily described by analytical models .

We describe here a numerical simulation model that has been developed to
study the structure of paper (8) . The model allows us to combine different fur-
nishes and fillers into a random fibre network with a porous planar structure
very similar to that of real paper. From the generated structure we can predict
all paper properties that are simply related to the network geometry . Perhaps the
most notable exception are the mechanical properties whose -dependence on the
network geometry is still uncertain .

In this paper we concentrate on the statistical properties of the three-
dimensional model network. The bonding degree and pore geometry are dis-
cussed in detail . The results are useful in understanding how the planar network
structure of real paper differs from a two-dimensional system. Examples of
practical applications ofthe KCL-PAKKA model are given in the Appendix .
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KCL-PAKKA MODEL

It would consume a lot of computing time to calculate the precise three-
dimensional geometry of the fibre network of paper. We have therefore simpli-
fied the problem as much as possible while keeping the essential physical fea-
tures of the fibres, such as their dimensions and stiffness (8) . Using the KCL-
PAKKA model it is possible to generate realistic paper sheets in less than 10
minutes on an ordinary work station . The simulation program requires 10 - 20
Mb woik space depending on various options .

Figure 1 : Illustration of the surface topography of a 45 g/M2 (newspaper) sheet gener-
ated by the KCL-PAKKA model. Sheet size is (0 .7cM)2 .
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In the simulations, straight fibres are deposited on a square lattice one by one,
as if they were sedimenting from a dilute suspension with no inter-fibre corre-
lations . The fibres are placed and oriented on the lattice at random (Fig . 1) . Pe-
riodic boundary conditions are applied to fibres that cross the boundaries . The
lattice is divided into square cells whose side length is 10 gm . This is the in-
plane resolution of the model. Usually the substrate lattice consists of 1000 x
1000 cells so that the size ofthe model paper sheet is I cm'. Sometimes smaller
systems with fewer cells are used . The length 1, and width wf of individual fi-
bres are integer multiples of the unit length 10 gm . An arbitrary average fibre
width can be generated with the alternate use of two unit widths .

We want the local coverage c (number of fibres covering the cell) always to be
an integer . Therefore the fibres are deformed locally by small lateral displace-
ments. The number of cells that a given fibre covers is fixed by the width and
length of the fibre . Hence the end-to-end distance of fibres oriented along the
lattice diagonal is ~

2 times the nominal fibre length . One can demonstrate (8)
that normal fibre lenkths 1f >> w, have no effect on the sheet structure and thus
the diagonal fibres induce only small errors to the geometric properties of the
sheet . In spite of the simplifications the grammage and thickness distributions
in the model sheets are quite realistic as Fig. I shows.

The non-trivial planar porous structure of real paper arises from the non-zero
bending stiffness ofthe fibres . In the KCL-PAKKA model a bending flexibility
Tf is defined through a constraint on the height of "steps" that the fibres can
form :

1 ; - z~ I / t, ::~ Tf	(1)

where tf is the fibre thickness and z, and z~- are the elevations of the top surface
of the fibre at any two nearest neighbor cells i andj that the fibre covers (Fig .
2) . High values of Tf give dense and well-bonded sheets, while low values of Tf
lead to bulky and porous sheets . The substrate lattice is flat . When new fibres
land on it they are deformed in the z-direction to lie as low as possible while
still obeying Eq (1) . The vertical coordinates zi are treated continuous variables.



1277

Figure 2: The bending mechanism of fibres in the model. The height of the "steps" (see
text) is Tf = 1/3 . Fibre width wf is equal to the lattice unit .

The flexibility T, can be related to the wet fibre flexibility WFF (9) through

1/4fT = (C wf WF~q

	

(2)

where the constant C = 5.4 x IV Nm depends in principle on the wet pressing
pressure . We have fixed the value of C somewhat arbitrarily so that the simu-
lated sheets roughly match handsheets in the physical properties . Experience
has shown that it is impractical to use measured WFF-values directly in the
simulations. Among other things, the WFF-values are usually not known for
different fibre fractions. However, measured WFF-values serve as an indicator
ofrelative differences between furnishes.

