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Climate change with more frequent extreme weather events and 
prolonged winter periods with un-frozen, wet soil is causing frequent wind 
damage events in forests. Trees with higher mass point and heavier 
weight are more prone to wind damage; however, limited information 
exists on distribution of biomass under naturally moist conditions. Such 
information is essential to improve models of wind damage prediction. 
Therefore, the aim of the present study was to assess the biomass 
distribution and the parameters important for wind-load of Norway spruce 
(Picea abies (L.) Karst.). Samples were collected in the year 2019 from 87 
trees growing on two different sites, corresponding to freely drained 
mineral and peaty mineral soils at the age of 55 and 88 years, respectively. 
Tree diameters at breast height, height, and height of first living branch 
were measured. Tree stems were pruned and cut into 2-m-long fragments 
and weighed (fresh weight) afterwards. A biomass distribution model was 
developed to estimate fresh weight of the stem of Norway spruce using 
easy measurable tree variables. Relative height of the mass point and 
height of living branches were higher in peaty mineral soil than on freely 
drained mineral soil, which was an indicator for higher windthrow risks. 
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INTRODUCTION 
 

Future climate change scenarios predict an increase in mean air temperature and 

extreme weather events (wind (storm) intensity and frequency) (IPCC 2019). Yet another 

effect of climate change is winter with long periods of un-frozen, wet soil, and thus difficult 

logging conditions (Peltola et al. 2010). Therefore, wind damage to trees is considered to 

be a major problem in the future, with the potential to result in notable economic losses 

(Von Gadow and Hui 2001). This is a concern especially for Norway spruce (Picea abies 

(L.) Karst.) because of the shallow root system and increased susceptibility to various 

hazards such as storms, droughts, insects, or diseases (Greiss et al. 2012; Caudullo et al. 

2016). 

Diverse biomass estimation models have been developed (Classon et al. 2001; 

Lehtonen et al. 2004; Wirth et al. 2004; Zianis et al. 2005; Mikšys et al. 2007; Pajtik et al. 

2008; Repola 2009; Socha 2012) based on easily measurable tree variables. Most of the 

developed tree biomass models were expressed as dry weight for prediction of outcome of 

sawn good, calorific value of energy wood, although the models of biomass for possible 

wind damage should be expressed as fresh weight. Therefore, complex dynamic wind-load 

prediction models (Moore and Maguire 2007; Sellier et al. 2008; Pivato et al. 2014), and 

several static wind damage prediction models (HWIND, GALES, and FOREOLE) have 

been developed (Peltola et al. 1999; Gardiner et al. 2000; Ancelin et al. 2004). Only the 



 

PEER-REVIEWED BRIEF COMMUNICATION  bioresources.com 

 

 

Krišāns et al. (2020). “Spruce above-ground biomass,” BioResources 15(2), 4314-4322.  4315 

FOREOLE model used the approach that trees were divided into successive (1 to 2 m long) 

fragments for assessment of biomass distribution (Ancelin et al. 2004). Accuracy of all the 

models can be improved by adding empirical data where their availability is limited. The 

tree wind resistance depends on its root system, mechanical strength of the stem, and 

biomass (amount and distribution) (Peltola et al. 1999; Cucchi et al. 2005; Scott and 

Mitchell 2005). Therefore, the tree height of the mass point (centre of mass) may be used 

as proxy to estimate the risks of windthrow (Cucchi et al. 2005; Nicoll et al. 2006).  

The aim of present study was to assess the biomass distribution and parameters 

important for wind-load of Norway spruce (Picea abies (L.) Karst.).  

 
 
EXPERIMENTAL 
 

Materials 
The study was conducted in trial sites located in Kalsnava, in the eastern part of 

Latvia (56°41 N, 25°50 E and 56°41 N, 25°52 E). The sites were situated on a flat relief, 

where the elevation was approximately 100 to 120 m.a.s.l (Spalvins et al. 2012). Materials 

were collected in Norway spruce stands growing on different soil types, corresponding to 

Myrtillosa melior forest type with freely drained mineral soil (A1) and typically with 

shallow root system, and Myrtillosa turf melior type with peaty mineral soil (C1), and root 

depth < 40 cm (Bušs 1976; Pyatt 1982, 2001; Kennedy 2002). 

In total, 87 first layer trees were randomly selected: 47 trees from the diameter at 

breast height (DBH) that ranged from 25.8 to 40.6 cm from A1 at the age of 55 years old, 

and 40 trees (DBH ranged from 23.8 to 44.3 cm) from C1, that were 88 years old, were 

sampled in winter 2019. Tree height ranged from 23 to 28.9 m in A1 and 24.2 to 31.1 m in 

C1. Cutting was done as close as possible to the root collar. The DBH, tree height (H), and 

height of the lowest living branch (Hlb) were measured for each tree. Tree stems were 

pruned, cut into 2-m-long fragments, weighed (fresh weight), and diameter measured in 

the middle point of each fragment. Total branch weight of a tree was measured after all the 

small branches from the stem were removed, however, only living branches were weighed 

excluding dead and dry branches. 

