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ABSTRACT

The literature concerning the structure of two- and three-
dimensional fibre networks is reviewed. Emphasis is placed on the
literature concerning such networks in papermaking processes,
though examples are drawn from other systems. The propensity
of a suspension to flocculate is considered from a theoretical
viewpoint. The experimental techniques and structural descrip-
tors applied in the characterisation of fibre networks are dis-
cussed. Theoretical studies of random networks are presented
along with their use as reference structures and comparison is
made between the main techniques used in the structural charac-
terisation of essentially two-dimensional networks such as paper.
The relationships between the distributions of mass and voids are
examined and the dependence of sheet nonuniformity on that of
the suspension from which it is formed is reviewed.

12th Fundamental Research Symposium, Oxford, September 2001 1205

Preferred citation: W.W.  Sampson. The Structural Characterisation of Fibre Networks in Papermaking 
Processes – A Review. In The science of papermaking, Trans. of the XIIth Fund. Res. Symp. Oxford, 
2001, (C.F.  Baker, ed.), pp 1205–1288, FRC, Manchester, 2018. DOI: 10.15376/frc.2001.2.1205.



OUTLINE

INTRODUCTION
FLOCCULATION PROPENSITY
MEASUREMENTS OF SUSPENSION STRUCTURE

Characterising statistics
MEASUREMENTS OF SHEET STRUCTURE

Mass distribution
Characterising statistics

Void distribution in sheets
Thickness and density variations

MODELLING 3D NETWORKS
Inter-fibre contacts
Porosity distribution

MODELLING PLANAR NETWORKS
Random networks

Mass distribution
Comparative quantifiers of mass distribution
Number of crossings per fibre
Relative bonded area
Free-fibre lengths
Void distribution

Nonrandom networks
Fibre orientation
Flocculation
Void distribution

FLOCCULATION AND SHEET FORMING DYNAMICS
CONCLUSIONS

Flocculation in suspensions
Statistical characterisation
Statistical geometry of random networks
Departures from randomness
Forming dynamics
Important open problems

1206 Session 8: Paper as a Network

W.W. Sampson



INTRODUCTION

The process of papermaking is one of handling fibre networks and modifying
their properties. These networks may be at low mass concentrations for cer-
tain operations such as screening and cleaning, and may be thickened to
higher concentrations in, for example deinking processes. Ultimately, on
delivery from the headbox to the papermachine a well mixed, low consistency,
three dimensional suspension is thickened to form an essentially planar struc-
ture. The structure of these suspensions, that of the formed sheet, and the
relationships between them is the subject of this review. Although chemical
and mineral additives are present in most papermaking furnishes, we shall
consider primarily the structure of fibre networks and not the influence of
system chemistry on, for example, the agglomeration of fillers, which was
recently reviewed in these symposia [1].

Naturally, in order to discuss the structure of fibre networks, we must
consider the techniques used to quantify these structures. This document
therefore discusses the techniques used to characterise fibre networks in sus-
pension and in the sheet. Given these techniques, we examine the properties
of idealised structures for fibre networks, namely 3D and 2D random fibre
networks; the importance of such structures being that they allow the meas-
urements made on real structures to be compared with a reference. We shall
consider also the relationships between the structural characteristics of a
planar network and those of the suspension from which it is formed. Certain
structural characteristics of fibre networks are deterministically intractable
and experimentally hard to measure; some workers have used simulation
studies and these are discussed where appropriate.

FLOCCULATION PROPENSITY

On preliminary inspection, it is immediately apparent that the structure of a
suspension of fibres at any consistency used in a typical papermaking process
is nonuniform. The nonuniformity of the suspension arises in part because of
the discontinuity between the solid fibres and the liquid suspending medium,
which is typically water. Of more interest is the spatial nonuniformity of the
network; this being primarily a consequence of fibre interactions whilst in
motion resulting in agglomeration or flocculation. Kerekes et al. [2] note that
the term flocculation describes both the state of a suspension and the process
by which it arrives at that state and define a floc as a region of higher density
than the average of the network.

We expect flocculation to be a dynamic process, with some fibres or groups
of fibres leaving a given floc as others are incorporated; the relative rates of
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these processes determining whether a system tends to a more flocculated or
more disperse state. The propensity of a floc to disperse under some force is
dependent on its structure, through the number of inter-fibre contacts in a
floc, and on the nature of the cohesive forces occurring at these points of
contact. Kerekes et al. [2] identify four classes of cohesive force which may
occur at fibre-fibre contacts.

Colloidal Electrostatic and electrokinetic forces acting between small par-
ticles. The magnitude of such forces is dependent on the quality of contact,
through surface roughness, and the presence of charge altering chemicals,
e.g. retention aids.

Mechanical surface linkage When a force is applied to a given fibre in a
network, motion relative to other fibres is opposed by a reactive force at
points of contact due to mechanical entanglement or ‘hooking’. Such
hooking forces may occur for entanglement of fibres due to contortion, e.g.
curl or kinking, or of surface fibrils.

Elastic Fibre Bending Fibres are restrained from straightening by contact with
other fibres in the network resulting in normal forces due to friction at fibre
contact points. Restraint is due to internal fibre stresses and requires at
least three contacts per fibre.

Surface Tension By definition, such forces require undissolved gas to be
present at points of fibre contact.

Flocculation is typically the predominant cause of nonuniformity in paper-
making suspensions and the formed sheet. Nevertheless, two further effects
are often given greater precedence in the specifications of paper products,
these being in-plane anisotropy1 and sheet two-sidedness. The fibre orienta-
tion distribution results from oriented flows and jet-to-wire speed difference
in the forming section and is discussed in detail by Niskanen [4,5] who notes
also that there may be a secondary orientation effect caused by mechanical
deformation of the wet web under strain. Two-sidedness of the sheet is much
less of an issue for twin-wire formers than for Fourdriniers; the phenomenon
is usually associated with a z-directional distribution of fines or fillers [6] and
as such we will not examine it further.

For fibres in suspension to flocculate they must, of course, interact. A
critical concentration was defined by Mason [7] as that where the expected

1In-plane anisotropy is usually specified in terms of, e.g. MD:CD tensile index ratio. Such proper-
ties are affected by the in-plane fibre orientation distribution and the differing degrees of shrink-
age in the MD and CD due to restraint in the dryer section. See e.g. [3].
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number of fibres in a sphere of diameter one mean fibre length is one. It
follows directly from the definition of consistency that this concentration is
given by

C crit
v =

3

2A2
(1)

C crit
m =

6

π

δ

λ̄2
(2)

where C crit
v  is the dimensionless critical volumetric consistency; C crit

m  is the
critical mass consistency (kg m−3); A is the fibre aspect ratio given by the ratio
of length to diameter; λ̄ is the mean fibre length and δ is the mean fibre
coarseness (kg m−1). Kerekes et al. [2] note that for flexible fibres the effective
mean fibre length is reduced and Equations (1) and (2) will therefore under-
estimate the critical consistency.

The concept of a critical consistency provides the basis for the crowding
factor or crowding number introduced by Kerekes et al. in [2] and sub-
sequently developed by Kerekes and Schell [8, 9]. The crowding number, ncrowd

is defined as the expected number of fibres in a sphere of diameter one mean
fibre length and is given by

ncrowd =
2

3
A2 Cv (3)

=
π

6

λ̄2

δ
Cm (4)

≈
λ̄2

2δ
Cm (5)

where Cv is the dimensionless volumetric fibre consistency and Cm is the mass
consistency (kg m−3). We note that when Cv = C crit

v  and when Cm = C crit 
m ,

ncrowd = 1. Photographs taken within a fibre suspension containing a few per-
cent dyed fibres are shown in Figure 1; simulated three dimensional structures
and their associated projections are illustrated in Figure 2.

Recently, Kropholler and Sampson [10] considered the influence of a
fibre length distribution on the crowding number. For a lognormal distri-
bution of fibre lengths, which is typical of many papermaking systems
[11,12,13], Kropholler and Sampson showed that the mean crowding
number n*crowd was greater than that given by Equations (3) and (4) by a
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Figure 1 Photographs taken from within dilute fibre suspensions containing a few
percent dyed fibres. Left: approx 8 mm × 8 mm; right: approx 4 mm × 4 mm. The pulp
was a bleached kraft pine with a mean fibre length of around 2.5 mm at a mean

consistency of around 0.1 %.

Figure 2 Simulated fibre suspensions. Lognormal distribution of fibre lengths
with mean fibre length 1 mm and coefficient of variation 50 %; fibre coarseness
3 × 10−4 g mm−1; volume represented is a cube of side 1 cm. Left: Cm = 0.017 %; right

Cm = 0.1 %. Projections onto a plane are shown beneath each suspension.
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factor depending only on the coefficient of variation of fibre length CV (λ)
such that

n*crowd = ncrowd (1 + CV 2(λ))4. (6)

The dependence of the mean crowding number on the coefficient of
variation of fibre length is very strong; a coefficient of variation of 50 %
increasing the mean crowding number by around 2.4 times when compared to
Equations (3) and (4).

Soszynski [14] investigated the relationship between the mass and volume
consistencies of wood pulp suspensions. Denoting by wk the Water Retention
Ratio for fibres with walls at saturation point and lumens filled with water, the
volumetric consistency is given by

Cv =
ρw + ρfibwk

ρw + ρfib� 1

Cm

− 1�
, (7)

where ρw and ρfib are the densities of water and dry fibre wall material respect-
ively (kg m−3). For Cm less than about 5 % and assuming ρfib = 3ρw/2 as is
typical, we have the approximate relationship

Cv ≈ �2

3
+ wk� Cm (8)

Sozynski reports values of Cv between 1.5 and 2.7 times those of Cm; absolute
values depending on pulp type and drying history. Note also that the swelling
of fibres in water reduces their aspect ratio A; the length of a dry fibre being
similar to that of a wet fibre whereas swelling increases fibre width.

We shall see that correlations exist between the indices used to quantify
flocculation in a given suspension and those used to quantify flocculation in a
near-planar network formed from that suspension by a filtration type process.
Before considering such relationships however, preliminary discussion will be
given to the techniques used by researchers to quantify nonuniformity in fibre
suspensions and in planar fibre networks.

MEASUREMENTS OF SUSPENSION STRUCTURE

When observing a fibre suspension, either in a static or dynamic state, the
local consistency of the suspension is typically measured indirectly via an
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optical technique using reflected or transmitted light. Measurements are usu-
ally made of a flowing suspension in a Plexiglas tube or channel as part of a
flow loop. For 1D scans, as used for example by Wågberg [16] and Kaji and
Monma [17], the light source is typically a monochromatic laser and the
detector a photodiode.

Norman et al. [18] note that for low fibre concentrations illuminated by
monochromatic light, the Beer-Lambert law for light transmission, given
by Equation (9), applies and the transmittance decreases with increasing
consistency and path length.

Ĩ (z) = Ĩ0 e−κ C̃m L (9)

where Ĩ(z) is the local intensity of transmitted light through the suspension; Ĩ0

is the local intensity of transmitted light with no fibres; κ is an absorption
coefficient (m2 kg−1); C̃m is the local mass consistency of the suspension
(kg m−3) and L is the path length of light through the sample (m).

In the same article, Norman et al. discuss the use of a fibre optic reflectance
probe which is placed in a flowing suspension, full details of the technique are
given in [24]. At consistencies above around 1 %, both transmission and
reflectance techniques are subject to error due to secondary scattering effects.
The reflectance technique has the disadvantage that flow is disrupted to some
extent by the presence of the probe in the suspension, whereas the trans-
mission technique can only yield information on the total mass concentration
between the light source and the detector.

With the development of reliable CCD technologies, transmitted light
measurements are increasingly carried out for 2D projections of fibre suspen-
sions and image analysis. Kaji and Monma [17] used two lamps to illuminate
the suspension, and compensated for nonuniform illumination by performing
analysis on only the central region of the image where the light source was
most uniform. The same approach was used by Beghello et al. [19] though the
suspension was illuminated using either an electronic flash or a stroboscope
depending on the flow velocity. More recently, Karema et al. [20,21] used a
DC regulated plane light source and compensated for nonuniform illumin-
ation by using the Beer-Lambert law to back-calculate the local intensity of
incident light from the average of typically 200 images.

Characterising statistics

One of the simplest measures of flocculation calculated from the data
obtained from experiments such as those discussed above is the coefficient of
variation of local consistency, CV (Cm) which is given by
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CVx(Cm) =
σx(C̃m)

Cm

  (10)

where σx(C̃m) is the standard deviation of local mass consistency at zone size x
and Cm is the mean mass consistency. The standard deviation of local consist-
ency will be dependent to some extent on the resolution of the sensors, and
accordingly these should be quoted in the reporting of results. Wahren [15]
classified this coefficient of variation as the intensity of flocculation by ana-
logy to relative intensity of turbulence. The statistic was calculated by Kaji
and Monma [17] for 1D data, but may be applied also to 2D data. For their
2D data, Kaji and Monma [17] calculated instead the fractal dimension of
flocs in their images. This statistic was determined by thresholding images at
the average grey level and creating a binary image of the network and reject-
ing small scale information. Fractal objects exhibit a scale invariance, such
that

A
1
2
floc ∝ P

1
Dfrac
floc (11)

where Afloc is floc area, Pfloc is floc perimeter and Dfrac is the fractal dimension.
Thus, for a system exhibiting the scale invariance of fractals, a plot of
log (Afloc) against log(Pfloc) is linear with slope 2/Dfrac. Kaji and Monma [17]
observed this linearity for their fibre suspensions and proposed that the frac-
tal dimension was valid for flocs of area between 1 mm2 to 300 mm2; it was
noted also that the shape index given by Equation (12) was inappropriate to
characterise flocculated fibre networks as its value increased with increasing
floc area.

Shape Index =
P2

floc

4πAfloc

(12)

Deng and Dodson [12] point out that the proportionality given in Equa-
tion (11) is expected for a 2D projection of a spherical floc; the fractal dimen-
sion having unit value. However, the shape index given by Equation (12) for
such flocs also has unit value and is independent of floc area; note also that
Kaji and Monma [17] observed values of Dfrac of around 1.3.

The use of the Power Spectrum to characterise the state of flocculation in
fibre networks again follows from its application in turbulence research. The
technique was introduced by Norman and Wahren [22] for quantification
of flocculation and turbulence in suspension and the distribution of mass
density in sheets; we shall return to the application of the power spectrum to
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formed sheets in the sequel. The technique uses Fourier analysis of the auto-
covariance of normally distributed data to partition the total variance within
the data into components attributable to different scales of variability [12,22,
23]. The full mathematical treatment applied by Norman and Wahren is given
in [22]. Much of their early work used analogue signals, though digital pro-
cessing is now typical; accordingly the general treatment of Dodson [12] is
given here.

The autocorrelation of a stationary stochastic process, c(t) is defined as
the expected value of the product of the variable taken over all points
separated by a distance, τ and is given by

R (τ) = E{c(t)c(t + τ)}, (13)

and the autocovariance of c(t) is given by

C(τ) = R(τ) − c(t)
2
, (14)

where c(t) is the mean value of the stochastic variable and C(0) is the
variance of c(t). The Fourier transform of the autocovariance is

P(υ) = 2�∞

0
C(τ) cos(2πυτ).dτ (15)

and υ is the ‘spatial frequency’.

