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Nine kinds of biomass were used to investigate the correlation of organic 
composition with the methane yield in continuous anaerobic digestion (AD) 
mode with different organic loading rates (OLRs). The experimental results 
showed that the methane yields were different with the change of OLR; 
thus, only one model was unable to satisfy the prediction accuracy for all 
the operation conditions. A stepwise regression model and two self-
defined models were used to determine the prediction accuracy for 
different operation OLRs in the present assay. The results showed that the 
self-defined models constituted by biodegradable components (protein, 
fat, and readily degradable sugars) obtained a higher determination 
coefficient (R2) than the model fitted by the traditional stepwise regression 
method. Biomass with a higher content of easily degradable matter had a 
lower predictive deviation. Based on this, it is recommended that the 
various biomasses be divided into two groups to obtain better model fitting 
and prediction accuracy. The biomass with a content of readily degradable 
section that was more than 47% or the content of lignin was less than 8% 
can be classified into one group, and the others can be classified into 
another group according to the present test results. 
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INTRODUCTION 
 

Biogas can be produced from organic wastes via an anaerobic digestion (AD) 

process, which has attracted great attention in past years. This attention has been mainly 

attributed to the double benefits of protecting the environment and reducing consumption 

of fossil energy. Many types of biomass materials have been shown to be reusable for 

biogas production, such as agricultural waste, animal waste, municipal solid waste, etc. 

Due to a wide range of sources, the organic composition and distribution of these biomass 

types are usually different, leading to a different methane potential.  

Proteins, fats, and carbohydrates are the main organic parts of biomass. Previous 

studies have found that the methane potential of the three compounds is different. The 

theoretical methane yields of proteins, fats, and carbohydrates are 496, 1014, and 415 

mL·g-1, respectively (Møller et al. 2004). However, in the practical AD process, the 

biological methanation potential (BMP) of one biomass type is hard to equate to the 

algebraic sum of theoretical methane yield of each component. This can be attributed to 

two reasons. One is the synergistic fermentation among different components, such as 
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different nutritive proportion (C/N) that is able to lead a different microbial metabolic 

efficiency. The other reason is that carbohydrates usually are divided into two types 

according to their biodegradability in the AD process, namely, the easily degradable part 

and the recalcitrant part. The latter is mainly composed of the lignocellulosic compounds 

that are difficult to decompose via the AD process with a shorter fermentation period. 

Therefore, the distribution of various organic compounds in biomass is also a key factor 

that affects the methane yield. Many previous studies have focused on the investigation of 

the correlation between organic composition and BMP of biomass. The methane yield 

predication models (MYPM) found in these studies are summarized in Table 1. 

 

Table 1. Correlations Found in the Literatures between the Organic 
Compositions of Biomass and Methane Production 

Biomass Used Methane Production Model 

Maize straw with different mature period 
(n=12) (Amon et al. 2007) 

BMP=19.05Pro+27.73Fat+1.80Cel+1.70Hcel 

Chinese herb-extraction residue (n=6) 
(Wang et al. 2013) 

BMP=487.31+1.17Fat-6.26NDF 

Lignocellulosic residue (n=7) 
(Gunaseelan 2007) 

BMP=0.18+0.48Soluble Car 
+2.8Pro+0.2ADF-0.003Lig/ADF-0.83Ash 

Lignocellulosic residue (n=12) 
(Gunaseelan 2009) 

BMP=0.045+1.23Soluble Car 
+0.24Pro+1.51Fat-0.68ADF-0.81Cel-6.1Ash 

Domestic and agricultural waste, etc. 
(n=14) (Buffiere et al. 2006) 

Biodegradability (%)=0.87−1.03(Lig +Cel) 

Lignocellulosic biomass (n=20) (Monlau 
et al. 2012) 

BMP=303.14-4.53Lig+0.77Soluble Sug+1.28Pro-
1.59Crystalline Cel +0.61Amorphous 

Cel+1.33Aluronic acid 

Mushroom residue (n=10) (Li et al.2017) BMP=69.992+5.220Total Sug−4.881Lig 

NDF: Neutral detergent fiber; ADF: Acid detergent fiber; Car: Carbohydrate; Pro: proteins; 
Sug: sugar; Hcel: hemicellulose; Cel: cellulose; Lig: lignin 

 

Amon et al. (2007) found that four components of crude protein, crude fat, 

cellulose, and hemicellulose are positively related to the methane production. The factor 

coefficients showed that the contributions of crude protein and crude fat to BMP are 

significantly greater than the latter two. Wang et al. (2013) selected six Chinese herb-

extraction residue (CHER) types and found the contents of crude fat and neutral detergent 

fiber present a significant positive and negative correlation to the BMP of CHER, 

respectively, and the contents of protein and starch have no significant influence on the 

