
















The EuroFEX plant is today the only laboratory plant in which indus-
trial running conditions can be simulated if chemical additions and/or
multi-ply forming are involved, due to continuous fresh stock addition as
well as continuous recovery of material from excess white water. The dif-
ference from a pilot plant without these two design features was recently
demonstrated by Nalco Chemical Co [302]; see Figure 70. They made
similar test runs in the EuroFEX and the Beloit pilot plants. It is clear
from these tests that in the EuroFEX plant the white water chemistry
levels out between the different test points and that the levels recorded are
higher.

9 FORMING, STRUCTURE AND PROPERTIES

Initially the generally spread misunderstanding that formation improvements
also mean paper strength improvements should be commented upon. A cor-
rect statement is instead that under some circumstances, both strength and
formation will be changed in the same direction.

Figure 70 “Comparison of the SLM/FBRM mean chord length traces obtained for
XPM3 (Beloit) and EuroFEX pilot paper machines. The marks on the figure indicate

changes in retention chemistry or dose.” Figure 12 from [302].
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• The most obvious way of improving both formation and paper strength
is to reduce forming concentration, assuming that current drainage
limitations are not superseded.

• An often-used method to worsen formation in hand sheet forming is to
impose a delay time before drainage. Formation as well as strength will
then deteriorate.

On the contrary, there are several occasions where the opposite situation
will be true, i.e., formation improvements will not be accompanied by
strength improvements:

• Excessive addition of retention aid can improve formation, but paper
strength will be unchanged.

• Manipulation of the activity on a fourdrinier wire may improve formation,
but this will normally be associated with a reduction in paper strength.

• An industrial method to improve formation in twin-wire forming is to
introduce blade pressure pulses. However, in this case paper strength will
deteriorate [117].

A “general rule” was formulated by Fredlund [303] as a summary to a
range of EuroFEX pilot plant experiments:

Strength potential in forming lies in the quality of the headbox jet. Manipula-
tions at later stages can improve formation but not paper strength.

9.1 Single-layer forming

In 1992, Holik made an overview of the state-of-the-art technology within
forming at Sulzer Escher Wyss [304,305].

Ohlsson [306] studied twin-wire forming of mechanical pulp containing
printing papers on the EuroFEX machine. It was found that formation
improved with decreasing slice opening, and not until around 5 mm, forma-
tion started to deteriorate due to the high forming concentration. It should be
remembered that the small slice opening resulted in a high nozzle contrac-
tion, with its positive effects on paper formation. This was however not
appreciated at that time.

Albinsson, Swerin and Öberg [307] studied the effect of blade dewatering
in the EuroFEX machine on formation and filler retention. It was found that
with a suitable retention aid strategy (addition components, dosage time
strategy), increased mechanical blade action due to increased outer wire ten-
sion could be used to improve formation without reducing the retention level.

Swerin and Mähler [308] studied the effect of fibre suspension properties
on final sheet formation in twin wire roll-blade forming on the EuroFEX
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machine. When flocculants (cationic polyacrylamide and bentonite clay) were
added, higher shear (mix-to-wire speed difference) during dewatering was
needed to produce a less flocculated paper. At minimum speed difference,
formation number, filler retention and drainage (given as the amount drained
over the forming roll) all showed maximum values.

Nilsson [309] studied different aspects of twin-wire roll forming. He found
that a positive velocity difference between mix and wires would align fibres in
the negative MD (when viewed in a sample cross sectioned in MD), and vice
versa for a negative velocity difference. A tape splitting test on a paper sample
easily confirms this. A tape is attached in the MD on a paper surface. When it
is peeled off in the negative MD, few fibres will be pulled out, when the fibre
orientation is in the negative MD. With the opposite fibre orientation in the
sample, an increasing amount of fibres will be pulled out; see also [310].
Nilsson further studied the effect on paper formation of the mix to wire
velocity difference. He found that the traditional formation optimum at a
certain velocity difference between mix and wires moved towards increased
velocity differences for increased floc strength in the mix (Crowding factor,
chemical additives etc.).