Equation (15) gives the frequency power spectrum used by Norman and
Wahren [22]; the stochastic variable of interest in their flocculation studies
being the deviation of the local consistency from the mean normalised by the
mean. Denoting ‘spatial wavelength’, l, such that υl = v̄, the wavelength power
spectrum is given by,

P(l) =
v̄

l2
P �v̄l� . (16)

In this form, the power spectrum is independent of the mean flow velocity v̄
and the wavelength l corresponds to twice the geometrical size of flocs con-
tributing to the variance [22, 24].

Dodson points out [12] that, as with the other techniques discussed, the
resolution of the detector limits the amount of information obtained at the
highest frequency. The variance contribution within a given wavelength band
is determined by integration of the power spectrum between the lower and

1214 Session 8: Paper as a Network

W.W. Sampson



upper bounds of a given band. Norman and Wahren [22] use the power
spectrum to define also the characteristic lengths of variations such that the
micro-scale is given by,

l 2
micro = 8π2

�∞

0
P(υ).dυ

�∞

0
υ2P(υ).dυ

(17)

and lmicro provides a measure of the average size of variations. The macro-scale
provides a measure of the size of the largest variations and is given by,

lmacro =
π

2

P(0)

�∞

0
P(υ) .dυ

(18)

The power spectrum has been used extensively in the studies of Wågberg [25],
who investigated principally chemically induced flocculation, and those of
Beghello et al. [19,26,27] who defined a characteristic wavelength, lchar in the
2 mm to 32 mm range such that

� lchar

2 mm
P(l).dl = �32mm

lchar
P(l) .dl (19)

and the characteristic floc size, FSchar = lchar/2. Wågberg [25,28] used wave-
length power spectra for furnishes with and without flocculating polymers to
characterise the degree of polymer-induced fibre flocculation by a floccula-
tion index such that

F =
√V 2

a − V 2
b

Vb

(20)

where Va and Vb are the coefficients of variation of their 1D data, for fur-
nishes with and without polymer respectively.

MEASUREMENTS OF SHEET STRUCTURE

The measurements of network structure in suspension discussed above
involved essentially quantification of the distribution of local consistency in
the network. As the structure of fibre networks in suspension is unbonded
and fibres are saturated with water, the relationships between consistency and
porosity distribution are uncomplicated. The distributions of mass, voids and
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density in the sheets formed from the filtration of suspensions have more
complex inter-relationships; accordingly, here each is dealt with in turn.

Mass distribution

For sheets formed from undyed fibres at grammages of less than around
120 g m−2, the degree of nonuniformity is immediately apparent on inspection
of the sheet viewed under transmitted light. It is well established however that
regions with a given local grammage may have different opacities; the differ-
ence arising from local differences in the degree of bonding, furnish, etc. and
hence local light scattering coefficients. The relationship between local light
transmittance and local grammage was discussed by Kommpa and co-
workers [29,30]; their equipment allowed simultaneous measurement of light
transmission and β-ray absorption for 1 mm diameter circular zones. For
unbeaten, lightly pressed and uncalendered sheets, the relationship between
local grammage and local light transmission was approximately linear and
hence agreement between the coefficients of variation was reasonable; how-
ever, the influence of beating, and more severe wet pressing and calendering
operations is to reduce the scattering in the sheet and hence reduce also the
coefficient of variation of local light transmission. Similar effects are
reported by Bernié and Douglas [31], who classify highly scattering papers as
“light transmission friendly”. It is clear therefore that the use of light trans-
mission techniques to infer mass distribution data, whilst suitable for fibres in
suspension and lightly bonded networks, should be used with caution for
most grades of paper. Typically, the distribution of mass in the plane of the
sheet is of interest, since it is a direct consequence of the forming process;
the distribution of optical density being determined by factors other than the
process by which a network is formed.

The most direct measure of mass distribution in the plane of the sheet is
the accurate weighing of small samples of precise and known area. Clearly
such an activity is neither experimentally attractive, nor accurate at typical
scales of interest. Consequently, several indirect radiographic techniques have
been developed to measure local mass; the most widely used being contact
β-radiography. Accordingly, here we consider the principles behind radio-
graphic techniques and provide a more detailed discussion of the use of
β-radiography.

Perhaps the earliest reference to the application of radiographic techniques
to paper is given by Brazington and Radvan [32]. Samples of paper were held
between an α-source, Polonium 210, and a photographic film. Through pre-
liminary experiments exposing aluminium film in place of a paper sample,
Brazington and Radvan determined that α-particles were prevented from
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reaching the photographic film by approximately 37.7 g m−2 of aluminium
film, and that this corresponded to approximately 24 g m−2 of cellulose; the
two materials having differing rates of attenuation for α-radiation. By
incorporating layers of different grammage of aluminium film between the
source and the paper sheet, radiographs were obtained where exposed areas
of the film represented areas of the sheet with grammage lower than a given
value; the upper threshold for this value being 24 g m−2.

The images presented by Brazington and Radvan [32] show clearly the
grammage distribution which results from watermarking; wiremarks are also
present, though it is not stated whether these arise from the forming fabric or
the dandy roll. As a consequence of α-particles being essentially mono-
energetic, the images are effectively binary. The authors note that there was
some nonuniformity in the aluminium film, and in the distribution of radio-
activity in the source; it is not possible therefore to identify any stochastic
variability in the images obtained.

The technique of Brazington and Radvan [32] was used in a subsequent
study by Parker and Attwood [33] who found that in a 50 g m−2 newsprint
sample, areas “the size of half-tone dots” were present with grammage less
than 17 g m−2. The study, along with a subsequent article by the same
authors [34] concerns primarily the measurement of periodic variations in
sheet grammage arising from the structure of the forming fabric; the import-
ance of the work here is the use of contact β-radiography to investigate the
grammage distribution in the plane of the sheet. Details of the experimental
procedure used are sparse, but the fundamentals of the technique are those
used by most researchers investigating paper structure today. The influence of
several experimental variables has been discussed by Cresson et al. [35] and
reasonably up-to-date methods of data acquisition are described by Ng [36].
Here a typical schema for the preparation and analysis of a β-radiograph
from a paper sample is given.

A paper sample, of mean basis weight less than approximately 150 g m−2 [37],
is placed on a 14C labelled Polymethyl Methacrylate sheet; at UMIST we
use a 10 cm × 10 cm × 1 mm sheet of specific activity, 1.48 mCi g−1 and total
activity 17.6 mCi. The paper sample covers a rectangle of approximately
8.5 cm × 10 cm and the remainder of the β-source is covered with a mylar
step wedge for grammage calibration; aluminium film has been used success-
fully by some workers [33,34]. The paper and mylar are covered with an X-ray
photographic film and the layers are clamped between foam backed hard
plates to ensure close contact. After a given time, previously determined to
give good exposure, the sample is unclamped and the film developed and
fixed; the resulting image on the X-ray film is a negative of the mass distribu-
tion in the sheet. The optical densities of the exposed film in the region of the

12th Fundamental Research Symposium, Oxford, September 2001 1217

The Structural Characterisation of Fibre Networks in Papermaking Processes



calibration wedge are used to convert the optical densities in the region of the
sheet into a mass distribution map. This was originally carried out using a
densitometer [33,34,38,39]; subsequently digital cameras and image-analysis
procedures have been applied [36] and it is now standard practice to use a
high-resolution computer scanner with an overhead transparency unit; the
use of such a system for obtaining light transmission images is discussed by
Enomae and Kuga [40]. The attenuation of β-rays by the sheet follows the
Beer-Lambert law given in Equation (9) for the attenuation of light, such that

Ĩ(β̃) = I0 e −κ′ β̃

where Ĩ (β̃) is the local intensity of attenuated β-rays; I0 is the incident β-ray
intensity, which may be assumed uniform; κ′ is the mass absorption
coefficient (m2 g−1) and β̃ is the local grammage (g m−2).

Cresson et al. [35] investigated the influence of experimental variables such
as film type, exposure time, developing time and temperature, etc. as well as
image capture variables such as lens aperture and light intensity on the range
and resolution of grammage measurements. Their results show the absorp-
tion coefficient, κ′  to be very similar for mylar and paper and around
0.03 m2 g−1 for their most sensitive film, which was comparable to that
obtained by other workers. For a given film type, Cresson et al. recommend
that, in particular, the temperature and concentration of the developing fluid,
and the developing time are held constant for a given study. A correctly
exposed film has a characteristic S-shaped curve when the grey-level of the
calibration wedges is plotted against their grammage; the basis weight range
of the sheet should fall predominantly in the steepest region of the curve.

Recently, a β-radiographic system has been described by Keller and
Pawlak [41] where the X-ray film is replaced by a storage phosphor system,
greatly simplifying experimental procedures. The system is compared with
standard β-radiography in [42].

The technique of β-transmission is the direct analysis of the attenuation of
β-rays by paper via a scintillation counter. Instruments designed to measure
local mass using β-transmission are described by Herdman and Corte [43],
Komppa and Ebeling [29] and Waterhouse [44]; the technique has been
applied in commercial formation sensors such as the Ambertec, see e.g. [45];
measurements are typically made on 1 mm diameter circular zones.

β-radiography is a time-consuming process and the typically used 14C
source is suitable only for sheets of mean grammage less than around
150 g m−2 [37]. Electrography has been used by Tomimasu et al. [46] and is
suitable for sheets of mean grammage up to 400 g m−2 and provides higher
resolution images. Another technique used for higher basis weight sheets is
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soft X-radiography [37,47,48]. The techniques are compared for imaging
newsprint by Tomimasu et al. [37] who found that β-radiography and elec-
trography gave similar performance, the primary advantage of electrography
being the speed with which an image may be acquired and a slightly higher
spatial resolution. For good basis weight calibration, low energy soft X-rays
should be used, and a shading correction applied to the image to overcome
the ‘heel effect’ described by Farrington [48]; this being a geometrical effect
caused by the angle of the target and imaging area. However, scattering
within the sheet is minimal where soft X-rays are used, and consequently the
spatial resolution is improved.

Characterising statistics

As with the quantification of nonuniformity in fibre suspensions, one of the
most widely used descriptors is the coefficient of variation of local grammage
at a given inspection zone size which is given by

CVx(β̃) =
σx(β̃)

β̄
, (21)

where σx(β̃) is the standard deviation of local grammage at zone size x and β̄
is the mean sheet grammage. Of interest also is how the variance, standard
deviation and hence coefficient of variation of local grammage are affected
by the size of the zones we chose to inspect. Rather than acquiring images at
different resolutions, averaging is typically carried out for n × n pixels and
variance statistics calculated.

An alternative formation index, denoted the specific formation by
Niskanen et al. [5] and the normalised standard deviation by Kajanto et
al. [23], is given by

fn =
σx(β̃)

√ β̄
, (22)

= √ β̄ CVx(β̃). (23)

The index has dimensions of g
1
2 m and its definition probably arises from the

property of a point Poisson process that σ2
x(β̃) = (β̄) and therefore for a

random process, fn = 1.
The power spectrum, as described earlier for the study of flocculation

in fibre suspensions and given by Equations (15) and (16), may be used
also to describe flocculation in sheets [22]; the stochastic variable c(t) in
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Equations (13) and (14) being the deviation of the local grammage of a zone
from the mean, i.e. β̃ − β̄.

The power spectrum represents the contribution of flocs of different sizes
to the overall variability in the sheet, as does a plot of variance, or coefficient
of variation, of local grammage against zone size. This is illustrated via
Figures 3 to 7.

Figure 3 shows 5 cm × 5 cm grammage maps of two paper samples with
differing formation along with their power spectra and plots of the normal-
ised variance against inspection zone size. It is immediately apparent from the
plot of normalised variance against zone size that Sample 1 exhibits a higher
variance of local grammage at all scales of inspection. The power spectrum
for Sample 2 lies above that for Sample 1 at low wavelengths and vice versa at
higher wavelengths, indicating that more of the variability in Sample 2 is due

Figure 3 Comparison of Power Spectrum and variance against zone size. Top left:
grammage map for Sample 1; bottom left: grammage map for Sample 2. Top right:
normalised variance of local grammage plotted against inspection zone size; bottom

right: power spectra. Sample 1: solid lines; Sample 2: broken lines.
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to small scale flocs. Of course, for these samples these conclusions would be
arrived at by simple visual inspection; note that the steeper decay of the
variance against zone size plots at small scales of inspection of Sample 2
when compared to Sample 1 indicates also a small floc size.

Bandpass filtering has been applied to the Fourier transform of the gram-
mage maps shown in Figure 3. It is typical in bandpass filtering to use circular
regions; however, to recover the same information as shown in the variance
against zone size plots, it is necessary to apply square filters1; for a recent
thesis discussing the application of bandpass filtering to the analysis of print
nonuniformity, see Johansson [49]. Also, these filters must be applied with the
diagonals in the x and y directions, i.e. �  instead of � such that the
wavelength bands correspond to √2 times the side of a square inspection
zone; thus, whilst circular bands give an isotropic filter, here we have applied
an orthotropic bandpass filter. Figures 4 and 5 show the grammage variations
within given wavelength bands as determined by orthotropic bandpass filter-
ing for Samples 1 and 2 respectively. The area represented in each plot is that
marked by a white square in the top left hand corner of the grammage maps
shown in Figure 3; the use of larger areas would mask the variability.

The normalised variances for the eight wavelength bands illustrated in
Figures 4 and 5 are plotted in Figure 6. In agreement with the power spectra
shown in Figure 3, it is clear that Sample 2 exhibits greater small scale vari-
ability than Sample 1 and vice versa. The same data are presented in cumula-
tive form as points in Figure 7 where the abscissa represents the lower limit of
the wavelength bands; the lines are the same as those in Figure 3, though the
inspection zone sizes have been multiplied by 2 to be consistent with the
sampling theory of Nyquist such that this is the minimum wavelength which
may be sampled. A consequence of orthotropic bandpass filtering is that
these wavelengths are correct in the x and y directions but will be longer by a
factor up to √2 in all other directions. Figure 6 shows excellent agreement
between the information contained in Power Spectra and that given in plots
of variance against zone size.

Cresson and Luner [50] note that structural characterisation by second
order statistics, i.e. variance and coefficient of variation, may not distinguish
between structures with different textures; also, the power spectrum has been
criticised as being difficult to interpret [50,51]. The approach of Jordan and
Nguyen and co-workers [51,52,53] has been to measure the specific perimeter
of flocs in the sheet. This parameter is determined by thresholding a gram-

1In fact, there is an approximation in the use of square filters; the correct geometry is slightly
more complex and will be discussed elsewhere.
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mage map of the sheet at the median grammage and measuring the perimeter
of all flocs not touching the edges of the measuring area. This value is
weighted by the measuring area such that the specific perimeter is given by

Pspec =
�
i = 1

n

Pfloc,i

Ainsp

(24)

where Pfloc,i is the perimeter of the ith object and n objects exist within a field
of view with inspection area Ainsp; the specific perimeter therefore has dimen-
sions of reciprocal length. Jordan and Nguyen show in [51] that the specific
perimeter is in fact related to the power spectrum such that

P 2
spec =

1

4

�∞

0
υ2 P (υ) .d υ

�∞

0
P (υ) .d υ

 , (25)

where P(υ) is the frequency power spectrum given by Equation (15). The
importance of this relationship is that the statistic may be computed from

Figure 4 Grammage variations within given wavelength bands for Sample 1. Stated
wavelengths apply to x and y directions only; full scale on vertical axis is 1 mean

grammage.
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line-scans and therefore might be applied in on-line formation instrumenta-
tion [51]. Comparison of Equation (25) with Equation (17) shows us that the
specific perimeter and the micro-scale in fact quantify the same property of
the power spectrum.