BMP. Gunaseelan et al. (2007) used a variety of lignocellulosic materials to investigate the 

correlation of organic composition and BMP. The results showed that all the components 

present a positive correlation to the BMP except for lignin. In another study of Gunaseelan 

et al. (2009), both lignin and cellulose are negatively correlated to the BMP. According to 

the mode established by Buffiere et al. (2006), both lignin and cellulose have also been 

proved to be difficult to use by anaerobic microbes. There is a great difference among these 

models, namely, one model may only apply to the biomass in the self-studied samples, 

while it might be lack of accuracy to evaluate other biomass out of the studied samples.  

According to previous studies, stepwise regression usually has been used for the 

model fitting of MYPM. A component having a significant influence (P<0.05) on the 

ultimate methane yield will be retained in the model, while one without significant 
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influence will be eliminated from the model. As a result, many models reported by previous 

literatures are different. Table 1 displays that the same organic component might show a 

different influence on the methane yield in different models, as well as a difference relative 

to the type and quantity of factors in these models. Therefore, it can be concluded that the 

MYPM built by linear regression analysis has a large variation, which might be due to a 

great deal of dependence on the studied samples. In addition, the models reported in 

previous studies were established using the data of methane yields obtained from batch 

experiments, while lacking investigation on the continuous AD model. However, most of 

the biogas engineering is operated in continuous mode, and the methane yield would be 

different with the batch test and depending on the change of organic loading rates (OLRs). 

In acknowledgement of this, the main objective of the present work is to build a MYPM 

based on more variation of biomass materials, thereby improving the model universality 

on the evaluation of biogas production, especially for the prediction of continuous AD 

mode. Therefore, a series of continuous AD tests were conducted with different OLRs and 

multiple biomass materials found in the present work to investigate correlation of methane 

yields with biomass compositions and operating OLR. The obtained methane yields in 

different OLRs would be used to fit the MYPM. 

 

 
EXPERIMENTAL 
 

Substrate and Materials 
Nine biogas source materials were used in this study, including three livestock 

manures (diary manure, swine manure, and chicken manure), two agricultural wastes (corn 

straw and soybean straw), and four other materials (food waste, cassava residue, Chinese 

herb-extraction residue, and corn flour).  
 

Table 2. Characteristics and Organic Compositions of the Nine Biogas Materials 
and Feedstock 

Organic 
Component 

DM SM CM FW CR CHER CS SS CF 

TS (%) 22.20 31.40 11.50 21.80 88.10 45.50 87.40 88.30 87.20 

VS (%) 83.32 79.85 75.40 94.62 97.54 85.92 94.77 93.55 98.00 

Pro (%) 9.00 16.50 17.06 11.31 3.06 11.81 5.88 5.13 8.13 

Fat (%) 5.61 8.06 8.41 33.51 2.92 9.16 3.57 1.17 2.67 

TSug (%) 20.06 23.33 22.14 42.27 64.23 25.99 40.15 22.46 88.00 

Hcel (%) 23.93 22.8 21.88 2.04 10.4 28.75 25.74 18.25 1.20 

Cel (%) 20.98 13.83 10.45 3.22 17.17 12.03 23.4 39.96 0.78 

Lig (%) 10.80 4.01 7.67 2.48 4.68 8.97 2.33 15.85 0.02 

Note: All data based on dry matter of biomass; TS: total solid content; VS: volatile solid 
content; DM: dairy manure; SM: swine manure; CM: chicken manure; FW: food waste; CR: 
cassava residue; CHER: Chinese herb-extraction residue; CS: corn straw; SS: soybean 
straw; CF: corn flour; Pro: proteins; TSug: total sugar; Hcel: hemicellulose; Cel: cellulose; 
Lig: lignin 
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All the biomass specimens were collected from Heilongjiang Province, China. The 

anaerobic sludge used as inoculum was collected from a pilot anaerobic digester of the 

authors’ laboratory (working volume: 500 L) for cattle manure at 35 °C. The total solid 

(TS) of the inoculum was 4.48%, and based on TS, the measurements of the volatile solid 

(VS), total Kjeldahl nitrogen (TKN), and total organic carbon (TOC), were 81%, 2.08%, 

and 34.8%, respectively. The C/N of the inoculum and the ratio of inoculum to the mass of 

fresh biomass were 16.7 and 2, respectively. The organic compositions of all the samples 

are shown in Table 2. The samples were collected in triplicate, and averaged data of the 

measurements are presented. All the materials were diluted to a TS of 6% before being fed 

into the reactors except for chicken manure, which was diluted to below 3% to prevent an 

ammonia inhibition due to its high ammonia production capacity. 

