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Polyethyleneimine (PEI) modified corncob-derived carbon material (CCM) 
was prepared by the simple wet-impregnation technique. Field emission 
scanning electron microscopy (FESEM), energy-dispersive X-ray 
spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and 
nitrogen isothermal adsorption/desorption measurements were used to 
compare the structural differences between the CCM and the PEI-modified 
CCM (PEI-CCM). In the single-pollutant removal experiment, the PEI-
CCM showed high adsorption capacities for methyl orange (MO) and 
Cr(VI). However, the CCM only showed high adsorption capacity for MO. 
Moreover, the PEI-CCM exhibited high removal efficiencies in the 
simultaneous removal of MO and Cr(VI), with final removal efficiencies of 
100% and 95%, respectively. The reusability experiment of PEI-CCM 
indicated that, after four recycles, PEI-CCM maintained high performance 
with the removal efficiency of MO and Cr(VI) decreased less than 3% and 
16%, respectively. The prepared PEI-CCM could be a high-performance 
adsorbent for the simultaneous removal of MO and Cr(VI) from water 
containing multiple pollutants. 
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INTRODUCTION 
 

With increasing concern for environmental protection, more attention is being paid 

to the harmful effects of water pollution, and heavy metals compose a considerable 

proportion of water pollution (Pan and Zhao 2019). Most heavy metal ions, such as Cr(VI), 

Cu(II), Cd(II), and Pb(II), are highly toxic and easily accumulate in the biological chain, 

which can be harmful to human health and the environment (Norouzi et al. 2018; de Freitas 

et al. 2019). Dye pollution is another serious type of water pollution (Amin et al. 2019). 

The discharge of dye wastewater can reduce the transparency of the water body and 

consume the oxygen in the water, which can affect the survival of aquatic species and 

destroy the water body’s self-purification ability (Gao et al. 2017). Moreover, due to 

potential mutagenic dyes such as methyl orange (MO) and methylene blue (MB), exposure 

to dye wastewater can increase the risk of tachycardia, jaundice, and quadriplegia. In some 

textile and manufacturing industries, the simultaneous application of heavy metal ions and 

dyes causes a complex composition of the wastewater (Liu et al. 2018; Mishra and Maiti 

2019). Therefore, the ability to simultaneously remove heavy metal ions and dyes is 

becoming increasingly important. 
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Many methods have been developed to remove these pollutants, including chemical 

precipitation, membrane separation, solvent extraction, and physical adsorption. Some of 

these techniques have notable shortcomings, including low removal efficiency, high 

removal cost, and long removal time. Compared with other techniques, adsorption has the 

advantages of easy operation, high efficiency, and low cost. Because the properties of the 

adsorbent greatly affect its performance, many efficient adsorbents have been developed 

in recent years. These include layered double hydroxides (Zheng et al. 2019), metal-

organic frameworks, carbon materials (Zhang et al. 2019), and porous silicas (Liu et al. 

2019a). However, adsorbents have some disadvantages, such as complex preparation 

procedures and unsatisfactory treatment of the contaminated adsorbent which had been 

used and should be disposed. 

Due to the low feedstock cost, the use of waste materials to prepare high-

performance materials has drawn increasing attention (Song et al. 2019). Agricultural 

waste is a type of renewable and low-cost biomass resource (Wang et al. 2020a). Using 

agricultural waste to prepare carbon materials is an efficient way to obtain high-

performance adsorbent (Li et al. 2019). Various agricultural wastes such as coffee grounds 

(Wang et al. 2019; Wen et al. 2019), coconut waste (Rahim et al. 2019), and Citrus 

reticulata shells (Santos et al. 2015) have been used as feedstocks to prepare adsorbents. 

These agricultural-waste-derived adsorbents have been successfully used in the treatment 

of heavy metal wastewater or dye wastewater and exhibited high removal efficiency 

(Rathinam et al. 2018). However, the simultaneous removal of multiple pollutants is still a 

challenge for them (Chen et al. 2018a). To enhance the removal efficiency and expand the 

application field of these agricultural-waste-derived adsorbents, a chemical modification 

technique has been developed. Using this technique, the surface functional groups of the 

adsorbent can be adjusted, and the adsorption ability of the adsorbent can be improved (Sun 

et al. 2016). Polyethyleneimine (PEI) is an attractive chemical modification agent because 

its molecules contain many amine groups, which can strongly interact with negatively 

charged hydrophilic pollutants (Lv et al. 2018). However, a cross-linking agent such as 

glutaraldehyde is sometimes needed in the PEI modification process (Ma et al. 2014). 