Nordström and Norman [117] studied paper properties using a TMP fur-
nish in roll and roll-blade forming respectively, using different degrees of
headbox nozzle contraction. The effects on fibre orientation anisotropy were
discussed above. The effects on small-scale and large-scale formation are
shown in Figures 71 and 72.

At low and medium headbox nozzle contraction ratio (traditional for
hydraulic headboxes), small-scale as well as large-scale formation behaved in
the traditional way.

This means that optimum formation was obtained at a certain positive and
negative mix-to-wire speed difference respectively [1].

Large-scale formation optimum using a high nozzle contraction ratio was
obtained in a wide range around zero mix-to-wire speed difference (if the low
value at −60 m/min speed difference is disregarded), and the formation values
were the same as the optimum at low and medium contraction; see Figure 71.
The addition of blade pressure pulses (in combination with reduced roll
dewatering) improved large-scale formation in a wide speed difference range.

Small-scale formation optimum using a high nozzle contraction was
obtained at zero mix-to-wire speed difference, and the formation value was
significantly lower than that at low and medium contraction ratio; see Figure
72. This indicates that the fibre flocculation structure in the jet is improved at
high contraction, which is a result of floc stretching and breakage in the
elongational flow in the headbox nozzle (as also discussed in a previous sec-
tion). However, even a small increase of mix-to-wire speed difference during
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Figure 71 Large-scale formation as a function of mix-to-wire speed difference in roll
and roll-blade twin-wire forming on the FEX machine. “Square” – high nozzle
contraction, “filled circle” – medium contraction, “unfilled circle” – high

contraction, “+ marks” – high contraction and blade pulses after the roll [117].

Figure 72 Small-scale formation as a function of mix-to-wire speed difference
and headbox nozzle contraction in roll and roll-blade twin-wire forming, data as in

Figure 71 [117].

B. Norman and D. Söderberg

532 Session 3: Forming



dewatering generates a deteriorated small-scale formation. This is surprising,
since all previous investigations have shown a formation improvement with
some degree of shear during dewatering. The reason could be that the degree
of small-scale flocculation in the jet after strong elongation in the head-
box nozzle is so low that all shear during dewatering only can increase gram-
mage variations. The addition of blade pressure pulses after roll dewatering
slightly worsens small-scale formation in the whole speed difference range
investigated. Retention level and paper mechanical properties were either
maintained or impaired (especially Z-toughness) for roll-blade forming in
comparison with pure roll forming.

Nordström and Norman [311] further found that the separation distance
between the blades in roll-blade forming of TMP could be reduced from 116
mm to 46 mm without any negative effects on paper properties.

Nordström and Norman [312] studied the effect of jet quality on paper
properties in roll-blade forming of TMP. The high quality jet was produced
with high nozzle contraction, resulting in a paper tensile stiffness MD/CD
ratio of 4 at minimum mix-to-wire shear (thus generated by the orientation
anisotropy in the jet), and a more flocculated jet from a low contraction
nozzle, with a MD/CD ratio of ca 1.5. The detrimental effect on formation of
jet flocculation was reduced by introducing low level blade pulses after initial
roll forming, and also some increase in final paper tensile stiffness MD/CD
ratio was obtained. The lower Z-toughness for roll-blade dewatering com-
pared to pure roll dewatering was only to a minor degree influenced by jet
quality and blade force level.

Nordström and Norman [313] studied the influence of the proportion of
roll dewatering in roll-blade dewatering by changing the roll-covering angle
of the initial roll forming. It was found that the improvement in the large-
scale formation was best exploited with a sufficiently large proportion of roll
dewatering. The deterioration with lower degree of roll dewatering might be
caused by negative effects on the thin wet webs at the separation of the wires
from the roll surface as discussed above.

Odell [259,314] discussed Valmet roll-blade forming technology in relation
to different sheet structure properties, such as formation/retention, layered
orientation and material distribution in the Z-direction. In Figure 73 an
example is given of the influence of suction shoe vacuum in a roll-blade
former on filler distribution in the Z-direction.

Verkasalo, Odell and Korhonen [241] described the development of LWC
base paper from fourdrinier over hybrid formers to roll-blade twin-wire
formers.