 
Methods  

Data analysis 

All biomass prediction variables corresponded to normal distribution. A linear mix 

effects model was used to apply the model for Norway spruce biomass prediction based on 

the DBH, H, height of the fragments middle point, or the combination of these parameters. 

Pearson’s correlation analysis was introduced to assess the relationship between tree 

biomass and model prognosis, and relationships between measured variables. Principle 

component analysis was employed to examine the effect of soil type on tree variables and 

to discover the relationship between the studied samples. 

Each tree’s height of mass point (Hmp) was calculated with the average weighed 

value of height of the middle point and the mass of each part of the tree (tree fragments) 

as, 

𝐻mp =  
∑ 𝑚 × ℎ

∑ ℎ
         (1) 
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where m is the mass of part of the tree (kg) and h is the height of middle point of part of 

the tree (m).  

The relative height of mass point (rel. Hmp) is a proportion of the total tree height. 

All steps of the data analysis were completed using the statistical software R 3.6.1. (R Core 

Team 2019, Vienna, Austria). 

 

 
RESULTS AND DISCUSSIONS 
 

Biomass Distribution Model 
The model was based on DBH and H, which are commonly used as independent 

variables in biomass models of Marklund (1988) and Repola (2009). The mean total above-

ground biomass (95% confidence interval, CI) of Norway spruce was 66.36 ± 2.97 kg. All 

analysed variables were statistically significant (p < 0.001); however the strength of the 

correlations differed (Table 1). A high correlation between the stem fresh weight (stem 

weight with water and bark, but without needles and branches) and modelled weight 

prognosis (estimated fresh weight with water and bark, but without branches) (r = 0.98) 

indicated nearly the same variation and high model accuracy. Moreover, high correlation 

(r = 0.79) between the tree dimensions (DBH and H) exhibited similar variation pattern; 

therefore, the use of these variables can provide an estimation of tree above-ground 

biomass. 

 

Table 1. Pairwise Pearson’s Correlation Coefficients (Below Diagonal) and 
Significance (p-values – Above Diagonal) Among Variables of Norway Spruce 

Variable 
DBH H 

Stem Fresh 
Weight (kg) 

Estimated 
Biomass (kg) 

DBH 1 < 0.001 < 0.001 < 0.001 
H 0.79 1 < 0.001 < 0.001 

Stem Fresh Weight (kg) 0.36 0.29 1 < 0.001 
Estimated Biomass (kg) 0.39 0.32 0.98 1 

 

Models of biomass distribution predicted stem fragment fresh weight and compared 

the predictions with an actual stem fragment weight (Fig. 1). In general, the developed 

model showed a good fit to the stem weight data, as shown by the coefficient of 

determination (R2 = 0.95).  

Most of the models predicted dry wood biomass (Marklund 1988; Repola 2009), 

but the authors’ model was a prediction of fresh stem wood biomass, as it was necessary 

for the assessment of the wind load effect. Model prognosis varied most with a prediction 

of first stem fragment weight (Fig. 1), which can be explained that the lower and thicker 

parts of the stem (which was primarily the first fragment) were the heaviest and their weight 

varied the most. A majority of the biomass models underestimate the actual tree biomass, 

and their predictions are lower than the real weight (Lībiete et al. 2017; Kenina et al. 2018). 

However, the authors’ model overestimated the prognosis, as indicated by mean estimated 

biomass (84.66 ± 4.03 kg, 95% confidence interval). Results differ because most dry wood 

biomass models (belowground or aboveground) predict stem weight when trees have dried 

and lost a majority of stored stem water (Marklund 1988; Repola 2009; Lībiete et al. 2017; 

Kenina et al. 2018), while prediction of stem fresh weight biomass includes additional 

weight of water in the stem (amount of water varies noticeably).  
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Fig. 1. Biomass distribution prognosis (kg) of Norway spruce against stem fresh weight (kg) 

 

Component comparison  

Principle component analysis (PCA) determined that approximately 83% of 

explainable variances were located in the first and second components (Fig. 2A), with 

proportions of 53.2% and 30.4%, respectively.  

