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The pulp and paper industry contributes to the economic development of 
the U.S., producing goods that meet primary needs. However, this sector 
must operate in a balance with the environment to ensure ecological 
preservation. Proposing a non-radial slacks-based measure – data 
envelopment analysis (SBM-DEA) approach, this study assessed the 
environmental efficiency of the pulp and paper industry in the U.S. from 
2015 to 2018. External environmental impacts and random interferences 
on efficiency assessment were explored by using a stochastic frontier 
approach (SFA) regression. This study revealed that the U.S. pulp and 
paper industry was highly non-eco-efficient in the period evaluated, 
presenting an average environmental efficiency value of 0.509. Also, it is 
suggested that a total of 2.967 million metric tons of CO2eq emissions were 
in excess of those that were estimated based on an assumption of perfect 
environmental efficiency from 2015 to 2018 in the U.S. pulp and paper 
Industry. Based on the analysis of input and output slacks and the external 
environmental factors which reflect the environmental features of each 
decision-making unit (DMU), these facilities should substantially reduce 
CO2eq emissions and enhance the resources-allocation efficiency for 
improving the environmental efficiency of the U.S. PPI. 
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INTRODUCTION 
 

The effects of climate change are seen globally on a large-scale. Climate change 

affects society and ecosystems in different ways, such as severe temperatures, flooding, 

and changes in the quality of the air. As climate change concerns grow, a series of actions 

to combat the problem have emerged to understand and reduce its causes. Recently, the 

Climate Action Summit, held in September 2019, had as a central purpose to develop plans 

to reduce greenhouse gas emissions by 45% over the coming decade, and net to zero by 

2050 (United Nations 2019). The presence of greenhouse gases (GHGs) in the atmosphere, 

such as carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons, leads to the 

global warming effect. Global warming potential (GWP) relates how much energy will be 

absorbed by one ton of emissions of these gases over a period of time, compared to one ton 

of carbon dioxide. Thus, when considering different gases of increasing GWP, the more 

they will warm the earth in contrast to carbon dioxide (EPA 2017).  

The U.S. energy demand is mainly satisfied by fossil fuel combustion, which causes 

massive carbon dioxide (CO2) emissions (U.S. EIA 2018). Although CO2 is the main 

contributor to GHGs, accounting for about two thirds, other gases such as methane (CH4) 
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and nitrous oxide (N2O) are also generated during fuel combustion and contribute to GHGs 

emissions (EPA 2018). According to the most recent data from the Global Carbon Project 

2018, the U.S. is the second-largest emitter of CO2. Also, for the sources of GHG 

emissions, in 2017, the US total emissions were estimated to be 6.5 billion metric tons of 

CO2eq, with a breakdown of 82% coming from CO2, 10% from CH4, 6% from N2O, and 

3% from other fluorinated gases. For the U.S. pulp and paper Industry, the GHGs emissions 

have been estimated to be 35.5 million metric tons of CO2eq (EPA 2017). Therefore, to 

reduce the environmental impact, it is worthwhile to estimate the GHGs emissions and 

assess the environmental efficiency in the U.S. pulp and paper industry, which may provide 

useful information for researchers who are likely to investigate in this field. 

Few studies have analyzed efficiency by using cross-sectional data instead of panel 

data in the U.S. pulp and paper industry from a productivity efficiency perspective. Many 

previous studies have preferred to apply radial programs into the efficiency analysis, which 

cannot estimate all the technical inefficiencies of greenhouse gas emissions. Thus, the 

purpose of this study is to fill in the gap by using a slack-based efficiency approach with 

non-radial measure for estimating the environmental efficiency of the U.S. pulp and paper 

industry and exploring its slacks of inputs and outputs to determine the optimal values for 

capital, labor, energy usage, and CO2eq emissions.  

 
Literature Review 

The assessment of environmental performance has been the focus of research 

worldwide in the past several decades. Shephard (1970) firstly introduced the concept of 

“environmental efficiency”. Since then, there have been various measurements and 

evaluations of environmental efficiency analyzed by scholars. Some researchers prefer to 

assess environmental efficiency by using an environmental performance index (EPI) (Färe 

and Grosskopf 2004; Kortelainen 2008; Vachon 2012). Life Cycle Assessment (LCA) 

methods have been also applied into estimate carbon dioxide equivalents (CO2eq) in certain 

sectors. This approach accounts for contributions to pollution from the cradle to landfill, 

and it also has been used to evaluate CO2eq emissions as the input indicator of 

environmental efficiency (Miettinen and Hämäläinen 1997; Lozano et al. 2010; Olander 

2012; Poeschl et al. 2012; Hawkins et al. 2013; Vázquez-Rowe and Iribarren 2015; 

Carvalho et al. 2014).  