Corncob is an important agricultural waste, with approximately 28 million tons 

generated globally each year (Laleicke 2018; Li et al. 2018a). Using corncob as a feedstock 

to prepare adsorbent can both affect resource recycling and also benefit the environment. 

Thus, a wet-impregnation method, which does not need a cross-linking agent, was 

conducted to modify corncob-derived carbon material (CCM) with PEI. The as-prepared 

PEI-modified CCM (PEI-CCM) was applied in the removal of MO and Cr(VI). The 

structure of the PEI-CCM was characterized, and its adsorption mechanism was 

investigated using isothermal adsorption and kinetic models. Simultaneous removal of MO 

and Cr(VI) by the PEI-CCM was also evaluated. 

 
 
EXPERIMENTAL 
 
Materials 

Corncob waste was collected from a local field in Fushun County, Liaoning, China. 

The PEI (molecular weight of 3,000 g/mol) was obtained from Shanghai Gobekie New 

Material Technology Co., Ltd. (Shanghai, China). Phosphoric acid (H3PO4, 85%) was 

purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Other chemical 

reagents, including potassium dichromate and methanol, were purchased from Tianjin 
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Damao Chemical Reagent Factory (Tianjin, China). All these obtained analytical grade 

reagents were used directly without further purification. 

 

Preparation of PEI-CCM adsorbent 

First, corncob waste was ground into particles and passed through a 100-mesh (149-

μm) nylon sieve. Then, the sifted corncob waste particles were washed five times with 

distilled water to remove surface-attached dust. The cleaned corncob waste particles were 

dried in an oven at 120 °C for 24 h. The dried corncob waste particles were blended with 

H3PO4 at a ratio of 0.34 mol H3PO4 / 10 g of corncob waste particles), after which 60 mL 

of distilled water was added. Then, the mixture was blended at 80 °C for 2 h. After that, 

the mixture was heated to 130 °C to evaporate water. The obtained residue was heated in 

a furnace to 500 °C for 2 h under nitrogen atmosphere. The as-prepared sample was washed 

with distilled water until neutral. After drying at 100 °C for 24 h, the CCM was obtained. 

Based on the fact that PEI can be easily grafted on the surface of carbon material 

through amidation reaction, the modification of the CCM by the PEI was performed by the 

wet-impregnation method (Geng et al. 2019). The CCM (1 g) and PEI (0.4 g) were added 

to 20 mL of methanol and stirred at 30 °C for 12 h. After the evaporation of the methanol 

at 80 °C for 2 h, the obtained particles were washed with 50 mL of methanol three times 

to remove the residual PEI, which is soluble in methanol and can be washed off by this 

process as reported in literature (Quan et al. 2019). After filtration, the obtained carbon 

material was heat-treated at 80 °C for 6 h in an oven, and the final product was denoted as 

PEI-CCM. 

 

Characterization 
The surface morphologies and chemical compositions of the samples were 

examined with a field emission scanning electron microscope (Hitachi SU8010N, Tokyo, 

Japan) equipped with an energy-dispersive X-ray spectrometer. The functional groups of 

the samples were measured with a Fourier-transform infrared spectrophotometer 

(Shimadzu Prestige-21, Kyoto, Japan) using the KBr tablet method. The specific surface 

areas and pore size distributions of the samples were determined using an ASAP 2460 

analyzer (Micrometrics, Norcross, GA, USA).  

 

Adsorption experiments 

The adsorption experiments of MO and Cr(VI) were performed in a mechanical 

shaker (Chen et al. 2019a). The pH value of the adsorption solution was adjusted with a 

0.1 M HCl solution. To study the MO removal ability of the PEI-CCM, the adsorption 

temperature was set at 35 °C, and the pH value of the MO solution was set at 7. Ten 

milligrams of the PEI-CCM was added to 50 mL of MO solution to start the adsorption 

process. After the adsorption process, the suspension was filtered using a syringe filter with 

a pore size of 0.22 μm. The concentration of MO in the filtrate was measured using a T6 

UV–Vis spectrophotometer (Beijing Purkinje General Instrument Co., Ltd., Beijing, 

China) at a wavelength of 464 nm (Lu et al. 2016). The Cr(VI) adsorption experiments 

were conducted at a temperature of 35 °C and solution pH of 5.7. Twenty-five milligrams 

of the PEI-CCM was added to 50 mL of Cr(VI) solution. The suspension was filtered by a 

syringe filter with a pore size of 0.22 μm after adsorption. Then, the obtained filtrate was 

treated with 1,5-diphenylcarbazide. The concentration of Cr(VI) in the filtrate was 

measured by the UV–Vis spectrophotometer at a wavelength of 540 nm (Wang et al. 