Erkkilä, Pakarinen and Odell [43] quantified fibre orientation profiles
in the Z-direction using the tape-stripping method described above, with
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different forming principles and jet-to-wire speed ratios; see Figure 74. They
motivated the different profile shapes by different dewatering rates and differ-
ent speed differences between web and mix:

• the low degree of anisotropy towards the wire surfaces is due to the fast
drainage in those areas, which leaves little time for fibres to orient due to
shear;

• the lower degree of anisotropy at the centre with two-sided dewatering is
due to reduced shear velocities due to viscous damping;

Figure 73 Effect of suction shoe vacuum on controlling filler distribution [259].

Figure 74 Layered orientation anisotropy during “rush” (left) and drag (right)
forming conditions for three forming principles [43].
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• the asymmetry of fourdrinier sheets is due to the unsymmetrical shear
effects along the dewatering section.

The local anisotropy minimum in the centre of a gap dewatered sheet could
alternatively be an effect of space limitations for fibre rotation at this stage, as
well as a natural, geometric accumulation in the centre of fibre flocs.

Jansson [44] studied the effect of headbox nozzle contraction ratio on fibre
orientation anisotropy for roll forming at minimum shear conditions during
dewatering; see Figure 75. According to this figure, anisotropy is low at sheet
edges even when orientation around sheet centre is high. One reason for this
has later been shown by Asplund [120] to be the lower degree of fibre orienta-
tion anisotropy in the headbox nozzle boundary layers (see Figure 22).
Another reason could be the effects of local micro flow disturbances at
jet-to-wire contact.

Erkkilä, Pakarinen and Odell [315] made further studies of the layered
structure of twin-wire formed paper. It is initially proposed that the role of
turbulence is extremely important when the suspension enters the forming
section. Elimination of turbulence might produce frozen flow with the
absence of relative motion between fibres, leading to flocculation and poor
formation. In contrast, small-scale turbulence in the flow is supposed to
create constant deflocculating action in the stock.

These views on fibre suspension turbulence are debatable (see also in
section Headboxes). It is true that the traditional model for turbulence decay
in a fluid will tell that the large eddies are broken down into smaller units, and
this process gradually continues until the final viscous dissipation into heat in

Figure 75 Fibre orientation anisotropy with different headbox nozzle contraction
ratios for roll formed paper at zero mix-to-wire speed differences; squares – low

contraction, triangles – high contraction [44].
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the micro-scale. However, the situation in a fibre suspension is drastically
different. Bennington [60] claims that a large part of the dissipation takes
place directly between the fibres. Small-scale turbulence is also efficiently
damped by the presence of the fibres. A smaller part of the fluid energy will
then be transformed into the micro-scale range. Thus mainly more large-scale
turbulence will survive, and this large-scale turbulence, if present during the
dewatering phase, is highly detrimental to paper formation.

There is no known experimental evidence that turbulence present during
dewatering has a positive effect on paper formation. The basic idea should
instead be to affect the fibre suspension inside the head box, so that the fibre
flocs are as weak as possible and can be easily broken apart by the shear
allowable during dewatering.

Turbulence should be avoided at all stages of forming, since it is the main
source for reflocculation.

Using the tape stripping method, Erkkilä et al. analysed the different layers
for four different parameters; see Figures 76 and 77.

1. Anisotropy;
the definition of “anisotropy” in this work, Equation 11, differs from that
in Equation 2; see Figure 8.

“Anisotropy” = 1 − a/b ≈ 1 − CD/MD (11)

2. Standard deviation of anisotropy; calculated on 3.3 × 3.3 mm2

measurement areas.
3. Floc index.
4. Orientation angle.

It is clear from Figure 76 that “anisotropy” is considerably lower at
minimum mix-to-wire speed difference than with a negative speed difference.
The aligning effects from some shear considerably suppress local anisotropy
variations during dewatering

Fibre orientation misalignment traditionally changes from positive to
negative angle when going from negative to positive speed differential. The
misalignments shown in Figure 77 therefore would indicate that minimum
shear occurs slightly below jet/wire ratio1.04, rather than at 1.02.