Environmental efficiency analysis often employs the data envelopment analysis 

model (DEA). The DEA method is a non-parametric approach that can achieve an optimal 

linear combination of multiple inputs and outputs, which has the advantage of ignoring the 

imposition of a function form (Zhu 2004). Therefore, DEA could make the estimation of 

efficiency easier. DEA was first designed by Charnes et al. (1978) and called the CCR 

model as a combination analysis tool of input and output based on relative efficiency. It is 

different from the radial models, which have been widely employed, as it applies the 

parametric approach into efficiency assessment. Wei et al. (2007) estimated the energy 

efficiency of China's specific industry using DEA models. However, conventional DEA in 

the application may only take the desirable outputs into account. Conventional DEA does 

not consider environmental efficiency analysis results from "bad" or "pollutants" as inputs 

to the model. For instance, it may cause biased results on the assessment of the 

environmental efficiency due to ignoring the impacts of undesirable gaseous outputs such 

as CO2 or SO2 as well as pollutants in the treated wastewater (He et al. 2013; Chen et al. 

2015).  

In this context, the slacks-based measure (SBM) models were introduced by Tone 
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(2001) and Pastor et al. (1999). The SBM-DEA model is a non-radial measurement under 

the constant returns-to-scale (CRS) and the variable returns-to-scale (VRS) assumption. It 

allows inputs, undesirable outputs, and desirable outputs by individuals to obtain factor 

efficiencies based on non-uniform inputs and outputs. Shi et al. (2010) applied DEA under 

the constant returns-to-scale (CRS) and the variable returns-to-scale (VRS) models to 

estimate the industrial environmental efficiency in some provinces of China, considering 

waste gases as undesirable outputs. Park et al. (2016) estimated environmental and carbon 

efficiency of the U.S. transport sector by using a lack-based data envelopment method. 

Chen and Jia (2017) selected sulfur dioxide emissions and industrial solid waste as 

undesirable outputs and made the environmental efficiency evaluation of China’s industry. 

Guo et al. (2011) analyzed the environmental efficiency and reduction of carbon dioxide 

emission in 30 provinces of China through SBM-DEA methods. Wang et al. (2011) 

analyzed CO2 emissions for China with an expanded DEA efficiency measurement. Zhang 

et al. (2008) assessed the industrial environmental efficiency of large provinces in China, 

considering CO2, CH4, SO2, and other emissions as input for a DEA model with variable 

returns to scale. Ramanathan (2005) estimated the energy efficiency of the transport sector 

in India by using the DEA model. Önüt and Soner (2006) assessed the energy efficiency in 

32 five-star hotels in the Antalya Region of Turkey while employing DEA with the non-

function linear programming model. Lee et al. (2014) evaluated the environmental 

efficiency of port cities and considered input of input, desirable output of GDP, and 

undesirable outputs of pollutant emissions as indicators of the SBM-DEA model. Chang et 

al. (2014) expanded upon an SBM model with the weak disposability assumption to 

analyze the economic and environmental efficiency of international airlines. Some 

researchers adjusted the SBM-DEA model with advanced SBM-DEA software to analyze 

the internal process of DMUs (Tone and Tsutsui 2009; Cook et al. 2010; Tone and Tsutui 

2010; Li et al. 2017; Wu et al. 2019).  

As for the Pulp and Paper Industry (PPI), a number of researchers have estimated 

PPI’s environmental efficiency. For instance, Yu et al. (2016) assessed the environmental 

efficiency of 16 provinces' PPI in China and compared the disparity between efficient and 

inefficient DMUs by using SBM-DEA and ML methods. Ashrafi et al. (2013) applied a 

simulated model and analyzed PPI’s GHG emissions with the removal of excess nitrogen 

in the wastewater plants. Hubbe et al. (2016) reviewed comprehensive approaches for 

wastewater treatment, which could help the PPI to eliminate higher levels of pollutant by 

proposing advanced treatment and improve environmental efficiency. 

The goal of the present work was to analyze the impacts of the external environment 

and random factors on sustainable development in the U.S. PPI. In this study, the Stochastic 

Frontier Analysis (SFA) proposed by Aigner et al. (1977) was used to assess environmental 

efficiency more accurately by accounting for external environmental variables and 

removing random interference factors. The traditional SBM-DEA model does not take 

external environmental and random factors impact into account, leading to deviations in 

the adjustment of inputs slack and undesirable output slack (Zhang and Bu 2017). In 

addition, the waste factors have extent effects on the U.S. PPI sustainable practice.  