2020b). 
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The adsorption capacity of the PEI-CCM (Qe, mg/g) and removal efficiency of the 

adsorbate (Re, %) were calculated according to Eqs. 1 and 2, 

𝑄e =
(𝐶0 − 𝐶e) × 𝑉

𝑚
         (1) 

𝑅e = (
𝐶0 − 𝐶e

𝐶0
) × 100%        (2) 

where C0 (mg/L) is the initial concentration of the adsorbate, Ce (mg/L) is the equilibrium 

concentration of the adsorbate, V (L) is the solution volume, and m (g) is the adsorbent 

weight, as reported in the literature (Chen et al. 2020; Zhang et al. 2020). 

Experiments for the simultaneous removal of MO and Cr(VI) by the PEI-CCM 

were conducted at 35 °C, and the pH value of the binary adsorbate solution was set at 5.7. 

The concentrations of MO and Cr(VI) were both set at 20 mg/L. During the equilibrium 

adsorption isotherm experiment, 25 mg of adsorbent was added to the 50-mL binary 

adsorbate solution. 

 

Regeneration of the Used PEI-CCM 
To examine the reusability of the PEI-CCM adsorbent, an adsorption-desorption 

experiment was performed. The used PEI-CCM adsorbent was stirred in 1 M NaOH 

solution for 1 h to release the adsorbed chromium ions (Lv et al. 2018). Then, the treated 

PEI-CCM adsorbent was washed using methanol to remove the MO. After drying at 100 

°C for 2 h, the PEI-CCM adsorbent was added to the binary adsorbate solution to start the 

next experiment. The regenerated PEI-CCM was reused as the adsorbent four times. The 

reusability experiment of PEI-CCM was conducted at 35 °C. The pH value of the binary 

adsorbate solution was set at 5.7. The concentrations of MO and Cr(VI) were both set at 

20 mg/L. The adsorption time was 400 minutes. 

 

 
RESULTS AND DISCUSSION 

 
Characterizations of Adsorbents 

Table 1 and Fig. 1 present energy-dispersive X-ray spectroscopy (EDS) and the 

field emission scanning electron microscopy (FESEM) investigation results for the CCM 

and the PEI-CCM. The CCM and PEI-CCM exhibited similar surface morphologies. 

Coral-like structures formed by the irregular aggregation of holes and particles were 

observed on the particle surface. The elemental compositions of the CCM and PEI-CCM 

were different. The CCM was 92.5% C and 7.5% O, while the PEI-CCM was 81.0% C, 

12.1% O, and 6.85% N. Polyethyleneimine contains a certain amount of amines, so the 

relatively high N content in the PEI-CCM indicated that the CCM was successfully 

modified by the PEI. 

 
Table 1. Elemental Composition of the CCM and the Reused PEI-CCM 
 

Element CCM (wt%) PEI-CCM (wt%) 

C 92.5 81.0 

O 7.51 12.1 

N — 6.85 
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Fig. 1. FESEM surface images (a) CCM and (b) PEI-CCM 

 

µmThe functional groups of the CCM, PEI, and PEI-CCM were analyzed by 

Fourier-transform infrared spectroscopy (FTIR), and the corresponding spectra are shown 

in Fig. 2. For the CCM, the band appearing beyond 3000 cm-1 resulted from the vibration 

of the O-H groups (Liu et al. 2019b). The bands appearing between 2800 cm-1 and 3000 

cm-1 were attributed to the vibrations of the C-H groups (Hu et al. 2020). The band 

appearing at 1565 cm-1 was attributed to the vibration of C=O in carboxyl groups (Chen et 

al. 2018b). For the PEI, the bands appearing at 1585 cm-1 and 1450 cm-1 were attributed to 

