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Mathematical modelling is a powerful tool in science. Causal mathematical 
models based on a clear picture of how key variables interact enable a 
deeper understanding of a given situation and provide reliable predictions. 
This is a classic approach in science. Unfortunately, this approach is 
declining in pulp and paper-related research in favour of simply reporting 
experimental data. The lack of a framework provided by a model 
diminishes the value of much experimental work. Therefore, the increased 
use of mathematical models is encouraged, and this approach is 
illustrated via several practical examples from our work.  
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INTRODUCTION 
 

 Although there are differing ways of carrying out scientific research, a classic 

approach is one of visualizing the underlying mechanism of a problem and then describing 

it via a mathematical model. The resulting equations can provide quantitative predictions 

of complicated, non-linear processes over a wide range of operating conditions and 

parameters. As Wigner (1960) observed, it is amazing that mathematics is so effective in 

describing nature. From a practical standpoint, the models permit optimization of existing 

processes, solutions for performance issues, or evaluation of new technologies. Despite 

this value, this approach is declining in pulp and paper research, thereby diminishing the 

value of much experimental work. To encourage researchers to employ more mathematical 

modelling, several examples from our research are presented to illustrate how some past 

models were developed. 

 

Pulp Fibre Flocculation 
 Pulp fibres aggregate into mass concentrations called flocs that produce non-

uniform mass distribution in paper and a yield strength that affects flow rheology in process 

equipment. Given these effects, there was a need to quantify flocculation in a simple way. 

 Early work by Mason (1950) showed that fibre flocculation was primarily 

mechanical in nature due to inter-fibre contact. He found the condition for incipient 

flocculation to be a critical concentration, defined as one fibre in a volume swept out by 

the length of one fibre. This visual image suggested a broader picture of multiple fibres in 

this volume to characterize flocculation in various states (Kerekes et al. 1985). This 
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concept was further explored in the form of a Crowding Number, N. For pulp fibres, this 

number can be calculated from Eq. 1,  



25Cl
N =                     (1) 

where C is suspension consistency (%), l is fibre length (m), and  is fibre coarseness 

(kg/m) (Kerekes and Schell 1992). Mason’s critical concentration is N = 1. 

 Subsequent work by Meyer and Wahren (1964) showed that fibre suspensions at 

higher concentrations developed a yield stress when fibres became locked in bent 

configurations in the network, and friction restrained movement between them. This 

condition required fibre contact with three other fibres, which Soszynski and Kerekes 

(1988) showed to occur at approximately N = 60. 

 In a later study of the gravity settling of fibres, Martinez et al. (2001) identified a 

third critical value, N = 16. The physical importance of this relative to N = 1 and N = 60 

was unclear. In later work, by making comparisons with the Effective Medium and 

Percolation Theories of fibre networks, Celzard et al. (2009) found that N = 16 

corresponded to a “connectivity threshold” whereas N = 60 corresponded to a “rigidity 

threshold”. This finding implied that, at N = 16, each fibre is in contact with two other 

fibres. These three regimes of behavior are illustrated in Fig 1. 

 

    
 
Fig. 1. Illustration of fibre contacts for various values of N: (a) Occasional contact (N = 1); (b) 
Connectivity threshold (N = 16); (c) Rigidity threshold (N = 60) 

 

 Thus, fibre suspension behaviour changes dramatically from occasional contact 

among fibres to a network possessing strength in the relatively small range of 1 < N < 60. 

As a result, the Crowding Number can be employed to set desirable consistencies for 

various processes. For example, commercial papermaking requires the highest fibre 

concentration that can be readily dispersed. For this reason, headbox consistencies are 

typically set in the range of 20 < N < 60. Thus, lower consistencies are needed for longer 

fibres. The same holds true for hydrocyclone pulp cleaners. It is noteworthy that standard 

handsheet making, which requires minimal or no flocculation, employs a consistency of 

approximately 0.02%, which corresponds to approximately N = 1 for a 1.5-mm fibre. 

 In summary, an equation based on a simple concept enables the setting of 

appropriate consistencies for differing pulps in pulping and papermaking processes. 
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PULP SCREENING PERFORMANCE EQUATIONS  
 

 Separating exceptionally large particles from small ones by screening is a trivial 

problem. However, separating nearly identical particles with high aspect ratios is complex. 

This is the case of fine screening pulp, such as the separation of shives from fibres. For 

high throughput, aperture sizes must be larger than the minimum dimension of either accept 

or reject components. This requires probability screening, in which separation is governed 

by factors such as particle flexibility rather than physical obstruction of the reject 

component on any of its dimensions.  

