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Defect Identification Method for Poplar Veneer Based on 
Progressive Growing Generated Adversarial Network 
and MASK R-CNN Model 
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As the main production unit of plywood, the surface defects of veneer 
seriously affect the quality and grade of plywood. Therefore, a new method 
for identifying wood defects based on progressive growing generative 
adversarial network (PGGAN) and the MASK R-CNN model is presented. 
Poplar veneer was mainly studied in this paper, and its dead knots, live 
knots, and insect holes were identified and classified. The PGGAN model 
was used to expand the dataset of wood defect images. A key ideal 
employed the transfer learning in the base of MASK R-CNN with a 
classifier layer. Lastly, the trained model was used to identify and classify 
the veneer defects compared with the back- propagation (BP) neural 
network, self-organizing map (SOM) neural network, and convolutional 
neural network (CNN). Experimental results showed that under the same 
conditions, the algorithm proposed in this paper based on PGGAN and 
MASK R-CNN and the model obtained through the transfer learning 
strategy accurately identified the defects of live knots, dead knots, and 
insect holes. The accuracy of identification was 99.05%, 97.05%, and 
99.10%, respectively. 
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INTRODUCTION 

Veneer defect detection and identification plays an important role in the production 

process of plywood. The traditional detection method of spot defects on the surface of 

veneer is manual detection, which has high production cost and low efficiency. The 

demand of automation production is increasingly urgent (Yang et al. 2006). With the 

development of artificial intelligence technology, deep learning has achieved positive 

results in image-based classification and target recognition tasks in recent years (An et al. 

2017). However, deep neural networks require large amounts of data; the cost of collecting 

wood images through machines is high (Viguier et al. 2017). Therefore, the dataset of the 

classification machine is usually too small to train a deep network. In addition, a lot of 

manual work is required to mark all the collected images, so deep learning is rarely used 

in the wood industry (Chang et al. 2018). For the detection and classification of wood 

defects, scholars put forward a variety of methods. Gu et al. (2009) proposed a tree support 

vector machine (SVM) to classify four types of wood defects using board images. First, 

the knot image is divided into three different regions, and then the average pseudo-color 

feature of each region is obtained by applying ordered statistical filtering. Support vector 

machine classifier trained with 800 wood knot images has achieved good classification 

results. The performance evaluation showed that the average classification rate of over 400 
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sub images is 96.5% and the error frequency is 2.25% (Gu et al. 2009). In 2012, Amir 

proposed three methods combined with the gray co-occurrence matrix method, local binary 

mode, and statistical moment when extracting the features of defects, and used principal 

component analysis (PCA) and linear discriminant analysis (LDA) to reduce the dimension 

of vectors. Subsequently, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) 

were used for classification, and satisfactory results were achieved in the classification of 

wood defects (Mahram et al. 2012). In 2009, Matti Niskanen used a self-organizing map 

(SOM) neural network to cluster the defects of sawed wood. In terms of feature vectors, 

based on the application of the lumber color histogram, local binary pattern (LBP) 

characteristics were supplemented. Its rotation invariance and gray scale invariance feature 

make the local texture feature extraction more robust (Niskanen and Silven 2003). A 

classification method combining a genetic algorithm and neural network was proposed for 

the wood veneer classification by Marco Castellani. The method is effective in identifying 

single defects on a veneer surface. However, it is difficult to identify two or more kinds of 

defects on a veneer surface (Castellani and Rowlands 2009). He et al. (2020) proposed a 

wood defect identification method based on improved DCNN, and the wood of red pine 

and camphor tree were tested. The overall accuracy reached 99.13%. Urbonas et al. (2019) 

used Faster R-CNN to identify poplar veneer defects, mainly using ResNet152 neural 

network model, and obtained the best average accuracy of 80.6%. He et al. (2019) proposed 

a hybrid full convolution neural network to identify wood types and locations, achieving 

an overall classification accuracy of 99.14% and a pixel accuracy of 91.3%. 