If one has only one type .of fibres in the sheet, one can argue that the sheet
structure should depend only on a dimensionless flexibility number (8)

F= T, w, / t,

	

(3)

This is demonstrated in Fig. 3. The argument is based on the fact that fibre
length has only a minor effect on the sheet structure . Then it is enough to con-
sider fibre crossings . If F is held constant, changes in fibre properties affect
only the lateral and vertical length scales of the network but they do not affect at
all the fibre-to-fibre connections . Of course, the thickness and pore heights of
the sheet are proportional to tf. It may be ofinterest that the measured values of
WFF (10) and known dimensions of paper-making fibres yield F = 0.5 - 3
while in actual simulations we have used somewhat higher values to reproduce
measured paper properties (cf. Appendix).



1278

Fibre flexibility F
Figure 3: Relative bonded area (solid squares) and density (p tf, open diamonds)
against fibre flexibility F. Fibre length If, width wf, thickness tf and WFF have been var-
ied by ±20%.

In addition to the flexibility, dimensions (length, width, thickness) and coarse-
ness, certain optical values, such as the refractive index are also given to the fi-
bres . Papen-naking pulps are modelled with three or four fibre fractions, rather
than with continuous distributions ofthe fibre dimensions. Typical fractions are
the long fibres, two middle fractions and the fines. Fines and fillers are de-
scribed according to the same principles as the fibres . Fines and fillers are in-
serted in groups that cover the unit. This is wrong locally but still correct in
terms of the average structure .

The KCL-PAKKA model ignores many effects present in the real paper-making
process. These include flocculation of fibres and hydrodynamic smoothing. The
underlying sheet structure does not change when new fibres are deposited. The
local interactions are replaced by an average force accounted for by Tf. At the
same time the simple bending rule does not describe accurately even the effects
of a hydrostatic pressure (I I) . Because the fibres deposit on a flat substrate lat-
tice, the bottom side of the sheet becomes very smooth, much like a yankee-
dried paper surface. The top side resembles free-dried paper (12,13) . It is also
possible to mimic the calendering of the model sheets and thus obtain realistic
surface roughnesses . Despite all its simplifications the model produces realistic
paper properties . Afew examples are given in the Appendix.
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EVOLUTIONOF PAPER STRUCTURE WITH INCREASING
GRAMMAGE

The network structure ofpaper changes with grammage . At low grammages the
network is two-dimensional with no inter-fibre pore space in the thickness di-
rection . At higher grammages inter-fibre pores appear in the z-direction and
lead to non-trivial sheet properties. In the following we discuss (14) the basic
network geometry using the KCL-PAKKA model with just one type of fibres .
The network properties are characterized by three numbers, the average cover-
age c, relative bonded area RBA and the average pore numberp. Density p is
briefly considered in the end of this section .

The fibre properties are characterized by the dimensionless flexibility F. The fi-
bre length 1, >> w,, t, does not affect the network properties (8) . Unless other-
wise indicated, in the following all fibres are confined to lie along the two lat-
tice axes (14) . The orthotropic orientation in place of isotropic orientation
causes certain irregularities in the results when Fis an integer.

Coverage c is the average number of fibres covering a cell . In reality the gram-
mage ofa single fibre is 5 - 10 g/M2 so that ordinary paper corresponds to c = 5
- 20. Coverage is a precise measure ofthe number offibre layers in a sheet, un-
like other measures based on the average thickness of a fibre layer. Pore number
p is the average number of pores per unit cell . The relative bonded area RBA
gives the connectivity of the network, the frequency of bonded fibre surface .
Only the in-plane fibre surfaces are considered here . Thus RBA is defined as the
average contact area of a fibre divided by the total area 21fwf . The porous struc-
ture and the free surfaces imply RBA < 1 .

Consider first the special case where the fibres are either infinitely flexible or
infinitely thin so that F = co . The network is then two-dimensional. The only
"pores" are vacancies, cells covered with no fibres. Poisson statistics implies
that the number ofvacancies v andRBA are given by

E= exp(-C)

	

(3)

and
RBA = I - [I - exp(-!2)] / c
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Figure 4. RBA against coverage c for F = 1 (crosses) and 2 (diamonds) (8). Solid line
gives the exact solution for F= oo, Eq . (4 .