The floc formation index proposed by Bernié and Douglas [31] is given by,

FFI = �χ

0
P (υ) .dυ (26)

where χ is an arbitrary frequency quantifying the minimum size of flocs of
interest in a given investigation.

Cresson and Luner [50] calculated texture-related descriptors from the
co-occurrence matrix obtained from digitised contact β-radiographs; the
algorithm used is described in [54]. The textural descriptors calculated were
the energy, contrast, correlation, entropy and homogeneity. Cresson and
Luner concluded however that such descriptors did not assess directly the
structural properties of the sheet of interest to the papermaker. An alterna-
tive method of extracting data from texture maps was proposed in [55]; this
involved the partitioning of the texture map at the median grammage and

Figure 5 Grammage variations within given wavelength bands for Sample 2. Stated
wavelengths apply to x and y directions only; full scale on vertical axis is 1 mean

grammage.
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Figure 6 Normalised variance plotted for eight wavelength bands illustrated in
Figures 4 and 5. Sample 1: solid lines; Sample 2: broken lines.

Figure 7 Cumulative normalised variance plotted against wavelength. Points
determined by orthotropic bandpass filtering, lines are the same as those shown for
variance against zone size in Figure 3. Sample 1: solid lines; Sample 2: broken lines.
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quantifying the occurrence and dimensions of light and heavy zones. The
statistics generated are related to those given by Kallmes and Ayer [57] who
counted, and measured the areas and light transmission of, regions with light
transmission less than the mean.

The wavelet transform has recently been applied to the characterisation of
formation by Bouydain et al. [58] using light transmission images, and by
Keller et al. for general classes of structures [59], and for simulated paper
structures [60]. Keller et al. note that, for nonperiodic functions, the wavelet
energy spectrum closely approximates the Fourier power spectrum; though
the wavelet energy spectrum is better suited to the analysis of larger scale
variations such as streaks and other CD and MD variations.

Void size distribution in sheets

The local porous structure of a fibre network is, by definition, the comple-
ment of its local mass structure. As such, we expect the distribution of fibres
within the sheet to affect the distributions of porosity and the pore size
distribution in the sheet.

Two experimental techniques still widely in use today were described by
Corte [61]. Mercury porosimetry involves forcing mercury at increasing pres-
sures into the sheet and recording the volume of mercury intruded at each
pressure interval. The radius of pores entered at each pressure interval is
given by the Kelvin equation:

rp = −
2γ

p
cos(θc) , (27)

where rp is the pore radius (m), γ is the surface tension (N m), p is the pressure
(N m−2) and θc is the contact angle between the mercury and the fibres. Corte
assumed θc to be 180° such that cos(θc) = −1. Correction must be made for
the compressibility of mercury at high pressures and care must be taken to
ensure constant temperature of the system during experimentation. The
technique gives the volume frequency pore radius distribution, i.e. the porous
volume of the sheet associated with pores of given radii. The technique has
been widely applied to the characterisation of the void structure of filled
papers and paper coatings [62,63] but has been applied to unfilled and
uncoated sheets by Yamauchi and Kibblewhite [64,65] who assumed
θc = 140°. Yamauchi and Kibblewhite define also an apparent breakthrough
pressure which occurs at the maximum rate of intrusion of mercury into the
voids and may be associated with mercury passing through small voids into
larger spaces.
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The second technique described by Corte [61] involves saturating the
sample with a non-swelling fluid and displacing the fluid from the voids using
dry nitrogen at increasing pressures. The output is a curve of flow rate against
pressure from which the pore size distribution of an equivalent system of
straight parallel and circular capillaries may be determined; an important
difference between this technique, known as porometry, and mercury
porosimetry is that the frequencies of pore radii are characterised by their
number and not their volume. The technique and associated theory is
described in detail in [66]. Despite the assumption of such a uniform geom-
etry and the neglection of effects such as tortuosity and interconnectedness
of voids, we shall see that the outputs from such flow based porometry
experiments give excellent agreement with theories based on geometry.

Thickness and density variations

The thickness, and hence the density, of paper is notoriously difficult to
measure accurately due to the nonuniform and compressible nature of the
sheet. A study of the measurement techniques for mean sheet thickness was
presented by Yamauchi [67] who compared the standard technique of meas-
uring the separation of parallel hard circular platens applied around a sheet
or stack of sheets at a standard load and standard rate of loading, with
mercury buoyancy and pyncnometric techniques and with a modified platen
technique using soft rubber platens, as developed by Wink and Baum [68].
The highest values were obtained using the standard technique, where the
thickest regions of the sheet only are measured; values obtained using the soft
platens, which conform to some extent to the sheet surface, were lower; the
mercury techniques, where mercury covers the sheet surface well but does not
penetrate into the bulk, gave markedly lower values.

An alternative measure of mean thickness, based on the mechanical
properties of the sheet was proposed by Setterholm [69], such that

zeff = �12S

E
, (28)

where zeff is the effective thickness (m), S is the bending stiffness (N m) and E
is the tensile stiffness (N m−1).

Whilst such techniques allow determination of a mean thickness under a
given set of conditions, they provide no information on its distribution. A
technique for measuring the thickness of small zones was presented by
Schultz-Ekland et al. [70]. The technique used a pair of small diameter
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mutually opposing spherical platens to scan a square area of side 77 mm. In
conjunction with β-radiographic measurements of local grammage for the
same areas, Schultz-Ekland et al. produced thickness and grammage maps
for calendered and uncalendered samples and determined the coefficients of
variation of thickness, grammage and density at the 150 μm scale. Whilst the
correlation between local grammage and local thickness was good, the meas-
urement of thickness used a direct contact technique, and absolute values
showed some sensitivity to platen diameter and measuring force. More
recently, Izumi and Yoshida [71] have developed a non-contact method to
measure a thickness distribution map using two-sided laser triangulation
techniques.

MODELLING 3D NETWORKS

The flow behaviour of fibre suspensions is affected by flow conditions charac-
terised by, e.g. the Reynolds Number, and the friction loss for flowing fibre
suspensions differs from that observed for water [18]. Turbulent energy from
the fluid serves to disrupt the fibre network in suspension and hence influ-
ences network structure. Conversely, in decaying turbulence, the network
structure becomes more coherent [72]. Models of the network structure in
three dimensions, coupled with those describing structure in two dimensions
and appropriate experiments, provide insights into the relationships between
sheet and suspension structure. Here, we consider first the properties of three
dimensional random fibre networks, i.e. those with fibre centres distributed
according to a point Poisson process in three dimensions and with uniform
orientation of fibre axes within the solid angle 2 π.

Inter-fibre contacts

Corte and Kallmes [73] refer to the result of Miles who, for a three dimen-
sional random fibre network, gives the total number of fibre crossings, ncross,v

made by nv fibres in a volume V as

ncross,v =
π

2
n2

v

λ̄2rf

V
for V � λ̄ 3 (29)

where rf is the fibre radius (m). An expression equivalent to Equation (29) was
obtained some years later by Komori and Makishima [74].
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Typically of more interest is the mean number of contacts per fibre,
n̄con = 2 ncross,v /nv where the factor 2 is introduced since each crossing produces
a contact point on each fibre. Observing that for cylindrical fibres, the volu-
metric fibre consistency Cv is given by

Cv =
nv π λ̄r2

f

V
(30)

we have

n̄con = πnv 
λ̄ 2rf

V
(31)

=
λ̄

rf
�nv π λ̄ r2

f

V � (32)

= 2 ACv . (33)

By definition, and from Equation (4)

Cm =
nv λ̄ δ

V
(34)

=
6 δ

πλ̄2
ncrowd (35)

we have therefore

n̄con = π �nv λ̄

V � λ rf (36)

= π
Cm

δ
λ̄rf (37)

=
3

A
ncrowd (38)

More recently, Equations (33) and (38) were derived fully and independ-
ently by Dodson [75] following the methods of van Wyk [76]; Equation (33) is
given also without derivation by Toll [77].

Meyer and Wahren [78] relate the volumetric concentration to the number
of contacts per fibre by the expression
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Cv =
16πA

� 2A

n̄con

+
n̄con

n̄con − 1 �
3

(n̄con − 1)

(39)

Modified theories of fibre contact, which seek to account for the reduction in
length due to existing contacts, have been derived by, e.g. Pan [79] who gives,

n̄con =
4ACv

2 + πCv

(40)

The approach taken by Pan has been criticized by Komori and Itoh [80] who
present a modification of their own which has an iterative solution for all
cases other than when n̄con → ∞ ; the differences in approach are summarized
by Pan [81]. It should be noted however that where true three dimensional
fibre networks exist in papermaking operations, we typically have low Cv and
ncon; accordingly these corrections have little influence. Equations (33), (39)
and (40) are compared in Figure 8 for a typical headbox consistency, Cv = 3 %
and a typical thick-stock consistency Cv = 10 %. We note that, as expected
from the modification, Equation (40) gives a lower estimate of n̄con than that
given by Equation (33); Equation (39) however may under- or over-estimate
the mean number of contacts depending on the value of Cv and the aspect
ratio.

The mean number of contacts per fibre is not only relevant to the strength
and rheology of a fibre suspension, it defines also the threshold at which we
expect flocs to form by elastic fibre bending. For contacts on a given fibre

Figure 8 Mean number of contacts per fibre plotted against fibre aspect ratio. Left:
Cv = 3 %; right: Cv = 10 %. Key: solid line – Equation (39); dotted line – Equation (33);

broken line – Equation (40).
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occurring on alternate sides of the fibre axis this threshold is ncon = 3 though
more typically we might expect n̄con = 4. Kerekes and Schell [8] used a simplifi-
cation of Equation (39) to estimate the crowding number where these values of
n̄con occur; their estimates along with those determined using Equations (38)
and (40) are given in Table 1. It should be noted that the value of ncrowd = A at
n̄con = 3 was given by Dodson in [75] who related this to the concentration
where coherent networks form from the sedimentation of dilute fibre suspen-
sions. The difference between the estimates of these critical values of ncrowd

obtained via Equations (38) and (40) is less than 5 % for A > 50; the primary
importance of determining this critical crowding number in this way is that it
is defined by fibre geometry.

Naturally, the strength properties of a fibre suspension will be affected not
only by the number of contacts but by the area of these contacts. In a simula-
tion study, Wang and Shaler [82] found that the contact area was distributed
according to a modified lognormal distribution.

The maximum volumetric consistency obtained by the random placement
of rods in a three dimensional assembly until no more rods may be fitted is
given by Parkhouse and Kelly [83] as

C max
v = 2

log(A )

A
(41)

which, using Equation (33), corresponds to n̄con = 4 log(A).
Evans and Gibson [84] modelled the maximum volumetric consistency as

that when each rod is restricted from rotational motion by its neighbours and
give the expression

C max
v =

4

A
(42)

which, using Equation (33), corresponds to n̄con = 8.

Table 1 Critical crowding number required for flocs formed by elastic fibre bending.

ncrowd calculated by

n̄con Kerekes Equation (38) Equation (40) 

3 60 A 4A 2

4A − 3π

4 90 4

3
A

4A 2

3(A − π)
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Recently, Novellani et al. [85] presented measurements of the mean poros-
ity in 3D networks and found good agreement with the theory of Rahli who
gave:

C max
v ≈

11

π

2A
+ 2A + 6

(43)

where the numerator is determined by the equivalent number of fibres in an
excluded volume defined as the mean fractional volume which a given fibre
prevents the centre of surrounding fibres from occupying and is found to be
constant and approximately equal to 11 for A > 7.

Porosity distribution

The porosity distribution in a three dimensional network is, by definition,
the complement of the local consistency distribution. Knowledge of the
porosity distribution therefore provides a reference statistic against which
the nonuniformity of flocculated suspensions may be compared. Analytic
approaches to this property of network structure are few though Dodson
and Sampson [86] recently derived the variance of local consistency by
expressing Equation (33) in terms of the local properties of the network such
that

n̄con = 2A(1 − C̃v) (44)

σ 2
x(C̃v) =

σ 2
x(ñcon)

4A 2
(45)

where σ2
x(C̃v) and σ2

x(ñcon) represent the variances of the local average
volumetric consistency and the local average number of contacts per fibre for
cubic inspection volumes of side x respectively.

If fibre contacts are given by a Poisson process then, by the Central Limit
Theorem, the variance of fibre contacts, σ2

x(ñcon) is given by the mean
number of fibre contacts divided by the mean number of fibres in a given
volume. On manipulation this yields, for cylindrical fibres,

σ2
x(C̃v) =

π

8 �ω

x �
3

(46)
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where ω is the fibre width (m). The result is striking; at a given inspection
volume size, the variance of local consistency in a random three dimensional
network is dependent only on the cube of the fibre width and is independent
of the mean volumetric consistency. The coefficient of variation of local
consistency, calculated using Equation (46) is plotted against the mean local
consistency in Figure 9 for x = 1 mm.

The pore radius distribution in 3D networks is difficult to define, though
the recent algorithms of Luchnikov et al. [87] show some potential for such
studies. Luchnikov et al. have developed algorithms allowing Voronoi net-
works, which characterise the void space of a system, to be used for the study
of non-spherical objects and present preliminary analysis of a 3D system of
random lines. Some progress on the analytic description of void space in 3D
networks has been made recently by Philipse and Kluijtmans [88] who con-
sidered the caging of spheres by random networks of rods.

Figure 9 Coefficient of variation of volumetric consistency plotted against mean
volumetric consistency for random 3D networks. Curves shown for fibre width,

ω = 10, 20, 30 μm; inspection volume size 1 mm3.
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MODELLING PLANAR NETWORKS

Typically the thickness of a sheet of paper is of order one tenth or less of a
mean fibre length and thus, as we have seen in the discussion of experi-
mental techniques to characterise sheet structure, several features of
importance may be quantified through measurements made of projections
of the structure onto a plane. Note also that Radvan, Dodson and Skold
showed that, as a consequence of the dynamics of the sheet forming pro-
cess, the z-directional structure of the sheet is predominantly layered rather
than felted [89], i.e. along their length, fibres lie predominantly in the plane
of the sheet. Accordingly, when modelling the structure of such ‘near-
planar’ networks, many workers have considered the statistical geometry
of idealised two-dimensional networks and it is these models that are con-
sidered here.

Random networks

The first attempt to model paper structure using statistical geometry was
given by Kallmes and Corte [90], a revised, expanded and perhaps more
accessible treatise is given in the proceedings of these symposia [73]. They
derived expressions for several structural features of random fibre networks
which are considered in the following sections. Importantly, Corte and
Kallmes gave precisely the definition of a two-dimensional random fibre
network:

Figure 10 Random network of fibres with mean length 1 mm, mean width 20 μm,
coarseness 2 × 10−4 g m−1, mean network grammage 5 g m−2, mean coverage 0.5; fibre
lengths lognormally distributed with coefficient of variation 50 %. Left: 1 cm × 1 cm;
centre: 0.5 cm × 0.5 cm; right: 0.25 cm × 0.25 cm; centre point of each image is the

same.
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• The fibres are deposited independently of one another.
• The fibres have an equal probability of landing at all points in the sheet,

i.e. the fibre centres are randomly distributed over the area.
• The fibres have an equal probability of making all possible angles with

any arbitrarily chosen, fixed axis, i.e. the fibres have a random
orientation.

So in modelling the structure of two-dimensional random fibre networks we
consider fibres centres to be distributed according to a point Poisson process
in two dimensions and fibre axes to have a uniform distribution within an
angle π relative to some arbitrary direction. Illustrative examples of such
random networks are given in Figure 10.