 

Experimental Design and Procedure 
Nine biogas materials were used in the present work, and each one was fermented 

alone in a self-made continuous digester. The detailed construction of this digester was 

introduced in a previous article (Wang et al. 2017). The total volume and working volume 

of each digester were 2 L and 1.5 L, respectively. The generated biogas was collected daily 

by an aluminum gas pack (Dalian Hede Technologies Ltd., Liaoning, China), and the 

volume was measured based on the downward displacement of water. All the digesters 

were evenly placed in two constant-temperature shakers (35±1 °C, 80 rpm), and a time 

switch within the shaker was able to control the shaking at a specified time (running 10 

min in 1 h). All digesters were initially loaded with 1.5 L of inocula; when they started to 

run, the OLR was set to a lower level for acclimation of microorganism. After running for 

a month, the OLR was raised gradually to 2.4, 3, and 3.6 g·L-1·L-1, and the schedule of the 

digester fed with chicken manure was 1.2, 1.5, and 1.8 g·L-1·L-1. The duration time of each 

OLR was kept at 30 days. During this time the methane yield was investigated. The biogas 

volume, methane content, and pH of the effluent liquid were monitored every two days. 

 

Experimental Parameters and Analytical Methods 
Basic characteristics 

The methane and carbon dioxide concentrations in the biogas were determined with 

a gas chromatograph (GC-6890N; Agilent Inc., Santa Clara, CA, USA) equipped with a 

stainless-steel column (1.5 m × 3 mm i.d. carbon molecular sieve TDX-01: 1.5 to 2.0 nm) 

and a thermal conductivity detector using argon as the carrier gas. The TS, VS, pH (PB-

10; Sartorius Lab Instruments GmbH & Co. KG, Goettingen, Germany), total organic 

carbon (TOC), and TKN were determined according to standard methods (APHA 2004). 

 

Organic component 

Crude protein (CP) was calculated as TKN×6.25 (Girolamo et al. 2013). Crude 

starch (CS) was calculated as the total sugar×0.9, and the total sugar was tested with the 

method of Fehling reagent (Phygene Life Sciences Company, Fuzhou, China). Crude fat 

(CF) was measured as the weight of the dried ethyl ether extract obtained by prolonged 

extraction at 45 °C for 12 h using a Soxhlet apparatus (Luquegarcía and Castro 2004). The 

contents of hemicellulose, cellulose, and lignin were determined with an automatic fiber 

analyzer (ANKOM A2000i;ANKOM Technology, New York, NY, USA) according to the 

method previously reported (Van Soest et al. 1991). All reagents used were of analytical 

grade, all the measurements were conducted in triplicate, and the averaged data are 

presented. 
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Model building 

According to the previous literatures, stepwise regression (SR) is usually used for 

the fitting of a methane yield predication model (MYPM). The components that have a 

significant influence on the methane yield are retained in the model, while any without 

significant influence are eliminated from the model. However, the final obtained models 

are different from each other and are largely dependent on the biomass samples. As a result, 

a universal model has not been built yet. Thus, two models were first defined in the present 

work according to the conversion efficiency of each organic compound in the AD process. 

The models are expressed as Eqs. 1 and 2, 

y =a×Pro+b×Fat+c×TSug       (1) 

y=a×Pro+b×Fat+c×(TSug–d×HCel)      (2) 

where Pro, Fat, Tsug, and Hcel represent protein, fat, total sugar, and hemicellulose, 

respectively, and are given as a percentage (based on dry matter). 

The factors in the two models were selected according to the reduction rate of each 

component in the AD process. The protein, fat, and total sugar are the largest amounts of 

components digested in the AD process; however, the hemicellulose and cellulose have a 

smaller degradability. Additionally, the test process of total sugar (TSug) is generally 

conducted within a rigorous environment of hot acid liquid (100 ℃, 30 min, 6 mol·L-1 

HCl). This will result in a partial hydrolysis of hemi-cellulose and amorphous cellulose, 

which will lead to an increase of TSug value. Therefore, Eq. 2 was built from the hypothesis 

that the detected total sugar contains some hemicellulose. All model fitting processes were 

performed using SPSS 19.0 software (IBM Corporation, Armonk, NY, USA). 