 As both accept and reject particles may pass through apertures, the efficiency of 

probability screens (E) is highly dependent on the amount of feed flow forced through the 

apertures. The fraction of the feed flow that is not forced through the aperture is the reject 

ratio (R). Separation efficiency (E) is described by performance equations governed by R 

and a screen parameter (α). The most common performance equation used in the industry 

is the Nelson (1981) equation shown below (Eq. 2):  

 

             (2) 

 An important need in screening was to predict the possibility of plugging due to 

thickening of the feed flow along the screen plate. When used to develop a thickening 

factor, the Nelson (1981) equation failed, but the reason for this was not clear. This 

suggested exploring a rarely used screen performance equation, the Kubat-Steenberg 

equation (Kubat and Steenberg 1955), which is shown below with screen parameter β (Eq 

3): 

RE =           (3) 

 Equations 2 and 3 have the same limits, i.e., E = 0 at R = 0, and E = 1 at R = 1. In 

addition, Eqs. 2 and 3 have virtually the same curve shapes between these limits, and the 

screen parameters are linked in the form: α = 1 - β.  

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. The plug flow model correctly predicts high thickening at low reject rates, whereas the 
mixed-flow model does not (Gooding and Kerekes 1992) 

 

 To determine how Eqs. 2 and 3 are different and the importance of their differences, 

Gooding and Kerekes (1989) derived both equations from first principles. They found that 
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the Nelson (1981) equation assumed “fully mixed flow” in the feed flow, whereas the 

Kubat-Steenberg equation assumed “plug flow” in this zone. The reason for the failure of 

the Nelson equation to predict plugging became obvious. If the feed flow is “fully mixed,” 

it cannot thicken along the screen plate. In contrast, “plug flow” permits thickening. A 

successful thickening factor was developed based on the plug-flow model, as shown in Fig. 

2 (Gooding and Kerekes 1992). 

  A practical outcome of this work was a recommendation for mill simulation 

programs to employ the plug flow model (Kubat-Steenberg equation) in place of the Nelson 

equation to accurately account for the influence of the reject rate on reject thickening. In 

summary, successful modelling requires a clear picture of the physical problem and 

assumptions underlying the equations employed to describe it. 

 

 

PRESSURE IN TWIN-WIRE BLADE FORMERS  
 

 During the 1970’s and 1980’s, the use of twin-wire forming for high-speed 

papermaking grew rapidly. The most common type of twin-wire forming was a blade 

former, in which pulp trapped between two fabrics (screens) was drained when passing 

over stationary blades. Such formers resulted in excellent formation but poor retention of 

fine material compared to roll formers; the cause was unknown. Indeed, there was no clear 

understanding of how drainage occurred. This was the outstanding problem in 

papermaking circa 1990. 
 
 
 
 
                  
 
 
 
 
 
 
 
 

Fig. 3. Illustration of blade formers 

 

  Zhao and Kerekes (1995) examined the hydrodynamics of blade gap formers. The 

problem was visualized as a pressure build-up between two wires as they “pinched” when 

wrapping around a blade, as shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Model of twin-wires passing over an infinitely thin blade 
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 Employing appropriate simplifications and approximations, the hydrodynamic 

analysis yielded a pressure distribution in the direction of motion, p(x), which is shown by 

Eq. 4, 
       

 

                                                                                                                         (4) 

where 

 

 

 

 

 

 

 

 

where U0 is the fabric speed (m/s), H0 is the upstream gap size between fabrics (m), T is 

the fabric tension (N/m), ρ is the suspension density (kg/m3), k2 is the permeability of the 

formed portion of the web (m/s/Pa). Angles α1 and α2 (rad) are shown in Fig. 4. 

 Equation 4 showed that pressure (p(x)) increased sharply in a zone upstream of the 

blade edge. This pressure gradient caused a relative velocity between the pulp and wire in 

the machine direction, which was shown later to account for formation improvement. The 

accompanying large peak pressure accounted for low retention. 

  The model provided several important insights. For example, some blade formers 

produced an unexpected two-sidedness in paper structure. The finding that pressure formed 

upstream of edges meant that, if the blade was wide, water drained through both wires at 

the leading edge but only on one side of the trailing edge. Thus, only half the drainage in 

this “twin-wire former” took place between two wires. Further work showed that reducing 

the blade width to approximately 10 mm caused the two pulses to merge into one pulse 

upstream on the leading edge, thereby resulting in two-sided drainage (Green et al. 1998). 

Subsequently, narrow blades were employed in these formers.  In summary, a mathematical 

model gave new insights that led to better operations. 