The simulation model with both orthotropic xy-orientation and the isotropic
orientation agrees with Eq . (4) when F = oo . When the fibres have a finite
flexibility and non-zero thickness, pores occur between the fibres in the z-
direction when coverage increases. The RBA still increases with coverage as Eq.
(4) predicts, but only at low c (Fig . 4) . At higher coverages RBA has a weak
maximum, and then becomes constant*, RBA --> RBA,, . The maximum arises
because p increases with coverage (see below) and counteracts the decrease in v
. It is easy to see that the proper generalization ofEq. (4) is

RBA =1 - [I - exp(-L)] [,p + 1] / c

	

(5)

In real paper sheets the maximum may be absent because of the smoothing wet
pressing action, or it may be enhanced because hydrodynamic resistance to
sheet compaction increases with grammage .

At high coverages every new "layer" of fibres has the same structure as the pre-
ceding one. The pore number increases linearly with coverage (Fig. 5) :

P =P,. X (!2 - C,)

	

(6)

* The subscript "oc" is used for values in the high-coverage bulk region
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Figure 5: Pore number p against coverage r- for F= 0.5 (crosses), 1 - 1 (diamonds), 2.1(squares) and 4.1 (triangles) .

The coverage c,, measures the statistical cross-over from a two-dimensional
system to a three-dimensional bulk phase (see also Fig. 4) . At c > c, three-
dimensional pores develop in the network, as opposed to the two-dimensional
vacancies at low c.

When the fibre flexibility increases, there are fewer pores in the network and the
cross-over coverage co is larger. Orthotropic geometry with one type of fibres
causes the non-monotonic oscillations in Fig 6(a) . They would disappear if iso-
tropic orientation or distributed Fwere used . In that case c,, is roughly given by

e~ A-, I + 2F

	

(7)

Observe that no pores exist at c < I and hence necessarily co ~: I for all F.

From the comparison of KCL-PAKKA simulations with real paper properties
we can conclude that F ;:t; I

for stiff mechanical fibres and F= 3-4 for flexible
beaten kraft fibres. These values correspond to c, = 3 and 7-8, respectively, for
the cross-over coverage or 20-30 g/M2 and 40-80 g/M2

for paper grammage.
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In the three-dimensional bulk phase ( !C > c,, )p',,, = 1 - RBA,,, . The expression

p',,,, = I - RBA,,, =- [ I - exp(-2.F)] / 2F

	

(8)

similar to Eq . (4) at the two-dimensional limit, gives surprisingly good a match
to the simulated data (Fig. 6(b)). Equation (8) gives the maximum bonding de-
gree that is achievable for a given F.

Figure 6: The cross-over coverage co (a) and slope p',,, (b) against the dimensionless
fibre flexibility F. Eqs . (7) and (8) correspond to the solid lines in a and b, respectively .

Now consider the network density. Its evaluation is complicated by the rough
surfaces of the network. The effective density p can be defined as the volume
fraction ofthe sheet that is occupied by the fibres. Hence p :!~ 1 . The apparent
density that one measures in practice is a lower bound for p. The apparent
density can also be evaluated in the simulations if an assumption is made about
surface compression in the measurement . We have assumed that the compres-
sion is such that 10% ofthe top surface of the sheet makes contact with the flat
head of the thickness meter.

When coverage increases, the effective density p decreases monotonically as
more pores develop (Fig. 7) . There is no simple relation between RBA and p
when c varies. On the other hand, at any fixed coverage RBA and p are ap-
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proximately in a linear relationship when fibre properties (as given by F) vary.
The relationship also depends on the fibre orientation distribution. The linearity
holds particularly well if the orthotropic xy-orientation is used in the simula-
tions (8) but not quite as well with the more realistic isotropic orientation . The
latter case is plotted in Fig. 8 . Assuming that fibre grammage is 5 g/m~, the
three coverages plotted, c = 5, 10 and 20, correspond to paper grammages 25,
50 and 100 g/M2.