the vibrations of N-H and C-N, respectively. For the PEI-CCM, compared with CCM, there 

was a new band appeared at 1450 cm-1 in the range from 1000 to 1500 cm-1. Since the band 

at 1450 cm-1 comes from the vibration of C-N bond of PEI (Chen et al. 2018b), this result 

indicated that PEI was grafted on the surface of CCM. Compared with PEI, there was a 

new band of PEI-CCM appearing at 1635 cm-1, which was assigned to the vibration of the 

amide groups (Geng et al. 2019). The presence of amide groups in the PEI-CCM suggests 

that the PEI was grafted onto the surface of the CCM through amide bond during the 

modification process. 

 
 
 
Fig. 2. FTIR spectra of CCM, PEI, and PEI-CCM 

 

Pore structure can greatly affect the adsorption properties of an adsorbent (Liang et 

al. 2019). Thus, nitrogen adsorption-desorption isotherms of the CCM and PEI-CCM were 

determined, and the pore size distributions of the CCM and PEI-CCM were measured. The 
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results are presented in Fig. 3. The isotherm curves of the CCM and PEI-CCM were of 

type IV. Moreover, in the range of high relative pressure, the hysteresis loop was observed 

in both samples. The Brunauer-Emmett-Teller (BET) surface areas of the CCM and PEI-

CCM were 1130 m2/g and 519 m2/g, respectively, while the pore diameters were 3.3 nm 

and 4.5 nm, respectively. Compared with the CCM, the BET surface area of the PEI-CCM 

decreased by 53.9%, while the pore diameter of the PEI-CCM increased by 36.4%. These 

observed changes were in accordance with the phenomenon of PEI blocking the 

micropores on the surface of porous material, leading to a decrease of the BET surface area 

and an increase of the pore diameter (Quan et al. 2019). The EDS, FTIR, and N2 adsorption-

desorption analyses all indicated that the CCM surface was successfully modified by the 

PEI. 
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Fig. 3. (a) N2 adsorption–desorption isotherms and (b) pore size distributions of CCM and PEI-
CCM 

 

Comparative Investigation on the Adsorption Abilities of PEI-CCM 
When the CCM was modified by the PEI, which is a cationic polymer with many 

amine groups in its molecule, the surface properties of the CCM were greatly changed, 

leading to different adsorption abilities for the CCM and PEI-CCM. Figure 4 clarifies these 

differences, showing the adsorption capacities of the CCM and PEI-CCM in the adsorption 

of MO and Cr(VI). The CCM exhibited a high adsorption capacity for MO (392 mg/g) but 

a low adsorption capacity for Cr(VI) (12 mg/g). The PEI-CCM showed high adsorption 

capacity for both MO and Cr(VI) (316 mg/g and 123 mg/g, respectively). This phenomenon 

was due to the fact that, after CCM was modified by PEI, the electrostatic attraction 

between negatively charged chromate ions and the surface of adsorbent was strengthened 

(Hubbe et al. 2011; Geng et al. 2019). Meanwhile, the hydrogen bonding between the 

grafted PEI and MO made the adsorption of MO more easily for PEI-CCM (Li et al. 2018b). 

However, the greatly reduced BET surface area of PEI-CCM (Fig. 3a) decreased the MO 

adsorption capacity of PEI-CCM (Lv et al. 2018). Although the adsorption capacity for 

MO decreased by approximately 20% after the CCM was modified by the PEI, the Cr(VI) 

adsorption capacity of the PEI-CCM increased by more than nine times compared with the 

CCM, making the PEI-CCM a high-performance adsorbent for the adsorption of MO and 

Cr(VI).  

Recently, the composition of pollutants in wastewater has become more and more 

complex. Developing the adsorbent with the ability to simultaneously remove heavy metal 
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ions and dyes has become an important research field. Many adsorbents which can 

simultaneously remove MO and Cr(VI) was developed. Table 2 presents the comparison 

of adsorption ability of various adsorbents for simultaneously removal of MO and Cr(VI) 

reported in literatures. It can be observed from Table 2 that, compared with NiFe-LDH and 

LDHs@PAB, MWCNTS@Fe3O4/PEI and PEI-CCM showed high MO adsorption 

performance with the adsorption capacity higher than 300 mg/g. Although 

MWCNTS@Fe3O4/PEI showed higher MO adsorption capacity, 596 mg/g, than PEI-

CCM, 316 mg/g, the Cr(VI) adsorption capacity of MWCNTS@Fe3O4/PEI is lower than 

50 mg/g, which is similar as that of NiFe-LDH and LDHs@PAB. Thus, PEI-CCM 

exhibited much better performance in the simultaneously removal of MO and Cr(VI). 