 

Theoretical Methane Potential 
The theoretical methane potential (yth, mL·g-1) of untreated substrate was calculated 

based on the stoichiometric conversion of organic matter (Girolamo et al .2013) as Eq. 3, 

415 Car 496 Pro 1014 Fatthy            (3) 

where Car, Pro, and Fat represent the contents of total carbohydrates, protein, and fat, 

respectively, and are given as a percentage (based on dry matter), and the content of total 

carbohydrates is equal to 1 minus the sum of contents of protein, fat, and ash. 

 
 
RESULTS AND DISCUSSION 
 
Methane Yield 

The methane yields of the nine biomass materials used in present assay were 

investigated by semi-continuous AD mode with three levels of OLRs, respectively. All the 

obtained methane yields are shown in Table 3. The mean methane yields gradually 

decreased as the OLR increased for all biomass samples. This was mainly because the 

method used in the present assay to increase the OLR was to fix the feedstock TS content 

and gradually decrease the HRT. In the continuous AD mode, the feedstock fed into the 

digester on the day before was excreted from the digester in a proportion of 1/HRT the next 

day due to its specific operating mode. The shorter HRT will result in a decrease of biomass 

utilization degree. This was also an important reason that caused a lower methane yield in 
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the continuous AD process. Thus, it was not hard to explain that the minimum methane 

yields were obtained at OLR of 3.6 g·L-1·L-1 with a HRT of 16.7 days. 

 

Table 3. Methane Yields by Actual Test and the Defined-Model II Prediction 

Bio-
mass 

Mean Methane Yield (mL·g-1 TS) yth 
(mL·g-1 

TS) 
OLR of 2.4g·L-1·L-1 OLR of 3g·L-1·L-1 OLR of 3.6g·L-1·L-1 

Actual* Model y3 Actual Model y6 Actual Model y9 

DM 91.65 151.1(59.4) 81.8 125.0(43.2) 70.3 101.5(31.2) 371.2 

SM 248.8 247.5(-1.3) 224.5 218.2(-6.3) 188.2 183.0(-5.2) 412.4 

CM 269.9 252.9(-17) 236.3 223.8(-12.5) 195 188.1(-6.9) 395.9 

FW 531.8 529.6(-2.2) 449.2 449.9(0.7) 405.6 406.7(1.1) 593.1 

CR 252.4 244.0(-8.4) 230.1 213.6(-16.5) 203.6 193.7(-9.9) 425.8 

CHER 155.1 217.7(62.6) 136.1 181.1(45) 117.1 149.7(32.6) 428.6 

MS 189.6 169.5(-20.1) 151.6 139.4(-12.2) 129.8 117.0(-12.8) 435.9 

SS 73.42 96.3(22.9) 55 79.9(24.9) 48.5 64.7(16.2) 372.1 

CF 365.5 376.0(10.5) 330.8 344.3(13.5) 297.6 315.2(17.6) 440.8 

Note: *The data shown refer to the authors’ previous report (Wang et al. 2017); values in 
parenthesis are the deviation between actual and predictive value 

 

The methane yield of food waste (FW) was noticeably greater than other biomass 

materials used in the present assay, while the soybean straw (SS) showed the weakest gas 

production capacity. This is precisely because FW is rich in fat and starch, and the SS is 

high in recalcitrant compounds (lignocelluloses). Liu et al. (2017) studied the AD process 

of FW and also obtained a higher methane yield that varied at the range of 371 to 541 

mL·g-1. It also can be seen from the previous studies shown in Table 1, that although there 

is a great difference among the BMP evaluation models found by the previous studies, 

lignin, hemicellulose, and cellulose have minimal contribution to the BMP, while protein, 

fat, and starch (soluble carbohydrate) have a positive correlation to the BMP with different 

degrees.  

 

Regression Analysis 
In the present work, all types of biomass materials were digested in continuous AD 

mode with three OLRs. All the obtained methane yields are shown in Table 3, and because 

the results of components analysis were shown based on the dry matter of each biomass, 

the methane yields used in regression analysis were also calculated as the dry matter. Three 

types of linear regression models were tested in the present work, namely, a stepwise 

regression model and two self-defined models of Eqs. 1 and 2. All the regression results 

are shown in Table 4. 

As shown in Table 4, the MYPMs obtained from stepwise regression contained 

only one or two factors, fat and cellulose were included in the model with the lower OLR 

of 2.4 g·L-1·L-1, and only cellulose had a significant influence (P<0.05) on the methane 

yield in the other two stepwise regressions models with higher OLRs. The components not 
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included in the models, such as protein and total sugar, were judged to be insignificant with 

respect to the methane yield. This is similar to some previous reports in which the MYPMs 

also only contained a factor of lignin, and the other ingredients were ignored (Triolo et al. 