Previous studies focused on image processing, and the accuracy of defect 

identification was not high and the generalization ability was poor. Deep learning was 

applied in this paper to identify wood defects. First, the wood defect and the wood defect 

dataset used in the experiment were introduced, then the defect images were generated by 

a progressive growing generative adversarial network (PGGAN) to expand the dataset. The 

‘Methods’ section explains the deep learning algorithm principle of MASK R-CNN based 

on transfer learning. Experimental results and performance evaluation of the veneer defect 

recognition experiment based on PGGAN and MASK R-CNN are presented in the 

discussion section. Finally, this paper summarizes the research and puts forward the 

prospect. 

EXPERIMENTAL 

Materials 
Dataset preparation 

Defect images were collected using industrial cameras in a Hongrui plywood 

factory (Xuzhou, China); the collected images were manually annotated for the experiment 

(Cetiner et al. 2014). However, due to the particularity of the wood industry, the collection 

and labeling of defects is a burden on financial resources and energy, and it creates an 

uneven distribution of defect samples and poor diversity, which  affect the identification 

accuracy of subsequent neural network models (Samiappan et al. 2011). Therefore, to 

improve the diversity of defect images and balance the sample distribution, it is necessary 

to expand the defect sample database (Yang et al. 2016). The traditional sample expansion 

methods include rotation, mirror image, translation, random cropping, and affine 

transformation (Zhang et al. 2015). However, these methods cannot expand the defect 

details. In this paper, the progressive growing generative adversarial network was adopted 
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to expand the defect details. This method (GAN) is a generative model proposed by 

Goodfellow et al. in 2014. The GAN is structurally inspired by the two-player game in 

game theory (that is, the sum of the interests of two players is zero, and the gain of one 

player is the loss of the other party), and the system consists of a generator and a 

discriminator (Collier et al. 2018). The generator captures the potential distribution of real 

data samples and generates new data samples. The optimization process of GAN is a 

maximum and minimum game problem. The optimization objective is to achieve Nash 

equilibrium, enable the generator to estimate the distribution of data samples, and make the 

discriminator unable to distinguish the real image from the generated image. The goal of 

the whole network makes it impossible for the discriminator to judge. For both true and 

false samples, the probability of the output results was 0.5. Another purpose is to generate 

expanded images with different features from the real samples. The optimization objective 

function can be expressed as: 

~ ( ) ~ ( )
min max  ( , )   [lg   ( )]   [lg  (1  (  ( )))]

data Zx P x z P ZG D
V D G D x D G zE E       (1) 

As shown in Eq. 1, x is the real sample set, Pdata (x) is the distribution of the real 

sample set, z is the noise input into the generator G, and Pz (Z) is the probability distribution 

of noise z. Function min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) consists of two parts, the first part represents the 

input of real data into discriminator D, and maximizes the output entropy to be one. In the 

second part, the noise data outputs false images through generator G. In other words, the 

discriminator D tries to maximize V(D, G), while the generator G tries to minimize it. 

The false image is imported into discriminator D, which maximizes it to 0, while 

the generator tries to reduce the difference between the false image and the real image. In 

other words, the discriminator distinguishes the picture of formula x~𝑃𝑑𝑎𝑡𝑎(𝑥) from the 

false picture generated by generator G(z), and generator G(z) generates the false picture to 

cheat the discriminator D(x) until real pictures are obtained (Harer et al. 2018). However, 

the traditional image generated by GAN cannot achieve high resolution, and the obtained 

dataset is rather fuzzy.  

Fig. 1. The details of the progressive growing generative adversarial network; the images on the 
far right are the generated sample images (fake sample) 

The image required by the dataset in this paper was a 512 × 512 high-resolution 

image. Systems, such as DCGAN, WGAN, and other generation adversarial networks, 

have been unable to meet the requirements. To solve this problem, this paper adopted the 

PGGAN for image synthesis. The core idea of the algorithm is still to generate images for 



PEER-REVIEWED ARTICLE bioresources.com

Hu et al. (2020). “Identifying & classifying defects,” BioResources 15(2), 3041-3052. 3044 

the confrontation between generator G and discriminator D. In addition, the idea of gradual 

training from low resolution to high resolution is introduced. In this paper, the training 

process started from low-resolution (4 × 4) images. Next, layers were gradually added to 

the network to increase the resolution, until the resolution was increased to 512 × 512 to 

obtain the training results, and then the training process exited the whole program. The 

training structure of the neural network (Fig. 1) was drawn. 