Figure 7 : Effective density p against coverage g for F = 1 (crosses) and 2 (diamonds) ;
same systems as in Fig 4 .

Figure 8: Effective density (closed symbols) and apparent density opens symbols)
against RBA for c = 5, 10 and 20 (diamonds, squares and triangles, respectively) . The
symbols are located roughly at F = 0 .5, 1, 2, 4 etc . Isotropic fibre orientation.
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The higher is the coverage, the lower is the effective density for a fixed RBA or
fixed fibre flexibility F The simulated apparent density behaves in the opposite
manner and is much less sensitive to coverage . Notice that when F increases,
the RBA is bounded from above by Eq (4). When Fdecreases towards zero, the
model becomes unrealistically sparce since tilting of the fibres is not allowed.
The simulation values in that end are also dependent on the fibre length through
w, /1, The results in Fig. 8 are calculated for 1, = 3mm and w,= 40 pm.

Figure 9: Illustration of the porous network geometry at a high coverageq = 83 . Fibres
are given in black and pores in white.

PORE SIZE DISTPJBUTIONS

Figure 9 illustrates the porous cross-section geometry generated in the KCL-
PAKKA model. In the following we show how the distribution of pore sizes
change as the fibre flexibility is changed. The pores in our model are defined as
vertical openings between fibres . The open space between the network and the
flat substrate lattice is not considered as pores. Cavities, i.e . cells of zero local
coverage are also excluded from the analysis.

We limit the analysis to pore heights h, ie . the vertical distances between fibres .
The height ofpores is evaluated separately for every cell so that the pore height
distribution G(h) goes through all the cells and all the pores above every cell .
This definition instead of using some sort of average height of a pore avoids all
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the ambiquities that would arise if one had to define what a pore really is . The
same pore height distribution can also be evaluated from cross sections of real
paper sheets. Figure 10 shows that the simulated pore height distribution G(h) is
exponential except for small deviations at low h (14) . The orthotropic xy-
orientation and fibres with constant F are used here but the exponential depend-
ence also holds with isotropic orientation. The unrealistically high bins of tf are
used here to average out unphysical fluctuations from G(h). Such fluctuations
are absent with distributed For isotropic fibre orientation.

Figure 10 : Pore height distribution G(h) for F= 0.2 and 1 .2 (diamonds and crosses, re-
spectively) at a high coverage -c = 83 . Pore heights h are rounded up to the nearest in-
teger multiple of tf. Otrhotropic xy-orientation distribution . Vertical scale is logarithmic.

Ifthe exponential pore height distribution is defined as

G(h) P::~ (11ho ) exp( -h / h)

	

(9)

then simulation results (14) with orthotropic fibre orientation suggest that at
high coverages, in the three-dimensional bulk phase

h~ _- t, / RBA,,,,

	

(10)
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Even though the result only applies to high coverages and one single fibre type,
it suggests that there maybe a simple relationship between the distribution of
pore heights and the RBA of real paper, too.

As already pointed out, the shape and size ofpores in paper cannot be defined
unambiquously. The pores are connected through a network of narrow "throats"
and measurements ofthe pore size distributions are related to the cross-sectional
areas of these throats . Therefore it would be difficult to define pores in the
simulations in such a way that their size distribution could be directly compared
with mesurements .

Elsewhere (14) we have briefly considered various definitions for the in-plane
area of pores . The relatively small size of the simulation system limits the sta-
tistics more than it does for the pore heights . However, it seems that also the
distribution of pore areas is roughly exponential and insensitive to the definition
of the pore area. Furthermore, at high coverages the average area ofpores <A>
is inversely proportional to RBA,

We conclude that the pore size distribution in paper seems to be isomorphic, in-
dependent of fibre properties . The distribution of the pore height and area are
roughly exponential and fibre properties affect only the length scales of the
pores (i .e. <h> and <A>) .