Mass distribution

As has been discussed, the statistics used to characterise the mass distribu-
tion in a sheet, as measured by, for example β-radiography and image analy-
sis, are derived from the observed variance of local grammage at a given
scale of inspection. The variance obtained in a random fibre network, as
defined above, was derived by Dodson [91,92] and discussed in detail in [12].
Here, the key stages of the derivation only are given, along with the applic-
able results with have seen substantial use by workers in the paper science
literature.

Modelling fibres as uniform rectangles of length λ, width ω, where λ > ω

and coarseness δ we have fibre grammage, βfib = δ/ω and fibre area, afib = λω.
So, in a sheet of mean grammage β̄, the average number of fibres covering a
point is given by

c̄ =
β̄

βfib

(47)

and, since for Poisson processes the variance is equal to the mean, we have

σ2(c) = c̄ (48)

=
β̄

βfib

(49)

=
ω

δ
β̄ (50)

Whilst it is perhaps a little counter-intuitive to consider the point variance of
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grammage, it follows directly from Equation (50) that this parameter is given
by

σ2(β) =
δ

ω
β̄ (51)

In any real sampling scheme for fibre networks, we must make observations
and measurements on finite areas instead of points. Kallmes and Corte [90]
point out that when considering the number of fibres in a square zone of side
x, as opposed to the number covering a point, all fibres longer than √2x, and
most of those longer than x/2 will have a portion of their length, and hence
mass, in squares adjacent to any given square. In their determination of the
distribution of the total fibre length per unit area, Kallmes and Corte over-
came this problem by considering a point Poisson process for fibre segments.
For determination of the distribution of local grammage in two-dimensional
random networks, Dodson [91, 92] derived instead the fractional between
zones variance ρ̃, which weights the point variance to yield the variance
observed at finite scales of inspection. We shall consider only square inspec-
tion zones of side x such that

σ2
x(β̃) = σ2(β)ρ̃ (52)

=
δ

ω
β̄ ρ̃ (53)

and

CVx(β̃) = � δ

ω

ρ̃

β̄
(54)

Parameter ρ̃ is given by

ρ̃ = �√2x

0
α(r,ω,λ) b(r,x) dr (55)

where α(r,ω,λ) is the point autocorrelation function for coverage at points
separated by a distance r and b(r, x) is the probability density function for the
distance r between two points chosen independently and at random within
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the inspection zone. For square zones of side x, these functions are given by
Dodson [92] as:

⎧
⎪⎪⎪⎪⎪⎪⎪
⎪
⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1 −
2

π �r

λ
+

r

ω
−

r2

2ωλ� for 0 < r ≤ ω

2

π �arcsin �ωr � −
ω

2λ
−

r

ω
+ � r2

ω2
− 1� for ω < r ≤ λ

α(r,ω,λ) =
2

π �arcsin �ωr � − arccos �λr � −
ω

2λ
−

λ

2ω

(56)

−
r2

2λω
+ �r2

λ2
− 1 + � r2

ω2
− 1� for λ < r ≤ √λ2 + ω2

0 for r > √λ2 + ω2

and

⎧
⎪⎪⎪⎪
⎪
⎨
⎪⎪⎪⎪
⎪
⎩

4r

x4 �πx2

2
− 2rx +

r2

2 � for 0 ≤ r ≤ x

b(r,x) =
4r

x4 �x2 �arcsin �xr� − arccos �xr� � (57)

+ 2x √r2 − x2 − 1
2 (r2 + 2x2)� . for x ≤ r ≤ √2x

0 for r > √2x

respectively and Equations (57) are attributable to Ghosh. Numerical integra-
tion of Equations (56) and (57) for known values of fibre length and width
allows calculation of the fractional between zones variance ρ̃ for square zones
of side x; note that the same length dimension, e.g. mm should be used for
each variable. Where there is a distribution of lengths, ρ̃i should be deter-
mined for each fibre length class λi and, since the variance contributions of
each length fraction are additive, the total fractional between zones variance
is given by

ρ̃ = �
n

i
miρ̃i , (58)

where mi is the mass fraction of fibres with class centre λi. The treatment
assumes uniform fibre width. Tables of ρ̃i calculated for square zones of side
1, 2, 3 and 4 mm for fibre lengths in increments of 0.2 mm and a fibre width of
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20 μm can be found in [93] and in the appendix to [12]. Where there is a
distribution of fibre lengths, the coefficient of variation of local grammage is
reduced by a few percent when compared to that of fibres of uniform length
and the same mean [11].

The fractional between zones variance ρ̃ for square inspection zones of side
x is plotted against fibre length and fibre width in Figure 11; we observe that
it increases monotonically with decreasing gradient with fibre length and is
proportional to fibre width over the range of interest for papermaking fibres,
i.e. where fibre width is small compared to both length and inspection zone
size [94]. Note also, whilst not plotted here, that ρ̃ decreases monotonically
with decreasing gradient for increasing inspection zone size, x.

Now, for small zones, ρ̃ → 1 and the variance of local grammage σ2
x(β̃)

approaches the point variance given by Equation (51) [38]. For large zones,
x � λ and the mean number of fibres in a zone of side x is1

n̄x =
c̄x2

λω
(59)

and, since we have a Poisson process, the variance σ2
x(ñx) is the same. A large

zone containing ñx fibres has grammage

β̃ =
λδ

x2
 ñx (60)

Figure 11 Effect of fibre length, fibre width and inspection zone size on the
fractional between zones variance, p̃. Left: effect of fibre length and inspection zone

size when ω = 20 μm; right: effect of fibre width and length when x = 1 mm.

1Equation (59) corrects the typographical errors on Page 103 of [12].

12th Fundamental Research Symposium, Oxford, September 2001 1237

The Structural Characterisation of Fibre Networks in Papermaking Processes



and hence the variance of local grammage is

σ2
x(β̃) = σ2

x �λδ

x2
ñx� (61)

= �λδ

x2�
2

n̄x (62)

after substituting for n̄x from Equation (59) and observing that β̄ = δ c̄/w,
rearranging Equation (62) yields

σ2
x(β̃) =

λδ

x2
β̄. (63)

Corte and Dodson [38] modified Equation (63) to take account of autocor-
relation such that

σ2
x(β̃) =

λδ

x2
β̄ K. (64)

where 0 ≤ K ≤ 1 and is a function of fibre geometry and the inspection zone
size. Comparison of Equation (64) with Equation (53) yields

K =
x2

λ

ρ̃

ω
. (65)

We observe that K is therefore a weighted form of the fractional between
zones variance ρ̃; the weighting being given by the ratio of the area of an
inspection zone to that of a rectangular fibre.

Corte and Dodson [38] derived expressions for K using a technique referred
to as the ‘line method’. The analysis involved trigonometric determination
of the overlapping distance of random lines of length λ and angle � with
centres occurring within square zones of side x. Three different functions
determine K, each applying to a given range of λ as a multiple of x. Errors in
the equations given in the original article [38] were apparently corrected in a
subsequent publication [95]; since then they have appeared in several publica-
tions, e.g. pp207–208 in [94], [96,97] and widely circulated translations of [38].
The second part of these equations is incorrect in every publication seen by
this author; the full derivation was not given in [38] but brief instructions to
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determine the integrals were. These have been recalculated and the resulting
expressions for K are given as follows:

⎧
⎪⎪⎪⎪⎪⎪
⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

1 −
4

3π

λ

x
+

1
6π

λ2

x2
for λ ≤ x

4

π �xλ �log �xλ� − log �1 − �1 −
x2

λ2 �� + arcsin �xλ�K =

+
(λ2 − x2)

3
2

3xλ2 � −
1

6π

λ2

x2
+

4

3π

x

λ
−

1

3π

x2

λ2
−

2

π
−1 for x ≤ λ ≤ √2x

(66)

1

π �4 x

λ �13 (1 − √2) + log (1 + √2)� −
x2

λ2� for λ ≥ x √2

There is no doubt that Equations (66) were derived correctly by Corte and
Dodson [38] since they have been plotted correctly as a function of λ and x at
least twice [94,97]. The function is plotted in Figure 12 against λ/x. For
completeness, Equations (66) are given with coefficients in decimal form in
Appendix 1 along with a table of K over the range of interest of λ/x.

The line method is compared with the analytic formula in Figure 13 for
fibres of width 30 μm. Agreement between the two methods is excellent; the
greatest error occurs for small x and λ and is less than 0.25 % for the data
plotted. Note that the line method makes implicit use of the observed pro-
portionality between ρ̃ and ω illustrated in Figure 11. Where there is a distri-
bution of lengths, a similar treatment should be used for K as that used for ρ̃
such that

σ2
x(β̃) =

δ

x2
β̄λK ,

=
δ

x2
β̄�

n

i
mi λi Ki , (67)

The coefficient of variation of local grammage at the 1 mm scale of inspec-
tion, calculated using the line method, is plotted in Figure 14 for the typical
ranges of coarseness and fibre length found in papermaking systems. The
mean grammage for the curves plotted in Figure 14 is 60 g m −2. An advantage
of the line method over the determination of the fractional between zones
variance is that parameter K, and hence the variance and coefficient of vari-
ation of local grammage, may be determined without knowledge of fibre
width. Thus, knowing fibre coarseness and length, the coefficient of variation
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of local grammage at the 1 mm scale may be read off the scales of Figure 14;
for networks of mean grammage other than 60 g m −2, the value read from the
ordinate should be multiplied by √60/β̄ ≈ 7.75/√β̄. Note also that there is
some evidence that fibre coarseness is, at least to a first approximation, pro-
portional to fibre length [98]; so for a range of fibre lengths and coarsenesses,
we might expect a plot of CV (β̃) against √λδ to be approximately linear and
to fall within the envelope shown in Figure 14.

The wavelength power spectrum for random fibre networks was derived by
Haglund et al. [99]. It may be computed as the Fourier transform of the
point autocorrelation function α(r,ω,λ) [12], but is most widely applied in the
form given by Haglund et al. [99]:

P � l

ω� =
1

c̄

16

π2

λ

ω �ωl �
2 �∞

πω
l

� �J1(y�/ω)

y�/ω �
2

�1 − �πω

yl �
2

�
−1

2

×

�
π
2

−
π
2

sin2 (yλ cos(t)/ω)

(yλ cos(t)/ω)2

sin2 (y sin(t))

(y sin(t))2
.dt� .dy (68)

where � is the diameter of a circular scanning aperture (mm) and J1(ζ) is
the first order Bessel function. Since the power spectrum for random fibre
networks, as given by Equation (68) is inversely proportional to the mean

Figure 12 Parameter K as a function of fibre length and inspection zone size.
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coverage c̄, changes in mean basis weight cause a vertical shift in the spec-
trum. Integrating Equation (68) from � to infinity yields the coefficient of
variation of local coverage denoted the total formation by Haglund et al. [99];
when � = 0 the integrals recover the Poisson result,

CV (c) =
1

√c̄
. (69)

Peculiarly, and without justification, Norman states that consideration of a
point Poisson process to arrive at Equation (69) is a rather heuristic process
[100]. As we have seen for the fractional between zones variance, and par-
ameter K determined via the line method, where there is a distribution of
geometries, variances are additive so Equation (68) is evaluated for each fibre
length or width of interest with the appropriate value of c̄ for that component
in the furnish, and the spectra summed.

The power spectrum for random networks is plotted for fibres of differing
aspect ratio and � = 0 in Figure 15; spectra have been computed for unit mean
coverage. The spectra are similar at low wavelengths though at higher wave-
lengths, the spectral density is greater at higher aspect ratios. The influence of

Figure 13 Comparison of K determined by Equations (65) and (66). Points calculated
using Equations (66), lines calculated using Equations (65); all curves calculated for

ω = 30 μm. Agreement between the two methods is excellent.
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finite � is to reduce the density and to shift the spectra to the right; the
reduction in density being greater for low aspect ratios and the maximum of
the spectra occurs at a wavelength around 2 � [99].

Through combination of Equations (25) and (68), Jordan and Nguyen [51]
determined also the specific perimeter for random fibre networks.

The importance of modelling random fibre networks is not, as we shall see,
that they describe the structure of commercially formed sheets which depart
from randomness because of, e.g. fibre flocculation and fibre orientation.
Their role is as reference structures against which the measured properties of
real sheets may be compared.

Comparative quantifiers of mass distribution

Comparison of measurements of the mass distribution made on real sheets
using, for example, β-radiography and image analysis, with those calculated
for random fibre networks with the same furnish morphologies allows
insights into the mechanisms of forming. Here, quantitative descriptors of
the difference between real and random networks are presented.

Figure 14 Coefficient of variation of local grammage at 1 mm scale for random
networks of mean grammage 60 g m−2 as a function of mean fibre length and
coarseness. Units of coarseness δ are 10−4g m−1; units of mean fibre length λ̄ are mm.
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Perhaps the earliest statistic proposed to measure the deviation of the
mass distribution of real papers from that calculated for random networks is
the nonuniformity number Ux proposed by Corte and Dodson [38] and
defined by

Ux =
σ2

x(β̃)meas − σ2
x(β̃)rand

σ2
x(β̃)meas + σ2

x(β̃)rand

, (70)

where the subscripts meas and rand denote measured and random vari-
ances respectively. For a paper with a greater variance than a random net-
work formed from the same fibres at a given scale of inspection x,
σ2

x(β̃)meas > σ2
x (β̃)rand and hence 0 < Ux ≤ 1; similarly, a sheet with smaller vari-

ance than a random network formed from the same fibres, σ2
x(β̃)rand > σ2

x (β̃)meas

and − 1 ≤ Ux < 0. A network with the same variance observed for a random
network will have U = 0.

Corte [95,97] subsequently proposed quantifying the departure of real
papers from randomness using the variance ratio. This measure has since
been used extensively by Dodson and co-workers, e.g. [12] and has been
termed the formation number, nf,x; it is defined as

Figure 15 Power spectra for random networks. Plots are given for measuring area
� = 0 and mean coverage c̄ = 1. Dotted line: Aspect ratio A = 10; solid line: A = 50;

dashed line A = 100.
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nf,x =
σ2

x(β̃)meas

σ2
x(β̃)rand

. (71)

When σ2
x(β̃)meas > σ2

x(β̃)rand the formation number nf,x > 1, and when
σ2

x(β̃)rand > σ2
x(β̃)meas we have nf,x < 1. A network with the same variance

observed for a random network will have nf,x = 1.
The terms ‘formation number’ and formation intensity have been applied

also by Norman and Wahren and co-workers, e.g. [15,100,101], to the coef-
ficient of variation of local grammage, i.e. without comparison with random
networks. Here, the term ‘formation number’ will be applied to the statistic
given by Equation (71) and the coefficient of variation of local grammage will
be referred to as such; the choice is arbitrary and it is unfortunate that
conflicting definitions exist. It is important however that workers specify
precisely which definition is used in a given study.

An approximation of nf,x was proposed by Schaffnit [102] and its use is
discussed by Ng and Dodson [103]. It is arrived at by replacing the variance
of a random network in Equation (71) with that measured from a laboratory
handsheet formed from the same furnish as the paper under investigation
σ2

x(β̃)h/s, such that

nest
f,x =

σ2
x(β̃)meas

σ2
x(β̃)h/s

, (72)

The technique relies on the low crowding number, ncrowd in the chamber of
the sheet former which allows little interaction between fibres such that the
formed sheet has similar mass distribution to a random network and nf,x ≈ 1.
Schaffnit reports that nest

f,x overestimates nf,x by about 5 % at the 1 mm scale.
Comparison of the power spectrum for a sample with that obtained for a

random network is typically achieved by plotting spectra on the same axes
and observing differences in the height of the spectrum [99]. Quantitative
analysis may be carried out by integrating the spectra between given wave-
lengths and comparing the values of the integrals, or by determination of the
micro- and macro-scale characteristic lengths, as described earlier and given
by Equations (17) and (18) respectively.