As the number of layers increases, the system learns the texture details of real 

samples when training for high resolution. In the process of resolution conversion, the 

transition is completed by adding smooth layers to reduce the impact of sudden resolution 

conversion (Togo et al. 2019). 

Selection of 350 live knot images was carried out randomly, with 350 dead knot 

images and 350 insect hole images from the original data. Training data were thereby 

constructed for image generation. In other words, 1050 defect images were allocated as 

training data. Then the training step was set to 5000. After the PGGAN expanded the 

samples, 100 live knot samples, 100 dead knot samples, and 100 insect hole samples were 

obtained, and the preparation example of wood defect samples are shown in Fig. 2. 

The original insect hole samples Generated insect hole samples 

The original live knot samples Generated live knot samples 

The original dead knot samples Generated dead knot samples 

Fig. 2. Original samples and generated samples 

Each defect shows seven images, of which the three on the left are examples of 

images captured by the camera, and the four on the right are examples of defects generated 

by PGGAN. It can be seen that each image generated by PGGAN completely inherits the 

features of the real image, which can be used as a dataset. 

Methods 
To reduce the steps of making dataset labels and improve the accuracy of image 

recognition and classification, this paper adopted the MASK R-CNN algorithm based on 

transfer learning to identify and classify veneer defects (Yang et al. 2019). MASK R-CNN 

is an object detection algorithm developed from Faster R-CNN. The purpose of object 

detection and segmentation is to distinguish different objects in the images and draw a 

boundary box on the specific object. MASK R-CNN not only can draw a bounding box for 

the target object, but it can also further mark and classify whether the pixels in the bounding 

box belong to the object, which can be used to identify the object, mark the boundary of 

the object, and detect the key points (Nguyen et al. 2018). MASK R-CNN was based on 
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Faster R-CNN, and its application was extended to the field of image segmentation. The 

process of MASK R-CNN is similar to Faster R-CNN, which uses a Region Proposal 

Network (RPN) to extract features and classify and tighten boundary boxes (Li et al. 2017). 

Fast R-CNN adopts RoIPool as the feature extraction method, quantifies each RoI region, 

and solves the size problem of RoI features of different scales by means of maximum 

convergence (Behr et al. 2019). However, the process leads to the loss of spatial 

information, which makes the RoI and extraction features of the original image misplaced 

(He et al. 2019). MASK R-CNN replaces the RoIPool of Faster R-CNN with RoI alignment 

(RoIAlign) and continuously uses the RoIAlign of the result object area marked by Mask 

branch (Qin et al. 2017). 

Because there were not many wood defect images, 80% of wood defect images 

could be taken as the training set and 20% as the validation set. Then, the loss function is: 

𝐿 = 𝐿class + 𝐿box + 𝐿mask. In MASK R-CNN, the most appropriate model was obtained

by minimizing the value of the loss function. The trained model was applied for predictive 

analysis using new data. The loss function of MASK R-CNN was defined as follows:     

     class box maskL L L L    (2) 

The definition of 𝐿class + 𝐿box is the same as Faster R-CNN,  𝐿class + 𝐿box is defined as: 

* * *
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The 𝐿mask is the average binary cross-entropy loss: 
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When Mask R-CNN completed defect identification and classification, a large 

amount of picture data was needed for feature learning. However, collecting wood pictures 

in the wood industry and manually labeling them cost a lot of manpower and material 

resources. Therefore, an effective method to adopt Mask R-CNN in the current task was to 

adopt the strategy of transfer learning. 

Considering that modern image classification models have millions of parameters, 

zero-based training requires a lot of parametric adjustment, as well as a large amount of 

marker training data and high computational bandwidth. Transfer learning mitigates these 

requirements by adopting a model that has already been trained on a related task by reusing 

the learned network. In this paper, the ResNet50 architecture over AlexNet and VGG 

architectures was chosen. This was because the ResNet50 architecture was more compact 

than AlexNet and reduces the possibility of overfitting while requiring less computer 

processing power compared to VGG (Krizhevsky et al. 2017). 

