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The bending moment capacity of heat-treated wood dowel joints loaded in 
compression or tension was predicted via two artificial neural network 
(ANN) models. Additionally, a comparative study between similar models 
that were developed through response surface methodology (RSM) was 
performed. The joints were made of heat-treated ash (Fraxinus excelsior). 
The values of the ultimate failure load and the moment arms were 
recorded for each run via a universal testing machine. To develop the ANN 
models, the experimental data were randomly divided into three subsets, 
which were needed for the training, testing, and validation phases. The 
RSM models were obtained from the literature. The performances of the 
models were analyzed in terms of the correlation coefficient, coefficient of 
determination, root mean square error, mean square error, and mean 
absolute prediction error. A sensitivity analysis was also performed to 
observe potential changes in the results due to the uncertainty in the input 
variables. The ANN model better predicted the bending moment capacity 
of heat-treated wood dowel joints loaded in compression than the RSM 
model. In contrast, the RSM model predicted the bending moment 
capacity of joints loaded in tension more accurately than the ANN model. 

 
Keywords: Artificial neural network; Response surface methodology; Modeling; Wood joints; Mechanical 

properties; Heat-treated wood 

 
Contact information: Transilvania University of Brasov, Faculty of Wood Engineering, Universității Str. 1, 

500036 Brasov, Romania; *Corresponding author: bedelean@unitbv.ro 

 

 
INTRODUCTION 
 

Joints are the most important component of structures designed to assure the 

strength of products (chairs, tables, doors, etc.). Therefore, product performance can be 

affected when structures are not well designed or are subjected to certain climatic 

conditions (Mollahassani et al. 2020). The dowel joint (Fig. 1) is the most common 

constructive solution in the furniture industry because it can be obtained fast and easily 

from a technological perspective and has a low manufacturing cost (Negreanu 2003; 

Abdolzadeh et al. 2015). In addition, dowel joints only require drilling operations to form 

a joint with high initial strength (Eckelman 2003). 

The theoretical calculus of wood joint strength is a difficult task that depends on 

various factors, such as wood species, dowel length and diameter, depth of dowel 

embedment, adhesive type and consumption, and tightness of fit (Eckelman 2003; Kuzman 

et al. 2015; Diler et al. 2017; Georgescu et. al. 2019). More information regarding the 

factors that affect the strength of dowel joints has been reported (Eckelman 2003; 

Smardzewski 2015). Moreover, theoretical calculus requires a lot of simplifying 

assumptions that are not always realistic (Curtu et al. 1988; Smardzewski 2015; Bardak et 

al. 2017). Therefore, the use of mathematical models based on experimental data can 
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represent a fast and reliable tool to predict the mechanical strength and optimal 

configuration of wood joints for a given scenario. 

 

 
 

Fig. 1. The aspect of the analyzed dowel joint (1 is the leg, 2 is the wood dowel, and 3 is the rail) 

 

The artificial neural networks (ANN) modeling technique, which is based on the 

behavior of the human brain, has been applied in wood engineering to predict various 

outputs, such as thermal conductivity, mechanical properties, swelling and shrinkage, 

reliability of the phytosanitary treatment of wood, equilibrium moisture content, and wood 

structure (Avramidis and Iliadis 2005; Watanabe et al. 2013; Tiryaki et al. 2016; Bedelean 

2018; Ozsahin and Murat 2018). Modeling with ANN involves gathering the experimental 

data, transforming and dividing data for the training and testing sets, and performing the 

training, testing, and validation phase of the network. In summary, the main architecture 

of the ANN consists of three layers, which are the input layer, the hidden layer, and the 

output layer (Fig. 2). The input layer contains the independent variables, while the 

dependent variables are presented in the output layer. The relation between the independent 

and the dependent variables is determined via a hidden layer during the training phase. The 

number of neurons in the hidden layers (and/or the number of hidden layers) is often found 

through a trial-and-error approach. The background information about the artificial neural 

networks, such as the task of a neuron, determination of the number of neurons in each 

layer, and identification of the number of hidden layers and selecting a training algorithm, 

was found in the literature (Tiryaki and Aydin 2014). 