Number of crossings per fibre

The number of contacts per fibre necessarily controls the mean distance
between crossings for fibres of given length and width. These properties
of random networks were studied by Kallmes and Corte [90] who made
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comparative measurements on real fibre networks. Following Kallmes and
Corte we shall consider first ‘2-D’ networks, i.e. networks where, “ . . . the
number of fibres in the network is so small that the area covered by more than
two fibres is negligible, i.e. less than 1 % . . . ” [90]; consideration of the
Poisson distribution shows that this criterion is satisfied for networks with
mean coverage c̄ ≤ 0.456, which, for typical fibres corresponds to a mean
grammage β̄ up to about 2 g m−2. Naturally such networks are not necessarily
representative of real papers which have a significant structural component in
the third dimension; accordingly the treatments for 2-D networks are
developed for application to multi-layer structures.

For 2-D networks Kallmes and Corte note that the number of intersections
between n̄x fibres within an area x2 is given by the product of the probability
that two fibres intersect and the number of ways that pairs of fibres may
be selected [90]. The probability that two lines intersect at angle ϑ is given by
λ2/x2 sin(ϑ), so for all ϑ the probability of intersection is

Pcross =
2

π

λ2

x2 �
π
2

0
| sin(ϑ) |.dϑ =

2

π

λ2

x2
(73)

and each fibre can intersect all fibres except itself, so for n̄x fibres, the number
of ways that pairs of fibres may be selected is nx(nx − 1)/2 where the divisor 2
is applied because each fibre is counted twice. Thus, the expected number of
crossings per unit area is given by

n̄cross =
1

π

λ2

x4
n̄x(n̄x − 1) (74)

≈
λ2n̄2

x

πx4
for n̄x � 1 (75)

substituting for n̄x from Equation (59)

n̄cross ≈
c̄2

πω2
(76)

Also of importance is the expected number of crossings per fibre, which is
given by Kallmes and Corte as

n̄cross, fib = 2
n̄crossx

2

n̄x

(77)
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and thus we have

n̄cross, fib =
2

π

λ2

x2
(n̄x − 1) (78)

≈
2 c̄λ

πω
=

2c̄A

π
for n̄x � 1 (79)

Dodson [12] considered the fraction of a 2-D network with coverage of
two and three fibres according to the Poisson distribution and the area of a
fibre crossing, ω2/sin(ϑ) to arrive at

n̄cross =
π

4

c̄2

ω2 �12 +
c̄

3 � e−c̄ (80)

As illustrated in Figure 16, over the applicable range of fibre widths
and coverage, Equation (80) yields a slightly higher estimate of n̄cross than Equa-
tion (76) since fibre width and regions with coverage up to three are included.

Figure 16 Number of contacts per square millimetre n̄cross for 2-D networks plotted
against mean coverage. Solid lines, Equation (76); dashed lines, Equation (80).
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Kallmes, Corte and Bernier [104] developed the single layer concept given
in [90] for multi-layer, or multi-planar (MP), structures. They considered the
number of crossings within a given layer, as given above, and the number of
crossings between fibres in pairs of layers, noting that the top and bottom
layers have between-layer contacts with respectively the layers below and
above them only. For a multi-planar sheet with nl layers, the expected number
of crossings per unit area is given by

n̄ MP
cross = n̄cross

nl

2
 (1 + e−c̄) �fw + (1 + e−c̄) � �1 −

1

nl
� � fb +

C e−2c̄

1 − e−2c̄ � −

C e−2c̄(1 − e−2(nl − 1)c̄)

nl (1 − e−2c̄)2 �� , (81)

where fw and fb are the effective fibre flexibilities within and between adjacent
layers respectively and C is approximately constant and given by C = ff ec̄

where ff is the effective fibre flexibility of fibres generating crossings between
layers separated by a layer. Experimentally determined values of effective
fibre flexibilities were given by Kallmes et al. [104] for unbeaten, unbleached
kraft and sulphite spruce pulps and these are given in Table 2.

The number of crossings per fibre in a multi-planar sheet is given by

n̄MP
cross, fib = 2

n̄ MP
crossx2

n̄xnl

. (82)

The number of crossings per fibre is plotted in Figure 17 using data given in
Table 2 for the sulphite pulp pressed at 6.9 MPa (1000 psi) with an aspect
ratio of 60; mean coverage of a layer was assumed to be 0.4. The broken line
in Figure 17 represents the same data with the flexibility ff = 0 such that fibre

Table 2 Effective fibre flexibilities for multi-planar sheets as given in [104].

Pulp Pressing psi fw fb ff

Sulphite 1000 0.95 0.89 0.64
50 0.92 0.71 0.44

Kraft 1000 0.84 0.65 0.37
50 0.74 0.51 0.27
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contacts are assumed to occur only between adjacent layers; the important
feature of this curve is that it reaches an asymptote for nl greater than about
5. This agrees with expectation since the outer layers are in contact with other
layers on one side only, and the number of contacts per fibre will be insensi-
tive to the contribution of outer layers for fibres located more than two layers
from the surface. We can estimate this number of contacts per fibre taking the
limit of n̄MP

cross, fib as nl → ∞ which yields

lim n̄MP
cross, fib = n̄cross, fib �e

−c̄

2
coth �c̄

2 � ( ff + (ec̄ − 1) fw + 2 fb sinh(c̄))� . (83)
nl →∞

When fw ≈ fb ≈ 1 and ff = 0 and for typical values of c̄ within a layer, we expect
the number of crossings per fibre in a multi-planar sheet to be about two and
a half times that for a 2-D network as given by Equation (79). Thus, the
number of contacts per fibre in a multi-planar structure is between 0.4 and
0.6 times the aspect ratio, depending on the mean coverage per layer.

Relative bonded area

Having derived expressions for the number of contacts per fibre in 2-D and
multi-planar networks, Kallmes, Corte and Bernier went on to consider the
fraction of the fibre surface area which is in contact with other fibres [105].
Kallmes et al. considered a collapsed fibre within the body of the sheet and
noted that at a given location along the fibre length precisely three contact
states were possible; the fibre may be in contact with other fibres on neither
surface, one surface only, or on both surfaces. Extending the 2-D model to
such that the area covered by more than three fibres is negligible, we allow
c̄ ≤ 0.870. Now, the total projected fibre area per unit area is the same as
the mean coverage; denoting the Poisson probability of point coverage by c
fibres P(c), the fraction of fibre area in contact with no other fibres say B(0) is
given by

B(0) =
P(1)

c̄

= e −c̄ (84)

and the fraction of fibre area in contact with one fibre is

B(1) =
2

c̄
(1 − (P(1) + P(0)))
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=
2

c̄
(1 −e−c̄ − c̄e −c̄) (85)

and, by definition, the fraction of fibre area in contact with two fibres is

B(2) = 1 − B(0) − B(1)

= 1 −
2

c̄
+ �1 +

2

c̄ � e−c̄ (86)

The unbonded fraction of a fibre consists of the regions covered by one fibre
only, and the outermost surfaces of fibres in regions covered by two or three
fibres. Thus, the fraction of a fibre which is not in contact with other fibres is
(P(1) + P(2) + P(3) )/c̄ so the relative bonded area is

RBA = 1 −
P(1) + P(2) + P(3)

c̄ 
(87)

Figure 17 Number of contacts per fibre for multi-planar networks. Curves plotted
using data from [104] for sulphite fibres with mean coverage in a layer c̄ = 0.4.
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since we have defined the 2-D model such that P(c > 3) is negligible, then
P(3) ≈ (1 − P(0) − P(1) − P(2) ) and

RBA = 1 −
(1 − P(0) )

c̄
  

= 1 −
1 − e−c̄

c̄
. (88)

Dodson points out [12] that Equation (88) gives RBA ≈ 37 % for c̄ = 1 and
plots of B(0), B(1) and B(2) against RBA as given in e.g. [94,105] are valid
only up to this limit1.

Free-fibre lengths

The expected distance between crossings or the expected free-fibre-length or
gap-length follows directly from the expressions for the expected number of
contacts per fibre. It is given by

ḡ =
λ̄ 

n̄cross, fib − 1
(89)

≈
λ̄ 

n̄cross, fib

for n̄cross, fib � 1 (90)

The distribution of free-fibre lengths is given by the negative exponential
distribution [90,106]; this distribution arises directly from the Poisson distri-
bution as the probability of zero events in a given interval and has probability
density function

f (g) =
1

ḡ
e −

g
ḡ , (91)

with variance, σ2(g) = ḡ2.
Kallmes and Corte [90] measured the distances between fibres intersecting

an arbitrary scanning line in thin laboratory formed networks, and Kallmes
and Bernier [106] measured the free-fibre lengths of fibres at the surface of
thicker laboratory formed sheets. In both cases, the negative exponential dis-
tribution was found to give good agreement with the data.

1In fact, for c̄ = 0.870, Equation (88) gives RBA ≈ 33 %.
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An important feature of the free-fibre length distribution is that it is
unaffected by the width of fibres [90,106]. The effect of increasing width is to
close the smallest gaps, whilst reducing the size of larger ones. The result is
given also by Miles [56] who considered the distribution of radii of circles
inscribed in the polygons formed by free-fibre lengths; this is also negative
exponential and the distribution is insensitive to mean fibre width and to the
fibre width distribution. Naturally, this result applies strictly only in the case
of infinite length fibres, however for typical fibre aspect ratios and levels of
coverage, it may be applied to finite length fibres as confirmed by the results
of Kallmes and co-workers discussed above [90,106].

Void distribution

As in earlier sections, the modelling of the void distribution in fibre networks
is presented here in two parts; firstly the porosity distribution and secondly
the pore size distribution. The porosity distribution, i.e. the complement of
the density distribution, is given, by analogy to the distribution of local
grammage, as the distribution of local density of finite zones. From the Cen-
tral Limit Theorem in statistics, we expect the distribution of local density or
porosity to be Gaussian; recently Dodson and Sampson [86] proposed that
the relationship between local grammage and local thickness could be mod-
elled by a bivariate Normal distribution such that the variance of local dens-
ity is given by

σ2
x(ρ̃net) = � β̄

z̄ �
2

�CV 2
x(β̃) −

2Covx(β̃,z̃)

β̄ z̄
+ CV 2

x(z̃)� , (92)

where ρnet is the network density, z is network thickness, CVx(β̃) and CVx(z̃)
are the coefficients of variation of local grammage and thickness respectively
and Covx (β̃, z̃) is the covariance of z̃ and β̃ and is given by

Covx (β̃, z̃) =  β̃ z̃ − β̄ z̄ .

In a subsequent publication, Dodson et al. [107] tested Equation (92) against
experimental data and found excellent agreement for laboratory formed net-
works with a range of formations.

At present, Equation (92) does not allow the variance of local density to be
determined analytically for random fibre networks. We have seen that the
variance of local grammage may be determined analytically however, the
local thickness of a zone, and hence the variance of local thickness, is
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dependent not only on the local coverage but also on the vertical separation
of fibres and the distribution of this property. Theory describing the pore
height distribution in random networks is presented by Dodson [108] in these
proceedings and measurements of pore height suggesting a negative exponen-
tial distribution are given by Niskanen et al. [109,110] for simulated random
structures incorporating fibre flexibility as a variable; similar distributions are
reported by Holmstad and Gregersen [111] who used image analysis to meas-
ure the pore heights in paper cross-sections. The problem of combining pore
height and grammage distributions to yield sheet thickness distributions
remains to be solved. The recent data of Dodson et al. [112] shows however
that there are strong correlations between the coefficients of variation of
thickness and grammage for laboratory formed sheets and that the mean
sheet density decreases with worsening formation.

The second class of void distribution of interest is the distribution of pore
areas and pore radii. The result of Miles [56] that the radii of inscribed circles
have a negative exponential distribution has already been mentioned. In the
same article, Miles showed that the expected number of sides per polygon is 4
and this result was used by Kallmes and Corte [90] to derive the probability
of pore areas for squares of side g where g has a negative exponential distri-
bution. The resulting expression may be written [113]

g(ap) =
√π

2ḡ

e−√apπ

ḡ

√ap

, (93)

where ap is pore area. The derivation was extended by Corte and Lloyd [113]
who derived the probability density function for rectangular pores with sides
drawn from independent identical negative exponential distributions such
that

g(ap) =
2

ḡ2
K0(ζ) where ζ =

2√ap

ḡ
(94)

and K0(ζ) is the zeroth order modified Bessel function of the second kind.
Corte and Lloyd compared pore area distributions obtained from com-

puter simulations of random networks with those given by Equations (93)
and (94) and observed that Equation (94) gave the better approximation.
Defining the polygon radius rp as that of a circle with area equal to that of a
polygon such that
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rp = �ap

π
,

Corte and Lloyd determined the distribution of pore radii which has prob-
ability density

h(rp) =
4πrp

ḡ2
K0(ζ) where ζ =

2√πr

ḡ
(95)

and the mean pore radius and variance of pore radii are given by

r̄p =
√πḡ

4
(96)

σ2(rp) = � 1

π
−

π

16 � ḡ2 (97)

respectively. An important feature of Equations (96) and (97) is that they impli-
citly state that in a random fibre network, the standard deviation of pore radii
is proportional to the mean pore radius and that the coefficient of variation
of pore radii is constant and given by √16 − π2/π ≈ 0.788. Corte and Lloyd
observed also that the probability density given by Equation (95) was well
approximated by the lognormal distribution. Measurements of the pore
radius distribution using fluid porometry as discussed earlier were presented
by Corte and Lloyd for laboratory formed sheets with differing formations,
and by Bliesner [114] for laboratory formed sheets with differing grammages,
show that the standard deviation of pore radius is indeed proportional to the
mean; the mean pore radius decreasing with increasing grammage and
improved formation. Note however that, in contrast to the relationships given
above, the data of Corte and Lloyd and those of Bliesner suggest that the
coefficient of variation of pore radii increases with increasing pore radii; this
result is discussed further in our consideration of non-random networks.

In filtration applications, the distribution of interest is the area frequency
of pore radii, because, given two circular voids of differing area, the prob-
ability of a particle encountering a given void is proportional to its area. The
area frequency distribution of inscribed circles in a random fibre network has
been derived by Castro and Ostoja-Starzewski [115] and is given by

j(rin) = 4μ3
λ r2

in e−2μ
λ

rin, (98)
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where rin is the radius of an inscribed circle and μλ is the total fibre length per
unit area which, from Equation (59), is given by

μλ =
c̄

ω
,

such that the area weighted mean and variance of inscribed circle radii are
given by

r̄in =
3

2μλ

=
3

2

ω

c̄
(99)

σ2(rin) =
3

4μ2
λ

=
3

4 �ω

c̄ �
2

. (100)

Thus the standard deviation of inscribed circle radii is proportional to the
mean inscribed circle radius and the coefficient of variation of inscribed
circles is constant and equal to 1/ √3 ≈ 0.577.