CONCLUSIONS

<,4> ;z~ tf 2
/ RBA,,

	

(12)

We have used the numerical KCL-PAKKA model to study the three-
dimensional structure ofpaper when coverage and fibre flexibility vary. The ef-
fects offibre flexibility are described by the dimensionless parameterF

At low grammages the network is two-dimensional . With increasing coverage,
above the critical coverage c. ~-_ 1 + 2F, a bulk phase develops . According to the
simulations the cross-over coverage corresponds to 20-30 g/M2 and 40-80 g/M2

in paper grammage for stiff mechanical fibres and flexible beaten kraft fibres,
respectively . Hence papers made ofmechanical furnish could usually be charac-
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terized as three-dimensional layered networks whereas the properties of papers
made of kraft pulp would still be intermediate between two-dimensional and
three dimensional networks .

The three-dimensional bulk phase is isomorphic in structure, qualitatively inde-
pendent of fibre properties . The pore sizes (height and in-plane area) are
roughly exponential with the decay rate inversely proportional to RBA which in
turn is a monotonically increasing function of F. The frequency and size of
pores decrease when Fincreases.
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APPENDIX: SAMPLE RESULTS FROM KCL-PAKKA SIMULATIONS
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KCL-PAKKA: Simulation of the 3D structure of paper

Jim Luce, Paper Performance, USA

Thank you Dr Niskanen.

	

I think the introduction of fibre flexibility is a major step in
making the properties of these virtual papers more closely resemble that of real papers .
My question is, do you believe it would be useful, or for that matter even possible, to
modify the base plane of your virtual sheet former to represent the topography of a
forming fabric?

Kaarlo Niskanen

Kaarlo Niskanen, KCL, Finland

Yes, it is definitely possible . Of course the structure we have is 1cm a side so you only
reproduce substrate that has a structure below that length scale but basically it is quite
possible . Perhaps I should also say that this structure we are generating obviously is two-
sided because on one side the fibres land on a flat surface and the other side is like a
mountain landscape . We are working on a system to provide a symmetrical structure
when you have calendering effects and so on . The weave marking is not the first thing we
look at .

John F Waterhouse, Senior Associate Scientist, ]PST, USA

I think it is a very nice model that you've created but in a 1985 review paper published in
a book by STFII I showed there that for four pulps, using the data of Renel, that there
was a very good correlation between RBA and density, and the densification was
produced by changing wet pressing and refining . I'm just looking at your Figure 8 where
you've got an envelope, but it would seem to me that in terms of `F' you perhaps could
account for beating and wet pressing - I'm not quite sure how but may be you've thought
about that - however there isn't an envelope for a specific pulp, but there is a very good
correlation between RBA and density. The other quick comment is this . It seems that in
your model, and again we have published data on this2, that there is a change in average
pore size at a fixed density when you look at refining and wet pressing . It seems that this
should be a part ofyour model.

1 Design Criteria for Paper Performance, Ed . P Kolseth, C Fellers, L Salmen, and M Rigdahl, STFI-
Meddelande A 969, August 1987
2 Bitler, T and Waterhouse, TAPPT J 76(9) : September 1993

Transcription of Discussion



Kaarlo Niskanen

On the latter point I completely agree with you that it should come out and we think we
know more or less how beating affects this sort of flexibility as it's modelled in the
simulation system that we've got . The other part about density and relative bonded area
I, for one, firmly believe that it's quite useful to use density as a measure of relative
bonded area, but to my disappointment there is no simple equation that you could use
there that would say how the relationship actually goes . You can do a linear regression
and that works fine but there is no beautiful mathematics behind it, or simple formulation.

DerekPage

I wonder if you could clarify for me what you've done because I'm still confused . Your
Figure 1 shows what appears to me to be a 2 dimensionally random structure, that is, all
orientations . Your Figure 2 doesn't show all orientations, it shows simply fibres at right
angles to one another. Which is your PAKKA model - a model where the fibres are at
right angles to one another or a model where they are 2 dimensionally randomly
orientated?

Kaarlo Niskanen

We can do both. It was just easier to draw that way.

Derek Page

But your calculations are done on what? Which model?