However, modeling with response surface methodology (RSM) requires the 

development and execution of an experimental design. Typically, a central composite 

design is employed. The obtained data is statistically analyzed to determine the factors that 

influence the analyzed responses and identify the best polynomial model. The selected 

model could be used to predict the analyzed process or optimize it, after being validated 

with the experimental data. Anderson and Whitcomb (2005) also reported details on RSM. 

The RSM was applied in the wood science field to analyze and optimize the wood dowel 

joints, wood drying conditions (in a drying kiln), processing parameters of medium-density 

fiberboards, sanding parameters, and the mechanical properties of bamboo plywood (Yu 

et al. 2015; Șova et al. 2016; Hazir et al. 2017; Kumar et al. 2017; Georgescu et al. 2019). 
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The ANN and RSM modeling techniques have been joined to optimize the flexural 

properties of gypsum-bonded fiberboards (Nazerian et al. 2018) and to determine the 

optimum surface roughness and lower power consumption in abrasive machining processes 

of wood (Tiryaki et al. 2017). 

 

Present work 
This study envisaged the comparison of two modeling techniques (ANN and RSM), 

in order to predict the bending moment capacity of heat-treated wood joints, loaded in 

compression or tension. The inputs included the dowel length, the dowel diameter, and the 

adhesive consumption. This is the first known comparative study regarding the application 

of both ANN and RSM to predict the bending moment capacity of heat-treated wood dowel 

joints. Also, this study aims to address the lack of comparative studies in the wood science 

field regarding the application of ANN and RSM modeling techniques to predict various 

outputs.  

 

 
EXPERIMENTAL 
 
Materials 

The wood joints (Fig. 1) were obtained from a heat-treated ash (Fraxinus excelsior) 

board with a moisture content of 5% and an average density of 618 kg/m3. The material 

was supplied by a local company from Brașov, Romania. The multi-groove dowel pins 

used in this research were made of beech wood (Fagus sylvatica). Polyvinyl acetate 

adhesive (Kleiberit 303; Kleiberit, Weingarten, Germany) and 5% Kleiberit Turbo 

Hardener (Weingarten, Germany) were mixed to obtain a D4 adhesive, which was used for 

the joint assembly. After being assembled, the joints were conditioned for over one month 

in the same area where the compressive and tensile tests were performed. Additional 

information about the preparation of the joints was reported by Georgescu et al. (2019). 

 

Methods 
The analyzed factors were the dowel length (X1), the dowel diameter (X2), and the 

adhesive consumption (X3). The responses were the bending moment capacity of joints 

loaded in compression (YMc) or tension (YMt) (Table 1 and Fig.2).  

According to reference literature, testing the joints can be done through computer 

simulation by using the Finite Element Method (Yildirim 2015; Smardzewski 2015; 

Kaygin et al. 2017) and/or by experimental methods (Derikvand and Eckelman 2015; 

Bardak et al. 2017). In this work, the bending moment capacity of joints was determined 

by means of experiments. 

The joints were subjected to diagonal compressive and tensile tests (Fig. 3) until 

major separation between the parts of the joints was observed (Yerlikaya and Aktas 2012; 

Kasal et al. 2015). A Zwick Roell Z10 testing machine (Zwick GmbH&Co. KG, Ulm, 

Germany) was used to determine the ultimate compressive and tensile failure load of each 

analyzed dowel joint. During testing, the load was applied at a constant speed of 3 mm/min 

(Kuzman et al. 2015). The bending moment capacities of the joints loaded in compression 

(Eq. 1) or tension (Eq. 2) were calculated based on the equations found in reference 

literature (Derikvand and Eckelman 2015; Georgescu et al. 2019). More information about 

the applied experimental design was reported by Georgescu et al (2019). Equation 1 and 

Eq. 2 were calculated as follows, 
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Mc = F × Lc         (1) 

Mt = F / 2 × Lt         (2) 

where Mc is the bending moment of joints loaded in compression (Nm), Mt is the bending 

moment of joints loaded in tension, F is the ultimate failure load (N), Lc is the compression 

moment arm (42 mm), and Lt is the tension moment arm (92 mm). 