Since the free-fibre length distribution is insensitive to fibre width, it follows
that the pore radius distribution is also, for a given total fibre length per unit
area. A further parameter of interest, which might be used to combine the
pore area and porosity distributions is the expected number of pores per unit
area n̄pore. This property was derived for a 2-D random network of fibres by
Piekaar and Clarenburg [116] and is given by

n̄pore = �1 −
μ

A � �μπ (μ − 1) −
μ

2 � , (101)

where, μ is the number of fibres per unit area.

Non-random networks

As discussed previously, the structure of paper, particularly that formed on a
paper machine, departs significantly from that given theoretically for random
networks in two main ways. Firstly, forming consistencies are typically too
high to allow fibres to remain independent in suspension and hence the sheet
is formed from a flocculated network; secondly, where there is an oriented
flow, fibres align themselves preferentially in the direction of flow giving rise
to a nonuniform fibre orientation distribution. The interaction of fibres in
flowing suspensions during the filtration process and the influence of paper-
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making variables are discussed in the sequel; here we consider the modelling
of non-random networks.

Fibre orientation

The interaction between fibres in suspension and the influence of forming
section hydrodynamics on the fibre orientation distribution in paper are
discussed by Niskanen [4] and several of the more common functions
used in the modelling of fibre orientation effects are given by Mark [13] and
Schaffnit [102]. Here, the probability densities for some of these functions are
given and compared; functions are given here in a form such that the max-
imum and mean fibre orientation occurs at an angle of π/2, i.e. the machine
direction; where the maximum orientation occurs at an angle ±ψ to the
machine direction, parameter θ in Equations (102,105) and (106) to (108)
should be replaced by (θ ± ψ).

• The Cosine distribution has probability density given by

s(θ) =
1

π
(1 − �1 cos(2θ) − �2 cos(4θ) − . . . − �n cos(2nθ)) (102)

where 0 ≤ �1, �2 . . . , �n ≤ 1 and the variance is given by

σ2(θ) =
π2

12
−

π

2
�1 −

π

8
�2 − . . . −

π

2n2
�n (103)

and the orientation ratio is given by

s(π/2)

s(0)
=

π( − �1 + �2 − �3 + . . .) − 1
π(�1 + �2 + �3 + . . .) − 1

(104)

Often the function is truncated for ease of manipulation such that

s(θ) =
1

π
(1 − � cos(2θ)) (105)

which has variance σ2(θ) =
π2

12
−

π

2
� and orientation ratio 

1 + π�

1 − π�

12th Fundamental Research Symposium, Oxford, September 2001 1255

The Structural Characterisation of Fibre Networks in Papermaking Processes



• The von Mises distribution has probability density given by

s(θ) =
1

πI0(�vm)
 �−evm cos(2θ) (106)

where I0(�vm) is the zeroth order modified Bessel function of the first kind.
The variance must be determined by numerical integration using

σ2(θ) = � π

0
θ2 s(θ) dθ −

π2

4
,

and the orientation ratio is e2�vm.

• The elliptical distribution has probability density

s(θ) =
l�

π

1

l2
� cos2(θ) + sin2(θ)

for l� > 1 . (107)

Again the variance must be determined by numerical methods; the orienta-
tion ratio is l 2

� .

• The wrapped Cauchy distribution has probability density

s(θ) =
1

π

1 − �2
c

1 + �2
c + 2�c cos(2θ)

. (108)

The variance must be determined by numerical integration and the orienta-

tion ratio is 
(�c + 1)2

(�c − 1)2
.

It turns out that the elliptic and wrapped Cauchy distributions are identical at

a given orientation ratio, i.e. substitution of l =
�c + 1

�c − 1
 into Equation (107)

yields, on simplification, Equation (108). Figure 18 shows the fibre orienta-
tion distributions for the single-parameter cosine, von Mises and the wrapped
Cauchy/elliptical distributions, at an orientation ratio of 3:1; the coefficient
of variation of fibre orientation angle is plotted against orientation ratio for
these three functions in Figure 19. It is readily apparent that the coefficient of
variation of fibre orientation is only weakly dependent on the orientation
ratio and is influenced only slightly by the choice of distribution function.
Note also that for a uniform fibre orientation distribution as applied to
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random networks, s(θ) = 1/π, the variance σ2(θ) = π/12 and the orientation
ratio is 1.

The effect of a fibre orientation distribution on the distribution of mass
density in networks with randomly positioned fibre centres was investigated
by Dodson and Fekih [117] who derived the autocorrelation coefficient for
fibres oriented with probability density given by a one parameter cosine dis-
tribution. A 2:1 fibre orientation ratio was shown to increase the coefficient
of variation of local grammage for square inspection zones by around 14 %
relative to that given for a random network of the same fibres with a uniform
distribution of orientations.

Schaffnit and Dodson [118] noted that the experimental results of Water-
house [44] and the simulation data of Cresson [119] both showed little or no
influence of fibre orientation distribution on the distribution of local gram-
mage and therefore disagreed with the theoretical result of Dodson and
Fekih [117] discussed above. Schaffnit and Dodson derived the autocorrela-
tion function, and hence the fractional between zones variance for fibres with
axes orientations given by the one-parameter cosine distribution, the
wrapped Cauchy distribution and a rectangular distribution. The resulting

Figure 18 Comparison of functions describing fibre orientation distribution at
orientation ratio 3:1.
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expressions and computations showed the distribution of mass density to be
insensitive to fibre orientation for the one parameter cosine distribution, to
be negligibly less uniform with increasing orientation for the wrapped
Cauchy distribution and to be slightly more uniform with increasing orienta-
tion for the rectangular distribution. In conclusion, Schaffnit and Dodson
considered the distribution of mass density to be only slightly influenced,
if at all, by the degree of fibre orientation; the result of Dodson and
Fekih [117] was identified as being attributable to an approximation in the
derivation. Schaffnit and Dodson showed also that the introduction of an
additional term in the cosine distribution had a negligible effect on the distri-
bution of mass density. It should be noted however that in commercially
formed networks, fibre orientation is influenced by forming section hydro-
dynamics, which in turn influence formation and these effects may well be
coupled, see e.g. [120].

The findings of Schaffnit and Dodson [118] were confirmed in a simulation
study by Soszynski [121] who computed the fractional between zones vari-
ance for networks of rectangular fibres with randomly located fibre centres
and with axes oriented with probability density given by a two parameter
cosine distribution

Figure 19 Coefficient of variation of fibre orientation plotted against orientation
ratio.
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s(θ) =
1

π
+

cos(2θ)

π
+

cos(4θ)

2π
. (109)

such that the orientation ratio was 5:1. Soszynski found that for square
inspection zones, the fractional between zones variance was insensitive to the
orientation of fibres. For rectangular inspection zones however, the fractional
between zones variance was dependent on fibre orientation.

Corte and Kallmes [73] note that a preferential fibre orientation reduces
the mean number of contacts per fibre and hence increases the mean free fibre
length and the mean polygon area but decreases the number of polygons per
unit area. In contrast, Castro and Ostoja-Starzewski [115], state that the
number of polygons per unit area and the area-frequency of inscribed
circle radii is insensitive to the fibre orientation distribution. Kallmes and
Bernier [122] note that increased fibre orientation introduces a similar
Relative Bonded Area distribution but does not affect the relative fractions of
fibre areas in contact with 0, 1, or 2 fibres as given by Equations (84) to (86); this
is perhaps unsurprising since these expressions are functions of the mean
coverage only.

Flocculation

A requirement of modelling the structure of flocculated networks is that the
location of each fibre is no longer independent of the location of other fibres;
nevertheless, the inherent stochasticity of the structure must be retained. The
first approach to this problem was presented by Corte and Kallmes [73] who
considered a 2D structure of randomly placed circles of uniform radius;
areas covered by circles were assumed to contain a number of points drawn
from a Poisson distribution, and areas not covered by circles were assumed to
contain points drawn from another Poisson distribution with smaller mean.
The parameter modelled was the distribution of the number of points per
unit area, which, for sufficiently large zones, is proportional to the distribu-
tion of local grammage. Kallmes and Bernier [122] simulated flocculation by
generating a random array of fibre centres within an area and subdividing
the area into square zones and then calculating the centre of gravity of each
zone. Fibre centres within each zone were then moved towards or away from
the centre of gravity of that zone to generate ‘positively flocculated’ or
‘negatively flocculated’, i.e. disperse, structures respectively.

In a simulation study, Gorres et al. [123] generated images of flocculated
networks by specifying circular regions with randomly located centres in a
plane and placing nfloc fibres, modelled as rectangles, with centres distributed
randomly within these circular regions. Gorres et al. varied the number of
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fibres within such a floc and the diameter of the circular regions to vary floc
density. The results showed worsening formation was associated with an
increase in the number of fibres per floc and the autocorrelation coefficient
was approximately proportional to the logarithm of floc density. Gorres et al.
simulated also the random deposition of solid disks with the same radii and
densities used for the floc deposition model; the results indicated that the
formation of the sheet was largely insensitive to the choice of fibre or disk
model at high floc densities but was highly sensitive at lower floc densities.

An analytic approach to a similar problem was given by Deng and Dodson
[124] who noted that the formation number nf,x, defined previously, if con-
stant, represents approximately the number of fibres in a clump which, if
dropped at random, would have exhibited the same structural variability.
Noting that experimental measurements of nf,x made on commercial papers
show a proportional dependence on zone size, Deng and Dodson derived the
autocorrelation function for regular stars with ns arms, i.e. representations of
‘hard-centred’ flocs formed from ns fibres with all fibres in a star crossing at
the fibre centre; the full derivation is given in Chapter 3 of [12]. Whilst the
variability observed in a given sample could be reproduced at a given inspec-
tion zone size using the star model, the calculated values of nf,x were
constant; Deng and Dodson attributed the difference to the fact that real
flocs are not hard-centred and cooperative drainage effects, as proposed by
Wrist [125], may act upon flocs in the sheet forming process.

An analytic approach to modelling planar flocculated structures was pre-
sented by Farnood and co-workers [126,127] who derived the variance of
local grammage of a network of low-grammage disks with and without a
distribution of diameters. Farnood et al. found that the decay of variance
with zone size found in commercially formed papers could be achieved also
by the random deposition of such disks with uniform grammage and a log-
normal distribution of disk radii; though for small inspection zone sizes the
approximation given by uniform sized disks was also excellent. For a struc-
ture made from disks of mean diameter D̄ and mean grammage Ḡ, the vari-
ance of local grammage using square zones of side length x is approximated
by

σ2
x (β̃) ≈ β̄Ḡ(1 −

2x

πD̄
+ . . .) for x ≤ D̄ . (110)

Equation (110) may be derived from the formulae given on pages 97–99
of [12] and a similar expression, arrived at by numerical methods is given by
Farnood [126]. Since the uniform size disk model gives good agreement at
small inspection zone sizes, parameters Ḡ and D̄ can be determined from
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measurements of variance at small scales. Since the point variance for a
random structure of disks is given by

σ2(β) = β̄Ḡ , (111)

then Ḡ may be calculated by extrapolating small scale variance data to deter-
mine the variance at points. In practice this is best achieved by taking the
logarithm of local variance plotted against zone size, which is approximately
linear at small scales of inspection. Knowing Ḡ, D̄ may be calculated from the
differential form of Equation (110)

d (σ2
x (β̃))

dx
= −

2β̄Ḡ

πD̄
for x ≤ D̄ (112)

In an analysis of 130 machine-made and laboratory formed papers,
including 22 reported by Corte [95], Farnood and Dodson [128] reported a
coefficient of determination of 0.99 for the correlation

σ(D) = 1.2D̄
2
3 (113)

for lognormal distributions of disk diameters. A subset of these data1, given
in an appendix to [126], is plotted in Figure 20. The result, termed the similar-
ity law of formation by Farnood and Dodson [128] is important since the data
on which the regression was performed span 25 years of papermaking and
the correlation is applicable across a range of commercial and laboratory
forming mechanisms. Since the standard deviation of disk diameters is so
closely correlated to the mean disk diameter, sheet structures may be quanti-
fied by two independent parameters, namely the mean disk grammage Ḡ and
the mean disk diameter D̄ which correspond to the intensity and scale of
mass distribution respectively [126,127,128]. In a subsequent simulation
study, Farnood et al. [129], generated a graphical ‘formation diagram’,
allowing rapid semi-quantitative assessment of the formation of a sample by
comparison with the images.

Void distribution

It was shown in the discussion of random networks that the distribution of
density could be described via the bivariate Normal relationship between

1Note that data for sample numbers 64 to 72 and 96, given in the appendix to [126] are not
plotted in Figure 20 since these data arise from analysis of simulated structures.
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local thickness and local grammage in the network [86]; Equation (92) states
that the variance of density at a given scale of inspection is given by the
coefficients of variation of local grammage and thickness and their covari-
ance. For flocculated structures, the coefficient of variation of local gram-
mage may be estimated via the disk model of Farnood et al. [126,127,128];
however, as noted for random structures, analytic expressions for the variance
of thickness or the covariance of local thickness and grammage are not yet
available. Nevertheless, the experimental data of Dodson et al. [107] show
that Equation (92) holds equally well for sheets with approximately random
structures as for highly flocculated sheets. The measurements presented
in [107] were made on sheets pressed at the standard laboratory pressure of
345 kPa (50 psi) and it is likely that the higher pressures encountered in the
manufacture of machine-made papers will result in departure of the local
thickness-grammage relationship from bivariate Normal. This remains to be
verified by future experimental work which should indicate the appropriate
direction for subsequent modelling studies.

We have noted already the agreement observed by Corte and Lloyd [113]
between their model of the pore radius distribution in random networks and
measurements made on flocculated sheets; both theory and experiment sug-
gesting that the standard deviation of pore radii was proportional to the
mean pore radius. Dodson and Sampson [130] noted that this agreement was

Figure 20 Relationship between mean and standard deviation of floc diameter. Data
from Farnood [126]; broken line has gradient 1.2 as given by Equation (113).
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surprising since, by their very design, the sheets prepared by Corte and Lloyd
were manifestly non-random. Now, Corte and Lloyd’s derivation used the
established analytic result that the distribution of free-fibre lengths in a ran-
dom network is negative exponential. Neither experimental measurements
nor the equivalent analytic result exist for flocculated networks. Dodson and
Sampson noted however that in a flocculated sheet, dense regions will consist
of several small free-fibre lengths and sparse regions will consist of fewer,
larger free-fibre lengths, giving rise to the expectation that the free-fibre
length distribution in a flocculated network will exhibit a positive skew and a
greater variance than that in a random network. Also, the results of simula-
tions by Scharcanski and Dodson [131] suggested that the free-fibre length
distribution in flocculated networks could be approximated by a family of
gamma distributions which exhibit a positive skew.

Accordingly, Dodson and Sampson [130,132] rederived the theory of
Corte and Lloyd [113] using the gamma distribution to describe the free-fibre
length distribution. The gamma distribution has probability density given by

f (g) =
bk

Γ(k)
gk−1 e − bg (114)

with mean ḡ = k/b and variance σ2(g) = k/b2. Note that the negative exponen-
tial distribution is a special case of the gamma distribution such that when
k = 1, Equation (114) recovers Equation (91) with ḡrand = 1/b.