From Figure 77 it is evident that flocculation at minimum mix-to-wire
shear during dewatering is substantially higher, especially at web centre. One
reason for the ever-present better formation close to the wires could be that
dewatering will initially move the free fibres to these positions. The more
flocculated state of mix would then be left to dewater in the later stages, at
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web centre. This could explain why shear during dewatering mainly has a
positive effect in the late dewatering phases – this is simply when the flocs are
to be dewatered.

The results reported by Erkkilä et al. also include rush conditions, but
space does not allow its presentation at this time.

The effect of differences in vacuum levels in forming roll surface and form-
ing shoes was also studied, but had only limited influence on sheet structure.

The mounting of vanes inside a headbox nozzle is well known to have a
decreasing effect on fibre orientation anisotropy in the final paper product.
As shown above in Figure 22, vane insertion reduces fibre orientation
anisotropy in the headbox jet.

Figure 76 Layered orientation structure for roll-blade forming at 1200 m/min, LWC
50 g/m2. “Anisotropy” (Left) and Standard deviation of “anisotropy” (Right). Jet/wire

ratio on the low side; 1.02 corresponds to minimum shear during dewatering [315].

Figure 77 Layered floc index (left) and misalignment angle (right), three different
thickness ranges from sheet bottom to top; different jet/wire ratios, data as in

Figure 76 [315].
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Erkkilä et al. [315] studied the effects on the paper of headbox vanes and
roll-bade forming; see Figure 78.

It is obvious that there is no influence of vane length itself (with the actual
dimensions), only of end shape. However, the turbulent eddies generated by
the blunt vane end probably lasted all the way to the dewatering stage. The
reducing effect of turbulence on anisotropy and the negative effect on floc
index are clearly demonstrated.

Figure 79 shows a fibre orientation vector map, where anisotropy magni-
tude is represented by individual line length and orientation by line angle. The
high degree of local variations is clearly demonstrated.

Lloyd and Chalmers [45] applied sheet splitting using the tape-method and
optical fibre orientation analysis to characterise the structure of anisotropic

Figure 78 The effect of different vanes on layered “anisotropy” (Left) and floc index
(Right). The 500 and 600 mm vanes end 220 and 120 mm respectively, before slice

opening [315].

Figure 79 Fibre orientation map for layer next to sheet top using blunt tip vanes;
data as in Figure 78 [315].
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laboratory sheets. It was also demonstrated that variations in the Z-direction
of fibre orientation misalignment and its variability correlated with the
occurrence of cockle on machine made paper.

Räisänen and Paananen discussed the influence of furnish properties on
linerboard quality using hybrid and roll-blade forming principles [178].

Mohlin [316] performed pulp evaluation using the EuroFEX system.
Comparison with standard pulp evaluation techniques demonstrated that
different ranking orders could be obtained in the two cases.

Mohlin [317] also studied the influence of fibre dimensions on formation
and strength properties using the pilot machine EuroFEX. 100% chemical
pulp and also LWC-type furnishes were tested. Small-scale formation was
improved by decreasing fibre coarseness and increasing fines content and
large-scale formation was also influenced by fibre flocculation. The ratio
between the two formation numbers was suggested to be a measure of floc
formation, and decreased with decreasing crowding factor. There was no
general correlation between formation and strength. About the same strength
was obtained on the fourdrinier and in the twin-wire roll-adjustable blade
former, in spite of their very different formation properties. Fibre flocculation
had a larger effect on burst strength than on tensile strength.

Odell and Pakarinen [318] made a recent overview, aiming at fibre orienta-
tion related defects on different scales, and the effects on curl, and local
dimensional instabilities.

An interesting application of layered orientation information as that
described above is to construct a 3-D orientation map of the paper cross-
section; see Figure 80. Local orientation and orientation variability are
interpreted as effective shear and turbulence present during dewatering.

However, it should be pointed out that some of the structure character-
istics in the final paper might originate from upstream conditions in the
headbox.