2011; Monlau et al. 2012). Additionally, the factors are often different in these models. 

This is mainly due to the fact that the result of stepwise regression depends heavily on the 

variance values of factor levels, while the factor levels of actual biomass are uncertain and 

not adjustable. Therefore, it is necessary to select the factors according to the AD 

characteristics of components to fit the more reasonable and universal model. The factors 

are fixed in the present two self-defined models and predefined before regression analysis 

according to the AD performance. Although Table 4 shows that all the determination 

coefficients (R2) of the models are almost the same in the group with a lower OLR of 2.4 

g·L-1·L-1,the R2 of the two self-defined models were greater than that of the stepwise 

regression model at higher OLRs, and all the highest R2 were observed at the self-defined 

model II. Thus, the self-defined models showed a better accuracy on the methane yield 

than the model fitted by the method of stepwise regressions, especially in the case with a 

higher OLR. 

 

Table 4. Methane Yield Evaluation Models Fitted by Regression Analysis 

OLR 
(g·L-1·L-1) 

Operation Condition Regression Model R2 

2.4 

Stepwise regression y1=313.4+6.57Fat-6.76Cel 0.969 

Self-defined model I y2=5.29Pro+9.94Fat+3.23TSug 0.969 

Self-defined model II y3=8.24Pro+9.01Fat+3.26(TSug-0.50HCel) 0.970 

3.0 

Stepwise regression y4=363.2-8.60Cel 0.865 

Self-defined model I y5=4.81Pro+8.01Fat+2.90TSug 0.953 

Self-defined model II y6=8.55Pro+6.96Fat+2.94(TSug - 0.71HCel) 0.982 

3.6 

Stepwise regression y7=328.2-8.22Cel 0.879 

Self-defined model I y8=3.15Pro+7.57Fat+2.71TSug 0.952 

Self-defined model II y9=7.25Pro+6.36Fat+2.75(TSug -0.83HCel) 0.990 

Note: yx is the methane yield, and the self-defined model I and II were obtained from Eq. 1 and 
Eq. 2, respectively 

 

Model Verification 
According to the results of regression (Table 4), the self-defined model II obtained 

a higher fitting degree to the methane yield in semi-continuous mode; thus it was used to 

verify the prediction accuracy. As shown in Table 3, except for dairy manure, CHER, and 

soybean straw, the variation between the measured value and the predictive value was less 

than 12% at all levels of OLR. It was not hard to find that the sum of easily degradable 

matters (protein, fat, and total sugar) of the six biomasses were all over 47% and the content 

of lignin were lower than 8% (Table 2). In contrast, in the group with a lower prediction 

accuracy of dairy manure, CHER, and soybean straw, the content of the more easily 

degraded section were generally lower 47% and the lignin contents were higher than 8%. 

Thus, it can be concluded that the model predication will be more accurate if the content 

of easily degraded matters is more or the content of lignin is less. Moreover, from the 

prediction results (Table 3), it can be also found that all the predictive values of dairy 

manure, CHER, and soybean straw were higher than the actual values. This was possibly 

because the recalcitrant matter (lignin, etc.) may cause some hindrance to the degradation 
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of readily degradable matter. For the investigation of correlation between organic 

compositions and methane yield, it can be recommended that all the biomass materials are 

divided to two groups according to the contents of readily degradable matters or lignin. As 

shown in the current results, the biomass with more than 47% of readily degradable section 

or less than 8% of lignin can be classified as a group, and the others can be classified as a 

group, which may not only simplify the model, but also improve the prediction practicality. 

The obtained models were fitted on the AD performance based on the present nine biomass 

materials. The selected samples still have some limitations, so a more extensive validation 

for the present models is needed. 

 
 
CONCLUSIONS 
 

1. For the continuous AD mode, the methane yield would be varied as the change of OLR. 

Therefore, one model can hardly satisfy the predication accuracy for all the operation 

conditions. Therefore, the variation coefficients in a model need to be retrieved as the 

change of OLR. 

2. Both the two defined models obtained a higher determination coefficient (R2) than the 

model obtained from the traditional stepwise regression method, especially in the 

operation with a higher OLR. This suggested that the biodegradable components should 

be fixed in the model, which can improve the prediction accuracy. 

3. It is recommended that the various biomass materials be divided into two groups 

according to the contents of easily degradable matters or lignin. This might be favorable 

to simplify the model, improve the model accuracy, and improve practicality to predict 

the methane yield. According to the present experimental results, the biomasses with a 

content of readily degradable section of more than 47% or the content of lignin was 

less than 8% can be classified as a group, and the others can be classified as a group.  
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