Dodson and Sampson [130] derived the probability density of pore areas as

g(ap) =
2ap

k − 1 b2kK0(ζ)

Γ(k)2
, where ζ = 2b √ap (115)

and K0(ζ) is the zeroth order modified Bessel function of the second kind.
The probability density of pore radii was given by Dodson and Sampson as

h(rp) =
4b2k πkr2

p
k − 1 K0(ζ)

Γ(k)2
, where ζ = 2brp √π . (116)

The mean and variance and coefficient of variation of h(rp) are given by:

r̄p =
Γ(k + 1

2)2

 b√πΓ(k)2
(117)

σ2(rp) = r̄2
p � k2Γ(k)4

Γ(k + 1
2)4  − 1� (118)
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CV(rp) = � k2Γ(k)4

Γ(k + 1
2)4

− 1 (119)

respectively. An important feature of the model is that we have the analytic
result that when k = 1, Equations (115) to (118) recover Equations (94) to
(97). Thus, we have a unified model for the pore radius distribution in random
and nonrandom networks; the random case existing as a 1-parameter special
case of the 2-parameter family of distributions. In fact, the probability
density function given by Equation (116) is itself well approximated by a
gamma distribution with k  � 1

2 ((16k2 + 1)
1
2 − 1) and b  � 2b√π [133].

Dodson and Sampson [130] found good agreement between the pore
radius distribution given by Equation (116) and the lognormal distributions
reported by Corte and Lloyd [113] and Bliesner [114]. They calculated also
parameters k and b for these data, and found that these exhibited an affine
relationship when plotted against each other; both k and b increasing with
grammage and decreasing with worsening formation.

As yet, the theory of Dodson and Sampson does not provide any insights
into the observed proportionality between the standard deviation of pore
radii and the mean pore radius observed by Corte and Lloyd [113] and
Bliesner [114]. Good agreement has been shown however between this theory
and experimental data [134] and it has the benefit of incorporating random
networks as a special case. Note also that the gamma distribution has been
found to accurately describe the pore radius distribution in a range of sto-
chastic porous media including fibrous filters, granular beds and sintered
metal plates, see e.g. [135,136,137].

Recently, Sampson [133] has argued that, since pore radii are real and
positive then any plot of the standard deviation of pore radii against the
mean pore radius should pass through the origin; it follows directly that if
this relationship is linear then the coefficient of variation of pore radii is
constant and equal to the gradient of the plot. Experimental data for fibres of
differing lengths and coarseness, but of similar width, presented in [133] is
given in Figure 21; there are two important features which are being
incorporated into ongoing theoretical studies at UMIST. Firstly, the effects
of changing grammage and formation cause the standard deviation and the
mean to move along the same line, and secondly, the intercept with the ordin-
ate is close to zero, indicating that the coefficient of variation of pore radii is,
at least to a first approximation, independent of the grammage and formation
of the sheet.

The pore radius distribution models of Corte and Lloyd [113] and Dodson
and Sampson [130] depend directly on the free-fibre length distribution.
Indeed, Dodson and Sampson [130] used their theory to back-calculate the
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free-fibre length distribution from the pore size data of Corte and Lloyd.
Since the free-fibre length distribution is determined to some extent by the
fibre orientation distribution [73] then we expect also a dependence of the
void structure on the fibre orientation distribution; also, the recent simula-
tion results of Kim and Pourdeyhimi [138] show the mean pore area to
increase with increasing anisotropy. The dependence of void structure on
anisotropy has been modelled by Silvy [139] who defines an equivalent pore as
a polar representation of the length-weighted orientation distributions of
fibre segments which is ‘equivalent’ to the mean shape of voids within the
sheet [13]. Thus the equivalent pore is the contour E obtained in the plane of
the sheet by cumulatively placing fibre segments end to end whilst maintain-
ing their orientation [102] where the radius of curvature at a given angle θ is
given by

R(θ) =
dLθ

dθ
(120)

Figure 21 Standard deviation of pore radii plotted against mean pore radius. Data
shown is for laboratory formed sheets with nominal grammages 20, 40, and 60 g m−2

and a range of formations formed from TMP, Chemical softwood and a 1:1 blend of
the two pulps.
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where Lθ is the cumulative length of fibre segments projected onto the plane
whose orientations lie between θ and θ + Δθ. The length weighted orientation
distribution is given by

nlθ =
1

L
R(θ) (121)

where L is the cumulative length of all fibre segments in the network and the
perimeter of the contour E is 2 L.

FLOCCULATION AND SHEET FORMING DYNAMICS

The structural characteristics of the fibre suspension from which a sheet is
formed will influence those of the formed sheet. A thorough overview of the
physics of forming is given by Norman [140,141] who, with Söderberg, con-
tributes also a review on the subject of forming to this symposium. The
mechanics of fibre flocculation and dispersion have been studied extensively
by Kerekes and co-workers and are reviewed in [2,72,142]. It is not the pur-
pose of this article to repeat the material in these reviews; it is important to
note however that the extent of flocculation in the network is influenced by
the presence of turbulent eddies, their scale and their rate of decay through
the associated shear forces acting upon fibres. The design of headboxes and
dewatering elements involves consideration of such flows and the develop-
ment of flow geometries to optimise dispersion. The relationship between the
scale of eddies and floc evolution and rupture is discussed and modelled by
Steen [143,144,145] and expressions relating fibre geometry and flexibility to
floc strength are given by Kerekes [142], Farnood et al. [146] and Andersson
et al. [147]. Here, observations relating the structure of suspensions to those
observed in the formed sheet are discussed. Whilst recognising the import-
ance of chemical additives to the flocculation propensity of fibre suspensions,
a result given by Chatterjee [148] greatly simplifies the analysis. Chatterjee
studied the effects of chemical flocculants and increased suspension consist-
ency, i.e. increased potential for mechanical flocculation, and concluded that
their effects on the distribution of mass density of formed sheets were not
easily distinguished. It seems therefore the interaction of fibres in suspension
generates a similar class of flocculated structures, whether promoted by
chemical or physical means.

As we have seen in the discussion of fibre orientation distributions,
oriented flow and a jet to wire speed difference introduce oriented shear in the
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forming section which in turn generates a fibre orientation distribution.
Niskanen observed that the shape of the resulting distribution was sensitive
to the flexibility of fibres in suspension; flexible fibres adjusting to shear
forces by bending along their length whilst stiffer fibres adjust by rotation [4].
The orientation of flocs has been studied by Praast and Göttsching [120] who
measured the orientation of local gradients of light transmission images; the
technique is similar to that described by Scharcanski and Dodson [149,150]
who reported good agreement of measurements of spatial anisotropy made
on light transmission images and grammage distributions taken from
β-radiographs. Praast and Göttsching [120] observed good correlations
between the average orientation of flocs and that of fibres; both properties
exhibiting similar profiles in the cross-machine direction. A secondary orien-
tation effect was demonstrated for Fourdrinier formed papers by Finger and
Majewski [151] who found that fibres had a small but appreciable orientation
to the plane of the sheet.

Given a sufficiently dilute suspension, say in the chamber of a laboratory
sheet former, the structure of the formed sheet exhibits a similar variability to
a random network [12,102] and the measured influence of changing fibre
length and coarseness is broadly in line with theoretical expectation [152,153].
In commercial forming processes, the interaction of fibres results in a floc size
distribution in the suspension. The measurements of Hourani [154,155] and
those of Karema et al. [20,21] suggest that this distribution is approximately
lognormal, i.e. has a positive skew and a long tail. The data of Hourani [155]
is plotted in Figure 22. Farnood [126] compared the data plotted in Figure 22
for flocs in suspension with those plotted in Figure 20 for sheets. The regres-
sion represented by the broken line in Figure 22 is that given by Farnood and
is given by

σ(D) = 0.807D̄1.246 (122)

with a coefficient of determination of 0.96. Noting the similarity between
Equations (122) and (113) Farnood attributes the different coefficient and
exponent of D̄ to the resolution of Hourani’s measurements, i.e. 0.3 mm, and
the fact that the analysis of radiographs which yielded Equation (113) con-
siders also mass variability within flocs which Hourani’s data does not. The
solid line in Figure 22 represents a 1:1 relationship and Farnood noted that
truncation of the lognormal distribution using the resolution of Hourani’s
measurements gives such a relationship between the standard deviation and
the mean. This relationship was studied by Raghem-Moayed and Dodson
[156] who modelled the evolution of flocs using a gamma distribution to
parameterize random walks in three dimensions. For their parameter of floc
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size X, Raghem-Moayed and Dodson showed the standard deviation of floc
size to be related to the mean according to:

σ(X ) = 1.24X̄ 0.67 (123)

Equation (123) coincides with the empirical ‘similarity law of formation’
given by Equation (113) and therefore strongly supports the use of the lognor-
mal distribution to represent floc sizes and the use of the gamma distribution
to represent the distances between fibre crossings.

The data of Hourani, those of Farnood and the analysis of Raghem-
Moayed and Dodson indicate a strong relationship between the structural
characteristics of a fibre suspension and those of sheets formed by filtration
of such a suspension. Further evidence of such relationships is provided by
Dodson and Schaffnit [157] who examined the data of Corte [95] and
observed that the formation number at the 1 mm scale of inspection as given
by Equation (71) was correlated to the crowding number in the headbox as
given by Equation (4) and mean fibre length according to the expression

nf,1 = 2.6 + 0.13 ncrowd − 1.34λ̄. (124)

Figure 22 Relationship between mean and standard deviation of floc diameter. Data
from Hourani [155]; broken line represents regression on the data, solid line represents

1:1 relationship.
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Log-linear regression on the same data was presented by Deng and
Dodson [124] who found

nf,1 = e1.26 + 0.0253ncrowd − 0.0125 °SR (125)

= e0.721 + 0.0396ncrowd − 0.161 λ̄ , (126)

where °SR is the Schopper-Riegler wetness of the pulp. Kiviranta and Dod-
son [158] investigated the relationship between formation, headbox crowding
and table activity on 141 sheets formed on a pilot Fourdrinier machine. They
observed the following correlation:

nf,1 = e0.715 + 0.025ncrowd − 0.375 TA , (127)

where TA is a measure of the table activity through measurements of forming
table surface roughness obtained via image analysis and discussed by Kivi-
ranta and Paulapuro [159]. It is instructive to compare Equations (125) to
(127); whilst the third variable in the exponent differs between the analyses,
the coefficient of ncrowd is remarkably stable over the quarter of a century
which elapsed between the acquisition of data by Corte and by Kiviranta and
Dodson. These relationships do not provide any insights into the physical
processes occurring during the filtration of a flocculated suspension to form a
sheet. Nevertheless, the existence of a correlation between indices quantifying
flocculation propensity in suspension and flocculation in the sheet, and its
stability over time, provides a useful basis for formation control through
informed fibre preparation.

The interaction between flocs in suspension, the structure of the initial
layers formed by its filtration, and the interaction between the forming struc-
ture and the arriving suspension was discussed by Wrist [125]. Wrist argued
that a consequence of the lower resistance to flow of low grammage regions
in the evolving network structure was that fibre would be preferentially
deposited in these regions. The concept seems intuitively correct, yet it is well
established that the variance of local grammage in real papers is typically
greater than that calculated for random networks at scales of inspection
similar to a fibre length, i.e. nf,λ̄ ≥ 1 [12,95]. There is some evidence however
that at small scales of inspection, the variance of local grammage may be less
than for a random network [99,100,140]. These results suggest that the pref-
erential drainage effect proposed by Wrist may even out the grammage distri-
bution at small scales of inspection. The effect was studied in a simulation by
Gorres et al. [160] who assumed that fibre ends were drawn preferentially
to sparse regions in a simulated network; the results showed the expected
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reduction in the variance of local grammage for a network formed with
preferential drainage when compared with random network; also, the effect
was more pronounced for short fibre furnishes. It should be noted that the
simulations of Gorres et al. [160] consider only the deposition of single fibres
and not of flocs.

Experimental evidence for the existence of a preferential drainage effect
was presented by Sampson et al. [161] who investigated the evolution of the
mass distribution in laboratory formed networks by testing a 1-parameter
model previously proposed by Dodson [93]. The results of Sampson et al.
showed preferential drainage effects to occur in the filtration of dilute sus-
pensions, i.e. those with ncrowd ≈ 1, and flocculated suspensions. The results
showed also that since the initial structure of flocculated suspensions was
more nonuniform than for dilute suspensions, the preferential drainage effect
was stronger, though the net effect of flocculation dominated that of prefer-
ential drainage resulting in a nonuniform network. For suspensions with ncrowd

up to about 12, the correlation

nf,1 = 44
ncrowd

β̄
(128)

was found to give good agreement for 4 g m−2 ≤ β̄ ≤ 50 g m−2. The preferential
drainage effect has been illustrated also for isotropic and anisotropic labora-
tory formed sheets by Norman et al. [162]. Sampson et al. noted that the
identification of preferential drainage in the forming of laboratory sheets
from dilute suspensions means that whilst such sheets exhibit similar proper-
ties to random networks, the fact that there is an interaction between arriving
fibres and the previously formed structure means that structural evolution
is a non-random process. Further evidence of preferential drainage is given
by Lucisano and Norman [163] who inhibited fibre settling and fibre inter-
action by modifying the viscosity of the suspending medium and the surface
charge of fibres and observed improved network uniformity with increased
drainage rate.

It is worth noting finally the forming mechanism described by Radvan and
Gatward [164] involving the suspension of fibres in foam and delivery of the
suspension onto a modified Fourdrinier former. The system allowed good
dispersion of the fibres in suspension and the resulting sheets exhibited good
uniformity.
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CONCLUSIONS

In conclusion, the material presented within this review is summarised and a
group of open problems are identified.

Flocculation in suspensions

Papermaking involves the processing of inherently variable raw materials to
develop physical and mechanical properties whilst minimising the persisting
variability in the final product. A major source of variability in the sheet
stems from the propensity of fibres to interact in suspension which gives rise
to flocculated structures that influence the structural nonuniformity of the
sheet formed from the filtration of a suspension. The propensity of a suspen-
sion to flocculate is influenced by its consistency and the morphology of its
constituent fibres. The concept of the crowding number, calculated using
average values of fibre geometries, has been presented and this seems to
provide a sound dimensionless quantifier of flocculation propensity; recent
theoretical developments have allowed the influence of a lognormal fibre
length distribution, which is typical of many papermaking furnishes, to be
incorporated in the determination of the crowding number.

Statistical characterisation

The measurement of structural nonuniformity in suspensions and in sheets
has been discussed along with the appropriate statistical quantifiers of this
nonuniformity. For unbonded structures such as fibre suspensions, and
lightly bonded structures such as uncalendered sheets formed from unbeaten
fibres, light transmission techniques allow rapid assessment of mass distribu-
tion. For typical furnishes however, the degree of bonding and its distribution
means that radiographic techniques are significantly more informative. The
equivalence of the two most widely used techniques for quantifying scales of
variability in sheets, viz. the decay of the variance of local grammage with
inspection zone size and the power spectrum, has been illustrated using
orthotropic bandpass filtering.

Statistical geometry of random networks

The use of statistical geometry to determine properties of two- and three-
dimensional fibre networks has been presented. Models for three dimensional
networks have considered random networks and allow determination of the
number of contacts per fibre and the variance of porosity which depend on
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fibre geometry through the aspect ratio and fibre width respectively. The
distribution of local grammage in two dimensional random fibre networks is
known analytically and techniques for determining this property for given
fibre geometries and their distribution have been compared. The equations
for determining the distribution of local grammage using the line method
have been stated correctly and a graphical representation has been presented
which allows its rapid determination knowing fibre length and coarseness.
Also of importance is the pore size distribution of a random network and this
depends on the distribution of distances between fibre crossings.