 

 

WATER REMOVAL IN WET PRESSING 
  

  The removal of water by wet pressing is a key step in papermaking. It is a 

complicated non-linear process that depends on many variables. A mathematical model is 

needed to optimize the process. Many models have been proposed, but they were either not 

practical or lacked the accuracy to evaluate optimization strategies and new technologies 

(McDonald and Kerekes 2017a). The “picture” on which most models were based was one 

of parallel pressures: one pressure on fibres and another pressure on water. As the web was 

dewatered, pressure shifted from water to fibres, which provided a structural support that 

shielded the remaining water from pressure. Thus, flow decreased and stopped because the 

pressure on water decreased and stopped. 

  In the cited study, an alternative picture was proposed, in which one pressure acts 

on both fibres and water. Decreasing permeability and not decreasing pressure causes flow 

to decrease during dewatering. This was justified on the basis that wet pulp fibres lack the 
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structural integrity to shield water from pressure in a web that has more water than fibre, 

even at the end of pressing. Pressure is transmitted through fibres to the water within them. 

Consequently, the rate of water removal decreases with time because water is first expelled 

from large pores, then small pores, then eventually ceases altogether when water has no 

pathway to the fibre surface or is held there by surface tension. This model was entitled the 

Decreasing Permeability Model (DPM) (Kerekes and McDonald 1991; McDonald and 

Kerekes 1991). This picture was largely rejected at the time of its publication. 

  The above picture was modeled by Darcy’s law having a permeability dependent 

on a power function of moisture content (Kerekes and McDonald 1991; McDonald et al. 

2000). For “flow-controlled” pressing, this gave Eq. 5, 

n

n

Wv

ImnA
mm

1

2

0
0 )1(

−

+=              (5) 

where I is the press impulse (nip load/speed) (kPa.s), W is the basis weight (kg/m2), ν is the 

kinematic viscosity (m2/s), and the furnish is characterized by the specific permeability (A) 

(g/m) and the compressibility factor (n). 

  Equation 5 gave excellent fits to data from commercial machines and pilot presses 

(McDonald and Kerekes 1991; McDonald et al. 2000). In addition, it predicted the rule-of-

thumb that a 10 °C change in temperature increases the pressed solids by 1% through the 

kinematic viscosity (ν). Over time, the DPM was used to evaluate optimization strategies 

and press design using the appropriate furnish dependent coefficients (A and n) for different 

grades. 

  As experience with the DPM grew, some applications that involved factors beyond 

those in Eq. 5 were encountered. One such case was lightweight papers, in which rewetting 

contributed substantially to the final moisture, and pressing took place to near equilibrium 

conditions. The latter made dewatering “pressure controlled” rather than “flow controlled,” 

as modelled in Eq. 5. To account for these factors, the DPM was extended to include a 

rewet term (R) (McDonald and Kerekes 1995) and an equilibrium term (me) (Kerekes et al. 

2013). The full equation is shown in Eq. 6, which covers the full range of wet pressing, as 

shown in Fig. 5. 

 

           (6) 

 
 

 

 Among other applications, the DPM has been employed to investigate the factors that 

control the limit of pressing. Based on Eq. 6, McDonald and Kerekes (2017b) showed that 

rewet and equilibrium moisture controlled pressing to high dryness. Further, they showed 

that felt design has a major effect on rewet (McDonald et al. 2013) and that rewet occurs 

in two stages: flow from the felt back into paper and film splitting when these separate 

(McDonald and Kerekes 2018). 

The factors that determine equilibrium moisture content me were still unknown. It 

was hypothesized that me is directly related to the surface tension of water in the fibre pores 

(Kerekes and McDonald 2020). This led to the development of an equation that relates the 

ultimate possible dryness in pressing to the structure of the fibre. 
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 Fig. 5.  The DPM describes the full range of wet pressing (McDonald and Kerekes 2017a) 

     

           In summary, a mathematical model built on a more realistic picture than one in 

common use at the time led to useful predictions and insights into wet pressing. The path 

to the final equation evolved over time as experience was gained for various applications. 

 

 

CALENDER BUBBLING  
 

  In some machine calenders, paper may be separated from the roll surface by pockets 

of air between the paper and the roll (Fig. 6). This bubbling typically forms on the wrap 

preceding the bottom nip. It is most pronounced for impermeable papers that are being 

heavily calendered at high speed. The bubbles can cause paper to fold over, which leads to 

creases or cuts that can cause breaks during reeling, winding, or converting. 
 

 
 

Fig. 6. Bubble position in the cross direction (Hamel et al. 1999) 

 

  The prevailing theory on the cause of bubbles was that cross-direction sheet 

expansion was the key factor. However, this could not explain why increased machine 

speed or decreased paper permeability increased the onset of bubbling. The problem defied 
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a mechanistic description until it was proposed that air expelled from the ingoing nip was 

responsible for bubble formation (Hamel et al. 1999). 