 

 
 

Fig. 2. Schematic aspect of an artificial neural network. X1, X2, X3 and Xn are independent 
variables (analyzed factors); Y is the dependent variable (response). 

 

 

 
 

Fig. 3. The diagonal compression (a) and tensile (b) loading forms of the analyzed joints 

 

The uncertainty of experimental values was obtained by means of the configuration 

13 (Table 1). In this configuration, the independent variables were analyzed at the center 

level and repeated many times both during the compression and tension tests in order to 

obtain the experimental error (Georgescu et al. 2019). The values of the mean and the 

standard deviation of this experimental values are presented in Table 1. The uncertainty 

(a) (b) 
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value (standard deviation of the repeated measurements) was equal to ± 16 Nm in the case 

of compression test and equal to ±31 Nm in the case of tension test. 

The ANN models were designed via NeuralWorks Predict Software (NeuralWare 

Inc., v.3.24.1, Carnegie, PA, USA). The experimental data were obtained from 246 joints 

for both compression and tension testing. To prepare the data prior to the training, testing 

and validation phases, the experimental values were randomized for each model (one 

model for compressive strength and the other for tensile strength). The data set that was 

used to develop each ANN model contained 174 cases and 72 cases for the validation 

phase, respectively. The software divided the data allocated for the model development so 

that the training and testing sets were similar from a descriptive statistics point of view. In 

addition, the data were converted into forms appropriate for neural networks and the 

cascade correlation algorithm was applied to create the multilayer structure of ANN. 

Watanabe et al. (2015) summarized the approach used by the NeuralWorks Predict 

software to develop an ANN model.  

The RSM models, which predicted the bending moment capacity of heat-treated 

wood dowel joints that are loaded in compression (Eq. 3) or in tension (Eq. 4), were 

obtained from previously published work (Georgescu et al. 2019). These regression 

equations were used to determine the analyzed response based on the input factors (dowel 

length (X1), dowel diameter (X2), and adhesive consumption (X3)). 

 

Table 1. Mean Experimental Values with Coefficient of Variation for the ANN 
Model 

 
 

Config. 
No. 

Input Factors Output Factors  

 
X1 

(mm) 

 
X2 

(mm) 

 
X3 

(g/m2) 

Bending Moment Capacity (Nm) 

Compression (YMc) Tension (YMt) 

M s 
CV 
(%) 

n M s 
CV 
(%) 

n 

1 70 6 450 134 23 17 16 228 32 14 17 

2 30 10 250 68 8 12 17 129 15 12 17 

3 50 8 450 123 15 12 17 222 33 15 17 

4 70 10 250 143 13 9 17 241 31 13 18 

5 30 6 450 58 13 22 15 98 25 25 16 

6 30 10 450 102 16 16 16 197 22 11 16 

7 70 8 350 141 21 15 16 258 49 19 15 

8 30 8 350 71 12 17 16 137 22 16 17 

9 50 6 350 80 14 17 17 136 22 16 16 

10 50 8 250 92 18 20 17 160 21 13 17 

11 70 10 450 196 24 12 14 399 48 12 15 

12 70 6 250 95 12 13 17 154 31 20 17 

13 50 8 350 105 16 15 16 204 31 15 15 

14 30 6 250 43 9 22 18 85 14 17 17 

15 50 10 350 129 13 10 17 235 38 16 16 

X1 - dowel length, X2 - dowel diameter, X3 - adhesive consumption, M – mean, CV – coefficient 
of variation, s – standard deviation and n – sample size 
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YMc = 13.919 – 0.039X1 – 1.705X2 – 0.124X3 + 0.115X1X2 + 0.002X1X3 + 0.020X2X3     (3) 