 

 
 

Fig. 2. Explained variance (%) of principle component (A); distribution and correlation between 
the studied trees in the vector space (B), where DBH: diameter at breast height; Ms: mass of 
stem, Mgc: mass of green crown; H: height, Hlb: height of the lowest living branch; Hmp: mass point 
height; rel. Hmp: relative mass point height; HD: slenderness ratio; Hc: relative canopy height 
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The PCA between the first two components was used to explain the effect of soil 

type on Norway spruce variables. The first component was associated with tree variables: 

H, DBH, mass of stem fresh weight (Ms), mass of green canopy (Mgc), Hmp, and slenderness 

ratio (HD). The second component was related to canopy parameters: rel. Hmp, Hlb, and 

relative height of crown (Hc) (Fig. 2B). Moreover, the second component had a statistically 

significant relationship with soil type. 

More than 53.2% of explainable variations of first component were not affected by 

soil type; however, there was a strong correlation with H, DBH, Ms, and Mgc (Fig. 2B). 

Stem mass was tightly correlated with DBH (r = 0.95), H (r = 0.85), and Mlb (r = 0.83), 

which indicated a significance of effects of DBH (p < 0.01) and H (p < 0.01) on stem 

biomass variation, where the increase in these variables directly increased stem weight. 

Further, stem mass was used to assess tree’s height of the mass point, and this parameter 

is dependent on various tree variables, such as height, DBH, and tree weight, of which Hmp 

was generally determined. Therefore, if tree height and diameter increases, then the height 

of a mass point also increases in most cases, and the correlation (r = 0.64) between these 

variables indicated that Hmp and height of tree had similar pattern of variation. Height of 

mass point was significantly and tightly correlated (r = 0.77) with the Mgc, and it had a 

moderate correlation with most of the analysed variables, such as Ms (r = 0.61), DBH (r = 

0.55), H (r = 0.64), and Hlb (r = 0.57). In the analysis, Hmp was used to describe tree 

resistance to wind-load.  

If the mass point height was located lower, then the resistance was greater and vice 

versa (Cucchi et al. 2005; Nicoll et al. 2006). Correlation between Hmp with all the above-

mentioned variables indicated that properties of stem and crown might influence the 

potential susceptibility to wind damage, as it directly affects height of the mass point. 

However, biomass distribution might differ between trees because of the stem and crown 

architecture (Jansons et al. 2014). Slenderness ratio had a tight inverse correlation with 

DBH (r = -0.91), which indicates that with an increase in stem diameter tree HD ratio 

decreases, resulting in possibly higher resistance for wind load on a tree level (Mickovski 

et al. 2005). Taller and narrower trees with HD value over 1 are more susceptible to 

windthrow (Rudnicki et al. 2004) and have higher probability of being uprooted or 

snapped. 

Another 30.4% of explainable variances of the second component were affected by 

soil type (p < 0.008), and they were positively correlated with rel. Hmp, Hlb, and negatively 

with Hc (Fig. 2B). Relative height of the mass point is from 34% to 44% of the whole tree 

height. For spruce with a relatively smaller canopy size, the whole tree mass point height 

was located higher (p < 0.001), resulting in unevenly balanced weight.  

The tree’s canopy serves as a ‘sail’ to catch larger wind loads and with a taller tree 

stem (the lever arm), the probability of wind damages increases (Gardiner et al. 2008; 

Schindler et al. 2012). Therefore, they were less resistant to wind-load damages (resulting 

in either stem breakage or windthrow) as less wind force is needed because of the vertical 

force applied due to gravity, including the crown and stem weight (Peltola et al. 1999). 

Results indicated that tree canopy on peaty mineral soils might be smaller in comparison 

to those growing on freely drained mineral soils. Additionally, trees growing on peaty 

mineral soils had poorer anchorage than on any other soil, similar results have been 

reported by Nicoll (2006). Thus, spruce growing on peaty soil need lower critical wind 

speed at which the damages occur. 
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CONCLUSIONS 
 

1. A biomass distribution model was successfully applied using easy measurable variables 

for prediction of stem fresh weight. Biomass model was a useful tool for the above-

ground biomass estimation for Norway spruce. 

2. Principle component analysis revealed 83.7% of explainable variances in the first two 

components of which 53.2% of explainable variances were affected by height, diameter 

at breast height, stem and canopy weight, and height of the mass point. Trees with 

relatively higher stem mass and mass point height located lower will have a higher 

chance to survive extreme wind loads (storms). 

3. Other 30.4% of variance were affected by soil type, indicating that spruce on peaty 

mineral soil had relatively smaller canopy; thus rel. Hmp was located higher, which 

resulted in less resistant to wind load. Accordingly, the relative height of the mass point 

was a significant variable for determination of wind damage risks. Trees growing on 

peaty soil had a higher wind damage risk than tree growing on fresh mineral soil.  
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