The model of MASK R-CNN based on the ResNet50 network structure was 

established. Through experiments, it was found that the algorithm model of pre-training in 

the common objects in context (COCO) datasets was migrated to the wood defect dataset 

for further training, which could achieve accuracy. Only the final full connection layer of 

the model needs to be modified so that the classifier outputs three values, namely live knot, 

dead knot, and insect hole. A total of 1600 defect images were collected and generated by 

PGGAN. Among them, 1280 images were used as a training set and 320 images were used 
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as a validation set. Classification accuracy and confusion matrix were set as the output; the 

experimental results of MASK R-CNN detection classification were analyzed. In this 

paper, PyCharm (JetBrains, version 2017.1 Community Edition, Prague, Czech Republic) 

was used to compile, train, and test on a computer (Lenovo, Beijing, China) with 16 GB of 

memory, and an i7Core processor with a Titan XP graphics card. 

Fig. 3. Workflow for identifying wood defects 

RESULTS AND DISCUSSION 

To test the wood defect detection algorithm based on PGGAN and MASK R-CNN, 

many experiments were carried out in this work. Wood defect images were 512 × 512 

pixels. PGGAN was used to expand the wood defect sample library. The expanded images 

were used as the training set and transferred the parameters of MASK R-CNN, which had 

been trained on the COCO dataset into the model to continue the defect dataset for training. 

Parameter settings of model trainings were set (Table 1). 

Table 1. Setting of Model Parameters 

Parameters Value 
Batch size 16 

Epochs 30 

Learning rate 0.001 

Steps of each epoch 100 

 CUDA  
(Computer unified device architecture) 

Enable 

To prevent memory explosion, batch training was adopted. The batch size was 16, 

that is, 16 pictures were extracted from the training set each time for training. The learning 

rate was set to 0.001, a total of 30 epochs were trained, and each epoch needed to train 100 

steps. In other words, the entire model trained 3,000 steps. 

Accuracy analysis 

At the end of the training, a mathematical model was obtained to detect wood 

defects. Then, 320 validation set pictures by this model were tested and verified. The 

performance of the model was evaluated by means of mAP (mean average precision) 
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(Silven et al. 2003). The mAP of a datatset is the average value of each type of AP, and the 

AP of each type is calculated by the area under the accuracy/recall curve. The specific 

calculation formula is as follows: 

1_

1
( )  _ ( )

imgN

mAP

irel img

y P i rel img i
N 

    (6) 

It can be seen from the formula that  𝑁rel_img is the number of training images with 

defects detected, 𝑃(𝑖)  is the detection accuracy of the image i, 𝑟𝑒𝑙_𝑖𝑚𝑔(𝑖)  determines 

whether image i is classified correctly. The authors adopted the traditional constant matrix 

feature and geometry feature as the BP neural network and the characteristics of SOM 

neural network input by a contrast experiment. The CNN was also used to train and identify 

the dataset. Different mathematical models were trained and tested in the unexpanded 

dataset and the dataset expanded by PGGAN. Ten experiments were performed and the 

average accuracy was recorded. The results of the experiments are shown in Table 2. 

Table 2. Comparison of the Accuracy of Different Methods 

Before Expanding the 
Dataset 

(%) 

Use PG-GAN to Expand Dataset 
(%) 

Mask R-CNN 92.6 94.7 

Mask R-CNN (Pre-trained) 96.3 98.4 

BP 90.2 93.7 

SOM 85.3 86.1 
CNN 88.3 94.5 

Through training 80% of the dataset and testing the remaining 20%, the accuracy 

of the model trained from scratch on the unexpanded dataset was only able to reach 92.6%, 

while the accuracy of the model trained on the expanded dataset by PGGAN reached 

94.7%. 

The application of transfer learning can make the model accuracy of the 

unexpanded dataset and the expanded dataset reach 96.3% and 98.4%, respectively. The 

use of PGGAN for detailed dataset expansion and transfer learning can increase the 

accuracy of the model prediction. However, the experimental results of traditional methods 

were not satisfactory. The model accuracy of the BP neural network on the unexpanded 

dataset and the expanded dataset were 90.2% and 93.7%, respectively. The model accuracy 

of the SOM network in the unexpanded dataset and expanded dataset was 85.3% and 

86.1%, respectively. The convolutional neural network also adopted the ResNet50 

architecture, and the accuracy on the unexpanded dataset and the expanded dataset was 

88.3% and 94.5%, respectively. 