YMt = 251.56 – 3.050X1 – 22.784X2 – 0.790X3 + 0.358X1X2 + 0.009X1X3 + 0.086X2X3    (4) 

  

The performance of each model was analyzed via several indicators that are 

frequently used in the literature, such as correlation coefficient (R), coefficient of 

determination (R2), root mean square error (RMSE), mean square error (MSE), and mean 

absolute prediction error (MAPE) (Tiryaki and Aydin 2014; Watanabe et al. 2015; Fu et 

al. 2017). Among these criteria, Tiryaki et al. (2017) claim that MAPE is the most 

important determinant of model performance. The correlation coefficient (R) and the 

coefficient of determination (R2) were calculated by means of Eqs. 5 and 6. High R or R2 

values indicate that the predicted data is close to the experimental data, the MAPE, MSE, 

and RMSE were calculated according to Eqs. 7, 8, and 9, respectively. Lower MAPE, MSE, 

and RMSE values reveal that the models perform well and have reasonable prediction 

accuracy.  

 Statistical parameters related to fitting are defined in Eqs. 5 through 9,  
 

R=
∑ (p

i
-p)(ai-a)N

i=1

√∑ (p
i
-pN

i=1 )
2√∑ (ai-a)

2N
i=1

                          (5) 

R2=1-
∑ (ai-pi

)
2N

i=1

∑ (ai-a̅)2N
i=1

                                     (6) 

MAPE=
1

N
(∑ [|

ai-pi

ai
|]N

i=1 )×100               (7) 

MSE=
1

N
∑ (ai-pi

)
2N

i=1                                                          (8) 

RMSE=√
1

N
∑ (ai-pi

)
2N

i=1                (9) 

where N is the number of data points, ai is the actual value of bending moment capacity 

(Nm), pi is predicted value of bending moment capacity (Nm),   is mean of experimental 

values (Nm), and is the mean of predicted values (Nm). 

 
 
RESULTS AND DISCUSSION 
 

The models were designed to predict the bending moment capacity of heat-treated 

wood dowel joints loaded in compression (22 Nm to 240 Nm) or tension (54 Nm  to 447 

Nm) based on dowel length (30 mm to 70 mm), dowel diameter (6 mm to 10 mm), and 

adhesive consumption (250 g/m2 to 450 g/m2). The optimal structure of the ANN models 

contained three neurons in the input layer (dowel length, dowel diameter, and adhesive 

consumption) and one neuron in the output layer (bending moment capacity of joints 

loaded in compression or tension). In the hidden layer, there were two neurons for the ANN 

model developed to predict the compressive strength (Fig. 4a) and seven neurons for the 

model designed to predict the tensile strength (Fig. 4b). The architecture of the neural 

networks presented in Fig. 4 was different from that presented in Fig. 2 because the 

software in this work used the cascade-correlation learning algorithm. Therefore, the 

a

p
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architecture was different from that of an ordinary multilayer feedforward network 

(Watanabe et al. 2015). The ANN models had high coefficients of correlation (R), which 

were greater than 0.9 during both the training and testing phases (Table 2). 

 

 
Fig. 4. Architecture of the artificial neural network model designed to predict the bending moment 
capacity of joints loaded in compression (a) or tension (b) 

 

Table 2. Performance Criteria During the Training and Testing Phase 

Model 
Coefficient of Correlation (R) 

Training Testing Validation 

Mc_ANN 0.92 0.93 0.99 

Mt_ANN 0.92 0.95 0.98 

 

 Comparing the predicted and experimental values (Figs. 5 and 6) showed that most 

of the predicted values were close to the experimental ones for both ANN models. 

However, based on the performance indicators (Table 3), the ANN model had a better fit 

with the experimental data than the RSM model for the bending moment capacity of joints 

loaded in compression. However, the RSM model predicted the bending moment capacity 

of joints loaded in tension more accurately than the ANN model.  This finding can be 

explained by assuming that the relation between the independent variables and the bending 

moment capacity of joints loaded in compression is more nonlinear than in the case of 

tension strength, where the relation between independent and dependent variable could be 

considered close to be linear. Therefore, the ANN modeling technique performed better 
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than RSM in the case of compressive model. However, both modeling techniques predicted 

the bending moment capacity of heat-treated wood dowel joints with high accuracy. 