9.2 Multi-layer forming

Traditionally, multi-layer forming of tissue products has been applied
industrially already since the 1970s. Some recent headbox flow investigations
are included under Headboxes. However, probably due to the secrecy within
the tissue area, no results from recent tissue applications can be found in
literature.

Already during the 1970s, a three-layer headbox was installed on a new 10
m wide Bel Baie twin-wire linerboard machine; Page and Hergert [319]. 25%
mixed waste was placed in the centre layer and it was claimed that the reduc-
tion in burst value was only 6% in comparison to a 20% loss using single layer
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forming on a fourdrinier machine. Page and Hergert also discuss the advan-
tages for paper mechanical properties using different layering in alternative
cases.

During the 1990s several installations of 2-layer headboxes on linerboard
machines have been made. This makes it possible to manufacture white-top
liner with only one forming unit.

During the last decade much work has been performed to improve the
quality of 3-layered printing papers (see section Headboxes). One main prob-
lem in comparison with 2-layer linerboard forming is the low grammage of
the surface layers; brighter surface layers cannot optically cover a darker
centre layer. The centre layer brightness therefore should not deviate too
much from that of the surfaces.

Häggblom-Ahnger [320] made several pilot-plant trials to study three-layer
forming of printing papers. Häggblom-Ahnger and Eklund [321] studied the
effects of a CTMP middle layer in a 3-layer copy paper. Positive effects on
mechanical properties were found, but the surface layer cover was not even
enough.

In a study of the location of softwood fibres (30%) in a three-layer office
paper bending stiffness was found to increase with a central placement;

Figure 80 CD cross-section of a paper sample. Local MD orientation anisotropy
(Top) and variability in CD anisotropy (Bottom), [318].
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Häggblom-Ahnger [322]. At the same time surface smoothness and forma-
tion improved. For runnability purposes, the amount of softwood fibres
could be reduced with central placement.

Filler distribution in the Z-direction can be controlled using selective add-
ition in three-layer forming [323,314]. There is also a large control potential
through selective retention aid addition in the different layers.

An overview of layering possibilities was made by Lloyd [324].

9.3 Multi-ply forming

Current methods for single-ply forming and combinations into multi-ply
products are summarised in Wire section designs. There is no relevant litera-
ture available from the last decade, on the multi-ply aspects of board
properties.
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Bo Norman and Daniel Söderberg
Royal Institute of Technology

Bill Sampson Department of Paper Science, UMIST

In your review you mention that there are some sort of grey areas, different
conditions can give different influence on formation and strength, and I won-
dered with your high contraction nozzle where you observe better formation
at zero jet to wire speed difference, whether there was any influence on
strength in that region?

Bo Norman

Well our basic finding is that if you do these improvements in the head box
such that you have an improved jet coming out then you will get better
strength. If you introduce some of these shear influences in dewatering you
will lose strength. So when stock is coming onto the wire section it is too late
to make any strength improvements; these have to be upstream in the head
box. We think that is one conclusion.

Jean-Claude Roux EFPG

You have presented what you believe to be the best forming twin wire
machines with adjustable blades and with fixed blades. What are your feel-
ings; can you extend this philosophy to hybrid forming machines?

Bo Norman

I think that the hybrid former is a retro-fit for older machines. I do not think
that you would fit this technology to new machines. For an optimum machine
you should not combine Fourdrinier dewatering forming and twin wire
dewatering, that will not be the best option.
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Jean-Claude Roux

Why do we do it like that?

Bo Norman

We want to dewater paper under minimum shear. If you start dewatering on a
Fourdrinier wire and you add a top wire the suspension will enter into a
pressure zone that will decelerate the suspension which will inevitably cause
shear. This should be avoided in the final, perfect paper machine but we have
a long way to go so with today’s machines, of course for rebuilds on a
Fourdrinier machine you will often have a positive formation effect when
introducing these top wires.

Jean-Claude Roux

You mean we lose orientation profile at the beginning of the hybrid former,
and it is not possible to achieve it later in the process?

Bo Norman

Yes, the best alternative is however to add stationary and adjustable blades in
the top wire unit, to be able to control and minimize shear effects.
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