Confusion matrix and train loss analysis 

Meanwhile, the confusion matrix was used to analyze the experimental results. The 

abscissa of the confusion matrix is the predicted value of the model for defects, and the 

ordinate is the real situation of defects (Rojas-Espinoza and Ortiz-Iribarren 2010). 

Moreover, the accuracy of each kind of prediction can be analyzed according to the 

confusion matrix, which shows the imbalance of samples. The loss function of MASK R-

CNN is composed of three parts. The change of the loss function and its composition in the 

training process of the model are shown (Fig. 4). 
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Fig. 4. (a) Confusion matrix of wood defect classification and (b) loss plot during training 

It can be seen from the confusion matrix that the validation set contained 106 insect 

holes, 102 dead knots, and 112 live knots. According to the prediction results of the model, 

the prediction accuracy of insect hole, dead knot, and live knot was 99.05%, 97.05%, and 

99.10%, respectively. In other words, the mAP was 98.4%. It can be seen that the expanded 

dataset with PGGAN had a great improvement in defect identification based on MASK R-

CNN under the strategy of transfer learning compared with the traditional classification 

method. 

As shown in Fig. 4b, after adopting the strategy of transfer learning, the change of 

the total loss value was divided into three stages: (1) the loss value of the first 500 steps 

declined rapidly; (2) the loss value of steps from 500 to 1500 declined slowly; (3) step 

tended to be stable from 1500 to 3000 times. The total loss value of the model was stable 

at 0.4003. 

Mask generation 

The pictures in the validation set were randomly selected and tested. To ensure the 

feasibility of the validation results, the validation set was guaranteed to contain three kinds 

of defects. According to the algorithm structure of MASK R-CNN, the categories of defects 

can be identified, and box selection and mask generation can be performed. The test results 

are shown in Fig. 5. 

In addition, the error recognition examples of this detection method were also 

analyzed. As shown in Fig. 5, part d, there was an incomplete knot and a crack running 

through it. These factors affect the feature extraction results of the convolution layer and 

lead to unsatisfactory recognition results. 

The experimental results show that unlike Faster R-CNN, which can only frame 

and select wood defects, MASK R-CNN provided an additional mask branch. Based on 

instance segmentation, the overall contour of a detected object can be obtained and labeled. 

It can be seen that the detection and identification accuracy of MASK R-CNN for wood 

defects was statistically improved. 
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Fig. 5. Some examples of mask pictures obtained by defect detection showed that insect hole 
and dead knot were detected (a), with confidence of 97.1% and 99.7%, respectively. The 
confidence of detected segment in (b) was 99.2%.The confidence of detected dead knot in (c) 
was 99.7%. The confidence of detected dead knot in (d) was 99.9%. 

Limitation 

While this research provides a contribution to recognizing the dead knots, live 

knots, and insect holes in polar veneer, it has several limitations that need to be 

acknowledged and addressed. Poplar veneer has many other detections, such as crack and 

stain which influent the beauty and practicality of poplar veneer. In addition, the dataset 

used in our study is not very large, and overfitting may occur. Our future research will 

focus on the following areas: 1. Detect and identify other common defects of poplar veneer; 

2. Continuously expanding the data sets required by the experiment.

CONCLUSIONS 

1. The MASK R-CNN algorithm model based on ResNet50 was created to identify the

defects of poplar veneer. In this experiment, the performance classification accuracy of

the expanded dataset tested after pre-training was up to 98.4%. Compared with

traditional defect detection methods, the classification accuracy of the model

established by MASK R-CNN algorithm combined with transfer learning strategy was

higher.

a b 

c d 
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2. Transfer learning strategy was used to improve the accuracy of the detection model

with using a small number of dataset.

3. Different from the traditional image expansion, progressive growing generative

adversarial network (PGGAN) was adopted in this paper to expand wood defect dataset.

This method can expand the defect details, which improved the diversity of defect

images and balance the sample distribution.

4. This technology is expected to be applied to wood processing equipment, especially

wood classification equipment.
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