Moreover, the raw material of PEI-CCM came from the waste corncob. Using waste 

corncob to prepare the high-performance adsorbent, PEI-CCM, can be beneficial to the 

utilization of waste corncob and the environmental protection. 
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Fig. 4. MO adsorption capacities of CCM and PEI-CCM (temperature: 35 °C; initial 
concentrations: 100 mg/L; pH: 7.0; dosage: 0.2 g/L; adsorption time: 25 h) and Cr(VI) adsorption 
capacities of CCM and PEI-CCM (temperature: 35 °C; initial concentrations: 100 mg/L; pH: 5.7; 
dosage: 0.5 g/L; adsorption time: 1500 min) 

 

Table 2. Comparison of Adsorption Capacities of Various Adsorbents for MO and 
Cr(VI) 
 

Adsorbent MO (Qm (mg/g)) Cr(VI) (Qm (mg/g)) References 
NiFe-LDH 205 26 (Lu et al. 2016) 

LDHs@PAB 186 49 (Chen et al. 2018a) 

MWCNTS@Fe3O4/PEI 596 48 (Chen et al. 2019a) 

PEI-CCM 316 123 This study 

 
Adsorption Kinetics  

The adsorption kinetics of the PEI-CCM for the removal of MO and Cr(VI) were 

determined, and the results are shown in Fig. 5. As the MO initial concentration increased, 

the MO adsorption capacity of the PEI-CCM also increased. When the MO initial 

concentration was increased from 50 mg/L to 200 mg/L, the MO adsorption capacity of 

the PEI-CCM increased from 250 mg/g to 374 mg/g. The Cr(VI) adsorption capacity of 

the PEI-CCM exhibited a similar tendency. When the Cr(VI) initial concentration was 

increased from 20 mg/L to 60 mg/L, the Cr(VI) adsorption capacity of the PEI-CCM 

increased from 40 mg/g to 83 mg/g. To investigate the adsorption mechanisms, the pseudo-

first-order and pseudo-second-order kinetic models were applied to describe the adsorption 
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behavior of the adsorbent (Hubbe et al. 2012). Typically, the pseudo-first-order and 

pseudo-second-order kinetic models are expressed as in Eqs. 3 and 4, 

ln(𝑄e − 𝑄t) = ln 𝑄e − 𝑘1𝑡        (3) 

𝑡

𝑄t
=

1

𝑘2𝑄e
2 +

1

𝑄e
𝑡         (4) 

where Qe (mg/g) is the adsorption capacity at adsorption equilibrium, Qt (mg/g) is the 

adsorption capacity at time t (min), k1 (1/min) is the rate constant of adsorption, and k2 

(g/(mg·min)) is the rate constant of the pseudo-second-order adsorption (Hou et al. 2013). 

The simulated results of the adsorption experimental data using these two kinetic models 

are presented in Tables 3 and 4. When the adsorption kinetic data for MO and Cr(VI) were 

simulated by the pseudo-second-order kinetic model, the corresponding correlation 

coefficient (R2) was greater than that obtained with the pseudo-first-order kinetic model. 

This result demonstrates that the pseudo-second-order kinetic model was more suitable for 

describing the adsorption of MO and Cr(VI) by the PEI-CCM (Garba et al. 2020). Thus, 

the kinetic investigation results indicated that the adsorption rate of MO and Cr(VI) by the 

PEI-CCM is controlled by the time required procedure for the diffusion into narrow pores 

(Hubbe et al. 2019). 
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Fig. 5. (a) MO adsorption kinetic by the PEI-CCM at 35 °C (Conditions: initial concentrations: 50, 
100, 200 mg/L; dosage: 0.2 g/L; pH: 7; adsorption time: 1500 min) and (b) Cr(VI) adsorption kinetic 
by the PEI-CCM at 35 °C (Conditions: initial concentrations: 20, 40, 60 mg/L; dosage: 0.5 g/L; pH: 
5.7; adsorption time: 1500 min) 
 