Departures from randomness

The properties of random networks provide the basis for comparison when
quantifying the properties of real sheets. Experimental and theoretical stud-
ies have shown that the distribution of local grammage is insensitive to
changes in the fibre orientation distribution, though increased orientation
increases the mean pore radius. Naturally, flocculation increases mass vari-
ability and this has been modelled as the deposition of fibre clumps and the
deposition of sparse disks. The latter approach has revealed a remarkable
stability in the classes of structures realised in paper-making processes in that
the standard deviation of disk diameters is proportional to the mean disk
diameter raised to the power 2

3. A similar relationship has been observed in
experimental observations of flocculated suspensions and has been derived
analytically.

Forming dynamics

Another type of structural stability has emerged from experimental and the-
oretical studies of the pore size distribution in sheets. Here, the standard
deviation of pore radius is proportional to the mean pore radius and the
coefficient of variation of pore radii is, at least to a first approximation, con-
stant for changes in sheet grammage and flocculation. During forming, the
evolution of the pore structure is directly coupled with the evolution of the
mass distribution. This has been demonstrated through laboratory experi-
ments which have revealed that fibres are drawn preferentially towards sparse
regions in the evolving structure, which have a lower resistance to flow than
dense regions. The effect however is not sufficiently strong to overcome the
effects of flocculation and at scales of inspection around a fibre length, the
measured variance of local grammage is typically greater than that of a
random network of the same constituent fibres.
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Important open problems

We conclude by identifying several open problems which present opportun-
ities for theoretical and experimental study, of varying difficulty:

1. Variance of density in near-planar random networks. As mentioned previ-
ously, the well established analytic result for the variance of grammage in
random fibre networks should be combined with new theory for the pore
height distribution. The pore height distribution is dependent on fibre
geometry through the thickness of fibres and the grammage distribution
is dependent on fibre length, width and coarseness. Thus we expect the
density distribution for random networks to be defined in terms of these
fibre properties.

2. Influence of fibre length distribution on the number of contacts per fibre.
The derivation of the expected number of contacts per fibre in 3D net-
works is based on the concept of the crowding number. As we have seen,
expressions for the influence of a lognormal fibre length distribution on
the crowding number have recently been derived. Derivation of the num-
ber of contacts per fibre on this basis would allow the distribution of the
number of contacts per fibre to be determined.

3. Contact area distribution. The study of the number of contacts per fibre is
of importance in the study of network rheology. Also of importance is
the area of regions of contact; in three dimensions contact area will
influence the frictional forces to be overcome in disrupting a network and
in two dimensions the contact area will influence the available area for
inter-fibre bonding. Incorporation of fibre orientation distributions and
fibre flexibility would be desirable.

4. Statistical model for volume frequency pore size distribution. The
geometric models describing the pore size distribution in sheets give
good agreement with measurements made using fluid porometry. Both
models and measurements yield the number frequency of pores. Whilst
simulation based models exist to describe porosimetric measurements
using e.g. mercury intrusion techniques, statistical models for these
volume frequency pore radii distributions have yet to be derived, though
in a random assemblage we would expect an exponential distribution
of void volumes to be a good first approximation. Such models should
aim to combine the probabilities of pore radii and the pore volumes
associated with them. It is likely that appropriate distribution for pore
radii is the gamma distribution; pore volumes might be modelled as
spheres or cubes with a given distribution of radii or side lengths
respectively.
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5. Influence of fines on variance of local grammage in random networks. It
is typical to assume that fines are distributed uniformly in the plane of
the sheet when determining the variance of local grammage in random
networks. Thus, the fractional between zones variance is less than that
for a furnish without fines by a factor (1 – fines fraction). However, it is
likely that a substantial portion of fine material becomes re-attached to
fibre surfaces. Naturally, fines retained in such a manner will not be
uniformly distributed in the plane of the sheet and instead will act to
increase mean fibre coarseness and width, thus we expect a higher vari-
ance than obtained for a uniform distribution of fines. Consideration
of simple fibre cross-sectional geometries and the effect of fines
attached to their surfaces on their dimensions will allow improved
determination of the variance of local grammage for furnishes contain-
ing fines.

6. Development of a variance ratio for 3D networks. We have seen that the
variance of local volumetric concentration in random 3D networks is
dependent on the fibre width for cubic inspection volumes. This ana-
lytic result should be extended to yield expressions for the variance of
local mass consistency which would allow appropriate measurements of
the same property made on suspensions to be expressed in terms of a
variance ratio allowing comparison of real and random networks simi-
lar to that given by the formation number for sheets. Coupled with
estimates of suspension crowding, such a variance ratio should allow
improved insights into the relationship between suspension and sheet
uniformity.

7. Distribution of optical properties. The solution to Problem 1. should pro-
vide insights into the distribution of optical properties in random net-
works. Naturally, these will be influenced by the intrinsic light scattering
and absorption coefficients of the sheet and it is recognised that theories
such as the Kubelka-Munk assume homogeneity. However, given esti-
mates of the mean light scattering and absorption coefficients, local
homogeneity may be assumed within zones and the scattering and
absorption coefficients weighted according to local density.

8. Coupling of pore size and mass distributions. The models for pore size
distribution incorporate random and non-random cases within the same
family of structures. At present, the contribution of fibres to pore size
models is only to provide the boundaries to pores. By incorporating fibre
width, coarseness and the number of pores per unit area, which is known
analytically only for the random case, it should be possible to associate
each void perimeter with a mass of fibre segments enclosing it. This links
to Problem 4.
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The problems presented above require primarily analytic solutions and
these will typically require experimental validation. The acquisition of suit-
able data for such validation will itself present new problems. The solution of
these problems should allow informed development of improved paper
grades and of the processes by which they are formed.
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NOMENCLATURE

Local averages of variables are denoted by placing a tilde ˜  over the variable;
global averages of variables are denoted by placing a bar ¯  over the variable.
e.g. the variable z represents sheet thickness; z̃ is the local average thickness, z̄
is the global average thickness, z without a tilde or a bar is the thickness at
points. The variance of local thickness at a scale of inspection x is denoted
σ2

x(z̃) and accordingly the standard deviation of thickness is denoted σx̃(z̃).
The coefficient of variation of a variable is given by the ratio of it standard
deviation to the mean and, for thickness, is denoted CVx(z̃).

ap Pore area m2

A Fibre aspect ratio —
Afloc Floc area m2

Ainsp Inspection area m2

b Parameter of gamma distribution m−1

β Sheet grammage g m−2

βfib Fibre grammage g m−2

c Fibre coverage —
Cm Mass consistency kg m−3

Ccrit
m Critical mass consistency kg m−3

Cv Volumetric consistency —
Ccrit

v Critical volumetric consistency —
D̄ Mean disk diameter m
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Dfrac Fractal dimension —
δ Fibre coarseness kg m−1

E Tensile stiffness N m−1

E Contour of equivalent pore —
�1, �2 . . ., �n Free parameters of Cosine distribution —
�c Free parameter of wrapped Cauchy distribution —
�vm Free parameter of von Mises distribution —
F Flocculation index —
FSchar Characteristic floc size m
� Diameter of scanning aperture m 
g free fibre length m
Ḡ Mean disk grammage g m−2

γ Surface tension N m−1

I Light transmittance through a suspension —
I0 Light transmittance through water —
k Parameter of gamma distribution —
κ Absorption coefficient m2 kg−1

κ′ Absorption coefficient m2 g−1

K Weighted fractional between zones variance —
l Spatial wavelength m
lchar Characteristic wavelength m
lmacro characteristic length of macro-scale variation m
lmicro characteristic length of micro-scale variation m
l� Free parameter of elliptical distribution —
L Path length of light through a sample m
Lθ Cumulative length of fibre segments oriented

between θ and θ + Δθ m
L Cumulative length of all fibre segments m
λ Fibre length m
m Mass fraction —
μ Number of fibres per unit area m−2

μλ Total fibre length per unit area m−1

ncrowd Crowding number —
n*crowd Crowding number considering fibre length

distribution —
ncross Number of fibre crossings per unit area m−2

nMP
cross Number of fibre crossings per unit area in MP sheet m−2

ncross, fib Number of fibre crossings per fibre —
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nMP
cross, fib Number of fibre crossings per unit fibre in MP sheet —

ncross, v Number of fibre crossings in a volume V —
ncon Number of contacts per fibre —
nf,x Formation number at zone size x —
nest

f, x Estimated formation number at zone size x —
nlθ Length weighted orientation distribution —
npore Number of pores per unit area —
nv Number of fibres in a volume V —
nx Number of fibres in square zone of side x —
υ Spatial frequency s−1

p Pressure N m−2

Pcross Probability of intersection —
Pfloc Floc perimeter m
Pspec Specific perimeter m−1

r Distance between pairs of points m
rf Fibre radius m
rin Inscribed circle radius m
rp Pore radius m
RBA Relative bonded area —
ρ̃ Fractional between zones variance —
ρw Density of water kg m−3

ρfib Density of dry fibre wall kg m−3

S Bending stiffness N m
°SR Schopper-Riegler wetness °SR
TA Table activity —
θc Contact angle rads
ϑ Angle between pairs of fibres rads
Ux Nonuniformity number —
V Volume m−3

Va, Vb Coefficients of variation with and without polymer —
ψ Orientation offset angle rads
wk Water retention ratio —
ω Fibre width m
x Side length of square or cubic inspection zone/volume m
z Sheet thickness m
zeff Effective thickness m
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APPENDIX 1: APPROXIMATE FORM OF EQUATIONS (66)

In their original form [38], Equations (66) were presented with decimal
approximations for the coefficients of the functions of λ and x. These are
given here with the second range, i.e., for x ≤ λ ≤ √2x, corrected. Also, Tables
3 and 4 give the value of K to three decimal places for the range of λ/x and x/λ
typically used in the analysis of paper.

⎧
⎪⎪⎪⎪⎪⎪⎪
⎪
⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1 − 0.424
λ

x
+ 0.053

λ2

x2
for λ ≤ x

K =

1.273�xλ � log �x

λ � − log �1 − �1 −
x2

λ2 � � + arcsin �xλ�

+
(λ2 − x2)

3
2

3xλ2 � − 0.053
λ2

x2
+ 0.424

x

λ
− 0.106

x2

λ2
− 1.637 forx ≤ λ ≤ √2x

0.946
x

λ
− 0.318

x2

λ
for λ ≥ x√2

Table 3 Parameter K as given by Equations (66) for λ/x between 0.01 and 100.

λ/x K λ/x K λ/x K λ/x K

0.01 0.996 0.1 0.958 1 0.629 10 0.092
0.02 0.992 0.2 0.917 2 0.394 20 0.047
0.03 0.987 0.3 0.877 3 0.280 30 0.031
0.04 0.983 0.4 0.839 4 0.217 40 0.024
0.05 0.979 0.5 0.801 5 0.177 50 0.019
0.06 0.975 0.6 0.764 6 0.149 60 0.016
0.07 0.971 0.7 0.729 7 0.129 70 0.014
0.08 0.966 0.8 0.694 8 0.113 80 0.012
0.09 0.962 0.9 0.661 9 0.101 90 0.011

100 0.009
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Table 4 Parameter K as given by Equations (66) for x/λ between 0.01 and 100.

x/λ K x/λ K x/λ K x/λ K

0.01 0.009 0.1 0.092 1 0.629 10 0.958
0.02 0.019 0.2 0.177 2 0.801 20 0.979
0.03 0.028 0.3 0.255 3 0.864 30 0.986
0.04 0.037 0.4 0.328 4 0.897 40 0.989
0.05 0.047 0.5 0.394 5 0.917 50 0.992
0.06 0.056 0.6 0.453 6 0.931 60 0.993
0.07 0.065 0.7 0.507 7 0.940 70 0.994
0.08 0.074 0.8 0.553 8 0.948 80 0.995
0.09 0.083 0.9 0.594 9 0.953 90 0.995

100 0.996

1288 Session 8: Paper as a Network

W.W. Sampson



THE STRUCTURAL CHARACTERISATION OF
FIBRE NETWORKS IN PAPERMAKING

PROCESSES – A REVIEW

W.W. Sampson
Department of Paper Science, UMIST

Dick Kerekes University of British Columbia

A very nice paper. I don’t have a question, but I have a comment concerning
the co-efficient .025 that you showed for the formation equations. I think we
have come up with the physical explanation for this. It appears to be based on
the immobilization of fibres. Fundamentally, the immobilization of fibres at
papermaking crowding numbers has be extrapolate as a continuous function
in the range where significant yield stress may exist. The forms of the equa-
tions for yield stress at crowding numbers well in excess of 60 are known. This
is on the way to answering the question that Kit Dodson and Ari Kiviranta
pointed out a number of years ago that this constant should have some
physical significance.

Bill Sampson

That is very nice to hear. In particular because the coefficient you mention
was determined for Fourdrinier formers and we do not have the same data for
twin-wire formers. From what you say, we may expect the same coefficient for
crowding number to persist for these also.

Derek Page Institute of Paper Science & Technology

There is no question that the early work of Corte and Kallmes was a revo-
lutionary step in applying random network theory to the structure of paper.
They realized quite rapidly however that they could not satisfactorily deal
with the structure in the third dimension. The considered what they called a
2D sheet, which had few crossings and very few sites where three fibres
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crossed. They then considered real paper as a layered array of these 2D
sheets. This however was a very unsatisfactory treatment, since it did not
properly account for the interaction between adjacent layers and between
non-adjacent layers. It is a pity that after 40 years no one has come up with an
analytical model that treats directly the whole structure, instead of dividing it
into arbitrary and fictitious layers of making other assumptions that are not
supported experimentally.

Karlo Niskanen faced with this problem, went the simulation route, and
produced his so-called PAKKA model. He was able to simulate a sheet of
regular basis weight by putting down a fibre at random on a plane surface
and adding another fibre, so that when it crossed the first fibre it lay above it.
He was able to incorporate the concept of flexibility by allowing the second
fibre to droop down to the reference surface over a distance that depended on
flexibility. He then continued to add fibres each of which could confirm to the
reference surface or the fibres below it.

Maybe the analytical approach is too difficult and the simulation route would
be better. I don’t know where Kaarlo’s simulation work has reached yet. I
had some objections to some of his assumptions. But with computers getting
more powerful as we speak, it should be possible now to simulate real paper,
without making the unsupportable assumptions that exist in all the purely
analytical models proposed to date.

Bill Sampson

There are a couple of points that arise from what you say. Firstly, regarding
simulation, which I do a lot of myself, you can handle extremely complicated
systems; the PAKKA model is a good example. As we have seen this week, to
handle complicated systems often involves many variables and the risk there
is that with a sufficient number of variables you can have almost any result
that you want.

Secondly, referring to multi-planer models, and we shall hear more of these
during this symposium, then it is important to be aware of the limitations
of a given model. The multi-planer models of Corte and Kallmes, and the
work they later carried out the Bernier, are complex. They do reveal how-
ever interesting information about, for example, the influence of fibre flexi-
bility on the penetration of fibres between different strata of the sheet and
the associated effect on bonding. When using multi-planer models, it is
important to be aware that the layer is a discrete approximation for the
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purposes of modelling but need not necessarily describe fully the structure
of the sheet.

Kit Dodson Department of Mathematics, UMIST

Derek you should know better. After 40 years it is very difficult to get Derek
to read the details. However, the fact of the matter is there are perfectly good
analytic models for 3 dimensional arrangements of fibres of arbitrary shape.
Bill has referred to a number of these, we have some data on the mass struc-
ture, we have data on the pore structure and on the free fibre lengths. This
exists, not only that, it works, and moreover we have models which include
random structures as a special case and extend into the non-random ones in 3
dimensions.
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