Kaarlo Niskanen

Yes, that's a bit confusing . Most ofthem are done on an orthotrophic, rectangular system
but some others like this RBA-density graph is done for isotropic distribution . I think it's
clear at each point in the text which one we've used. The RBA density figure, Figure 8,
that Prof Waterhouse referred to . That is done for isotropic, completely random
distribution.

Derek Page

Just one other point, RBA and density . Are you assuming that when two fibres cross one
another that they are in contact over that whole area?



Kaarlo Niskanen

Yes ofcourse . I'm assuming it, I'm not saying it happens in reality .

Derek Page

I would be very wary about using your values ofRBA and comparing them with RBAs
from any measurement that we normally use including taking cross-sections or more
specifically taking scattering coefficients because the crossing area isn't generally
completely bonded . It's a function of beating time, and it's a function of pressing
pressure . For very lightly bonded sheets you may only get about 10-20% of that crossing
area which is actually in bonded contact so I just wanted to warn people not to try, and
John Waterhouse particularly, not to use this estimate of RBA and compare it with a
measurement made by scattering coefficients .

Kaarlo Niskanen

If I may I'd like to say I completely agree and we just have a very specific definition for
the relative bonded area, one could put in other types ofgeometry for fibre cross-sections,
that's no problem.

Derek Page

Please don't redefine RBA, we know what we mean by RBA.

	

If you want to give it
another term do!

Kaarlo Niskane
n
Then it's a question of whether you want to look at the molecular level or optical level or
what . What is your RBA anyway?

Professor Jacques Silvy, Universidade da Beira Interior, Portugal

A very interesting contribution to show the effect of the flexibility of the fibres on what
we call the thesselation ofparticles in a structure . One point I think we must be aware of,
is your definition of a 3 dimensional model . How could you say it is a 3 dimensional
model if you restrict your analysis to only one direction? You take the isotropy as a
matter of fact in your model but we know that the anisotropy in the plane has a big
influence on the paper properties ; for instance how could you predict the permeability of



the sheet if you only look at the thickness ofthe pore in the z-direction?

Kaarlo Niskanen

We have a complete 3 dimensional structure. We know the entire structure and we can
put in any fibre orientation you wish . We can calculate any parameter you want us to
calculate but those things get so messy. There are some things that are beautiful and nice
and those are the ones that are presented here . On the question of permeability, even if
we knew the geometry you can't calculate the permeability directly from the geometry .

Jacques Silvy

Yes we do . If we have the viscosity ofthe fluid and the pressure exerted, you could do it
in any direction, but with a 3 dimensional model ; it means that you need to explore the
structure in every direction.

Kaarlo Niskanen

As I said we can explore the structure in any direction, but I only had halfan hour. I can
calculate whatever parameter you wish me to calculate. Ref K1 (published in J. Appl.
Phys 81 (1997( :9, 6425-6431) contains more information on the 3D structure . Even an
analytic approximation is given for permeability but its reliability is most questionable.

Jose Iribarne, PhD Student, State University ofNew York, USA

Do you see any change in the distribution of pores across the thickness of the sheet or
that will require a length distribution ofthe fibres?

Kaarlo Niskanen

There is, in this case, a rare distribution in the thickness direction because we are putting
fibres on a flat surface . Basically ifyou think of this as a growth problem, this cross-over
from non-porous to porous structure happens when the new fibres no longer feel the flat
substrate . So there's definite profile in the pore volume in the thickness direction, but we
haven't looked at that in detail.

Jose Iribarne

I'm glad we have a paper product that we can sell through the interneW



Kaarlo Niskanen

If anyone buys it that's another thing!!

Tetsu Uesaka, Director, Paprican, Canada

In my understanding you have not yet considered the essential effect of wet pressing .
Normally wet pressing introduces quite strong spatial correlation between height and
mass density and so on . By simply saying higher mass density area tends to be
compressed more, therefore the distribution of the pores and the correlation structure
between mass density and the pore structure are altered . Are you considering this?

Kaarlo Niskanen

We have the average wet pressing pressure through this formula which gives us the effect
of flexibility in the same way as it's done in the measurement of wet fibre flexibility
(Steadman method) . So that's taken in but the spatial correlations are not . We are
working on that .
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