 

 
 

Fig. 5. Experimental and predicted values of compressive strength 

 

 
 
Fig. 6. Experimental and predicted values of tensile strength 
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Table 3. Performance Obtained During the Validation Phase of the Models 

Model 
Performance Indicators 

R R2 MAPE MSE RMSE 

Mc_ANN 0.99 0.97 6.01 46.06 6.79 

Mc_RSM 0.99 0.98 10.85 205.56 14.34 

 Mt_ANN 0.98 0.97 7.48 311.57 17.65 

 Mt_RSM 0.99 0.98 7.36 294.31 17.16 

  

The applied sensitivity analysis revealed that the models developed to predict the 

bending moment capacity of joints loaded in compression or tension were sensitive to 

dowel length, dowel diameter, and adhesive consumption (Table 4). The sensitivity 

analysis was performed via the one-factor-at-a-time approach. The first step consisted of 

setting each independent variable to its central value of the analyzed range, according to 

the experimental plan presented in previous work (Georgescu et al. 2019). The second step 

consisted of varying one factor at a time while keeping all other parameters fixed. In the 

third step, the models were run to observe potential changes in the results due to the 

uncertainty of the input variables. In this work, an uncertainty of ± 10% was assumed for 

the inputs of the models. The sensitivity coefficient was calculated as the ratio of the change 

in the dependent variable to the corresponding change in the independent variable (Cronin 

and Gleeson 2006; Bedelean 2018). 

 

Table 4. Results of Sensitivity Analysis for the ANN and RSM Models 

Independent 
Variables 

Central 
Value of 

Independen
t Variables 

Change in 
the 

Independen
t Variables 

(%) 

Change in the 
Dependent Variables 

(%) 
 

Sensitivity Coefficients 

ANN RSM ANN RSM 

Mc Mt Mc Mt Mc Mt Mc Mt 

Dowel 
Length (X1) 

50 ± 10 8.1 
10.
0 

8.
5 

8.1 
0.8
1 

1.0 
0.8
5 

0.8
1 

Dowel 
Diameter 

(X2) 
8 ± 10 

10.
5 

9.9
5 

9.
6 

11.
0 

1.0
5 

0.9
9 

0.9
6 

1.1
0 

Adhesive 
Consumptio

n (X3) 
350 ± 10 4.7 

6.1
3 

5.
1 

6.7 
0.4
7 

0.6
1 

0.5
1 

0.6
7 

 

The sensitivity analysis revealed that the ANN and RSM models developed to 

predict the bending moment capacity of joints loaded in compression were more sensitive 

to dowel diameter and less sensitive to dowel length and adhesive consumption. However, 

the ANN and RSM models developed to predict the bending moment capacity of joints 

loaded in tension were different, as the ANN model was more sensitive to the dowel length 

than the RSM model, which was more sensitive to dowel diameter. 

 
 
CONCLUSIONS 
 

1. The analyzed models predicted reliably and quickly the bending moment capacity of 

heat-treated wood dowel joints loaded in compression or tension without the need to 

perform experimental studies. 
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2. The artificial neural network (ANN) model predicted the bending moment capacity of 

heat-treated wood dowel joints loaded in compression better than the response surface 

methodology (RSM) model. 

3. The RSM model predicted the bending moment capacity of heat-treated wood dowel 

joints loaded in tension better than the ANN model. 

4. The ANN model developed to predict the bending moment capacity of heat-treated 

dowel joints loaded in compression and the RSM model used to predict the same in 

tension were sensitive to uncertainty regarding the dowel diameter, dowel length, and 

adhesive consumption. 

5. The ANN model designed to predict the bending moment capacity of heat-treated 

dowel joints loaded in tension was sensitive to dowel length, dowel diameter, and 

adhesive consumption. 
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