Table 3. MO Kinetic Adsorption Fitting Parameters 

C0 Qe,exp 
Pseudo-first-order Pseudo-second-order 

Qe,cal K1 R2 Qe,cal K2 R2 

50 255 249.224 0.268 0.975 253.802 0.002 0.996 

100 316 305.646 0.322 0.983 312.504 0.002 0.997 

200 374 365.838 0.288 0.990 373.554 0.001 0.999 

 
Table 4. Cr (VI) Kinetic Adsorption Fitting Parameters 

C0 Qe,exp 
Pseudo-first-order Pseudo-second-order 

Qe,cal K1 R2 Qe,cal K2 R2 

20 40 39.445 0.388 0.985 40.001 0.030 0.997 

40 74 71.096 0.146 0.952 73.708 0.003 0.988 

60 83 80.202 0.086 0.977 83.789 0.001 0.997 
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Adsorption Isotherms 
The Langmuir and Freundlich isotherm models are widely used to describe the 

adsorption behavior of adsorbents (Stawiński et al. 2017). Thus, these two models were 

used to describe the adsorption behavior of the PEI-CCM. The Langmuir and Freundlich 

isotherm models can be expressed by Eqs. 5 and 6, 

1

𝑄e
=

1

𝑄m𝐾L

1

𝑐e
+

1

𝑄m
         (5) 

log 𝑄e = log 𝐾F +
1

𝑛
log 𝑐e        (6) 

where Qe (mg/g) is the adsorption capacity of the adsorbent for the adsorbate at adsorption 

equilibrium, Qm (mg/g) is the maximum adsorption capacity of the adsorbent for the 

adsorbate, ce (mg/L) is the concentration of adsorbate in solution at adsorption equilibrium, 

KL (L/mg) is the Langmuir equilibrium constant, KF ((mg/g) (L/mg) 1/n) is the Freundlich 

adsorption constant, and 1/n is the adsorption intensity (Yu et al. 2018). 

The simulated adsorption curves for MO and Cr(VI) using the Langmuir and 

Freundlich isotherm models are shown in Fig. 6. Comparing the R2 values, the adsorption 

experimental data for MO and Cr(VI) was better fitted by the Langmuir model compared 

to the Freundlich model. Because the Langmuir model is used to describe the behavior of 

monolayer adsorption, the isothermal adsorption results indicated that the adsorption of 

MO and Cr(VI) by the PEI-CCM was through the monolayer mode (Maneerung et al. 

2016).  
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Fig. 6. (a) Isothermal adsorption of MO at 35 °C (Conditions: initial concentrations: 50 to 600 mg/L; 
dosage: 0.2 g/L; pH: 7) and (b) isothermal adsorption of Cr(VI) at 35 °C (Conditions: initial 
concentrations: 20 to 600 mg/L; dosage: 0.5 g/L; pH: 5.7) 
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removal efficiency of 95%. These results demonstrated that the PEI-CCM was a high-

performance adsorbent for the simultaneous removal of MO and Cr(VI).  
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Fig. 7. Comparison of the simultaneous removal of MO and Cr(VI) by the CCM and PEI-CCM 
(temperature: 35 °C; initial concentrations: 20 mg/L; pH: 5.7; dosage: 0.5 g/L; adsorption time: 
400 min) 
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Fig. 8. Reusability of the PEI-CCM adsorbent (Conditions: Temperature: 35 °C; initial 
concentrations: 20 mg/L; pH: 5.7; dosage: 0.5 g/L; adsorption time: 400 min). 
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CONCLUSIONS 
 

1. Polyethyleneimine-modified corncob-derived carbon material (PEI-CCM) was 

prepared and successfully applied for the adsorption of methyl orange dye (MO) and 

Cr(VI). The structural characterization of the PEI-CCM indicated that the PEI was 

grafted onto the CCM surface through amide bonds. The adsorption behavior of the 

PEI-CCM for MO and Cr(VI) was in accordance with the  pseudo-second-order kinetic 

model and the Langmuir isotherm model.  

2. In the experiment of simultaneous adsorption of MO and Cr(VI), the PEI-CCM 

exhibited high removal efficiencies: 100% for MO and 95% for Cr(VI). Moreover, the 

PEI-CCM showed excellent recycling performance, supporting its use as a low-cost 

and high-performance adsorbent for the treatment of complexly polluted water. 
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