  The mechanism of bubble creation was pictured as follows. Air in paper is expelled 

when paper is compressed in a calender nip. As the air cannot pass though the nip, it must 

flow back out but can only do so on the ingoing side. Air expelled from the side in contact 

with the roll must flow back through the paper thickness or accumulate between the paper 

and the roll. The accumulation creates a bubble whose size depends on the rate of air 

expulsion from the nip and the rate of flow through the paper. The latter depends on the 

permeability of the paper and the pressure built up in the bubble. This can be solved 

analytically by imaging the equivalent problem of a calender roll rolling against paper on 

an infinite plane as shown in Fig. 7. 
 

 

 

 

 

 

 

 

 
 
 
Fig. 7. Simplified bubble geometry (Hamel et al. 1999) 

 

  Hamel et al. (1999) modelled this mechanism by employing a force balance that 

assumed the paper had negligible stiffness. This led to Eq. 7, 

KT

Sz

l

Y in

16

max 
=                    (7) 

where Ymax is the maximum bubble height (cm), l is the bubble length (cm) in the machine 

direction, ϵn is the in-nip compressive strain, zi is the thickness (μm) of the paper before the 

nip, S is the machine speed (m/s), K is the air permeability measured under applied pressure 

(m3/N.s), and T is the sheet tension per unit width (N/m). 

  Equation 7 explains several observations. Calendering decreases paper 

permeability and web tension in successive nips due to inelastic expansion in the machine 

direction. Therefore, bubbling can be reduced by several means, such as increasing the 

draw (tension) between the last dryer and  the calender, pre-calendering, increasing 

calendering in the upper nips, increasing paper permeability, or improving cross-machine 

profiles (basis weight and moisture affect tension). The effect of these factors on bubbling 

is quantified in Eq. 7. 

 
 
CREPE WRINKLE FORMATION  
   

  Crepe wrinkles are narrow machine-direction folds produced within paper rolls 

during reeling and winding (Fig. 8). The folds cause weak points that can lead to web 

breaks. The cause of the folds was not known, but the cross-sections suggested that they 

were created by in-plane compressive failure. The problem was important to many mills 

and guidance on how they might be avoided was not obvious. 
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Fig. 8. Crepe wrinkles are the result of compressive failure of paper in the machine-direction, as 
shown by cross-sections (McDonald 2014) 
 

  It was pictured that the wrinkles were created by inter-layer slippage of paper 

within rolls, which produced in-plane compressive failure of the paper layers. Slippage 

between layers in the rolls is prevented by friction that depends on the coefficient of the 

friction of paper (McDonald 1999) and radial compressive stress. This stress is produced 

by the cumulative tension of overlying layers during winding. Slippage occurs when an 

applied force exceeds the friction force. The source of this force is discussed below. 

  In two-drum winders, paper rolls are driven and rest on the winder drums. Force is 

exerted though the nips between paper and the hard roll. The viscoelastic property of paper 

causes force in the nip to skew forward, which creates a rolling friction that must be 

overcome by torque. This torque tends to unwind the roll. If it exceeds layer-to-layer 

friction, slippage occurs within the paper roll (McDonald and Ménard 1999), which leads 

to the in-plane compressive failure of paper (McDonald 2014).  

           This problem was modeled by a force balance to predict the minimum paper-to-

paper coefficient friction required to prevent layer-to-layer slippage and buckling of a sheet 

supported on both sides by an elastic foundation (McDonald 2014). The resulting model 

gave the minimum required coefficient of friction (μ) as a function of paper roll diameter 

(R), roll density (ρ), radial compressive stress (σr), the compressive modulus of the roll (Er), 

and the radius of the winder drums (RD) (Eq. 8): 

 

         

     (8) 

 

  Equation 8 was simplified by employing previous work that showed that the 

modulus of a paper roll (ER) exposed to a radial load is proportional to the radial 

compressive stress (σr) (McDonald et al. 2005). Using the proportionality (Er  σr) and for 

simplicity, an infinite winder drum radius, the minimum coefficient of friction to avoid 

slippage is given by Eq. 9:  
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            (9) 

 

  This simple equation provides guidance to control crepe wrinkles and has been 

found consistent with commercial experience (McDonald 2014).  

 

 
CONCLUSIONS  
 

1. These examples have illustrated the development and application of several 

mathematical models in papermaking.  

2. The models addressed a clear problem or need and were based on a conceptual picture 

of the key variables and how they interact. Formulating the equations brought a deeper 

understanding, and the results brought new predictive capabilities. 

3. Although there are differing ways of conducting scientific research, this approach has 

been of great value in the long history of science. Future researchers in pulp and paper 

science are encouraged to employ it. 
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