As shown by the review of the literature, SBM software and SFA regression have 

been widely used to evaluate the environmental efficiency of the models involving 

undesirable outputs. Few pieces of research have been applied to the evaluation of the 

environmental efficiency of PPI facilities from a micro perspective. Given the scenarios of 

the environmental impact of the U.S. pulp and paper industry, CO2eq emissions should be 

specifically treated as undesirable outputs. This conforms to the realistic production 
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process of PPI from manufacturing, fuel combustion, and landfill, and the efficient result 

will be more convincing to reveal the true environmental performance of the U.S. PPI. In 

this study, the DEA model was expanded based on the output-oriented slacks-based 

measurement (SBM) approach under the variable returns to scale (VRS) assumption, to 

estimate the environmental efficiency of the U.S. pulp and paper Industry.  This study 

explored the excess in inputs and undesirable outputs that could potentially lead to reducing 

the carbon emissions of this sector. Additionally, the impacts of external environmental 

factors on the slacks of inputs and outputs by using SFA method was explored. It is 

expected that the results reflect the actual pulp and paper industry development in the U.S. 

and provide policy implications relative to CO2eq emissions reduction while maximizing 

benefits. 

 
 
EXPERIMENTAL 
 

Methodology 
This study developed a framework for measuring the environmental efficiency of 

130 pulp and paper facilities in the U.S. from 2015 to 2018 via slack-based measurement 

(SBM) with undesirable outputs and explored the influences of the external environment 

and random factors on slack of inputs and outputs.  

 
Slacks-based Measure for DEA 

Following Zhou et al. (2006), Chang et al. (2013), and Hong and Shi (2014), this 

paper proposes and expands an SBM-DEA framework by using the undesirable outputs as 

an objective function and the restricted function. It has three variations, i.e., input-oriented, 

output-oriented, and non-oriented, which can be estimated under constant returns-to-scale 

(CRS) and the variable returns-to-scale (VRS) assumption (Tone 2001; Tone and Sahoo 

2003). While considering a bad output in the model, it is noted that the efficiency value of 

each decision-making unit (DMU) could be improved by increasing the desirable output, 

reducing the excess in inputs, or decreasing the undesirable outputs (Zhang et al. 2011; 

Chang et al. 2014).  

Suppose that a system has k =  {1, . . . , n} decision DMU and that each “k” uses “j” 

inputs to produce “e” desirable outputs and generate “f” undesirable outputs. The vectors 

of inputs, desirable outputs and undesirable outputs for each DMU, are given by(𝑥𝜖𝑅𝑗), 

(𝑦𝑔𝜖𝑅𝑒), and (𝑦𝑏𝜖𝑅𝑓), respectively. The matrices are defined as follows: 
 

𝑋 = [𝑥1,…,𝑥𝑛]𝜖𝑅𝑗×𝑛,        (1) 

𝑌𝑔  = [𝑦1
𝑔

, … , 𝑦𝑛
𝑔

]𝜖𝑅𝑒×𝑛,       (2) 

 𝑌𝑏  = [𝑦1
𝑏, … , 𝑦𝑛

𝑏]𝜖𝑅𝑓×𝑛,       (3) 

Assume that all data on 𝑋, 𝑌𝑔, 𝑎𝑛𝑑 𝑌𝑏 are positive. The set (P)  as production −
possibility can be designed as follows,   

𝑃 = {(𝑥, 𝑦𝑔, 𝑦𝑏)|𝑥𝑐𝑎𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒(𝑦𝑔, 𝑦𝑏), 𝑥 ≥ 𝑋𝜆, 𝑦𝑔 ≤ 𝑌𝑔𝜆, 𝑦𝑏 = 𝑌𝑏𝜆, 𝜆 ≥ 0}    (4) 

where 𝜆 denotes the positive intensity vector. And the production efficiency and 

technical efficiency based on the slacks-based directional distance function exhibits 

variable returns to scale (VRS). This study uses an SBM paradigm that can incorporate 
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undesirable outputs into both the objective function and an additional restriction. The 

SBM-DEA equation set with output-oriented model could be explained in Model 1 below 

(Lu et al. 2013),  

𝜃∗ =
1−

1

𝑗
∑

𝑠𝑖
−

𝑥𝑖

𝑗
𝑖=1

1+
1

𝑒+𝑓
(∑

𝑠𝑟1
𝑔

𝑦𝑟1
𝑔

𝑒
𝑟1=1 +∑

𝑠𝑟2
𝑏

𝑦𝑟2
𝑏

𝑓
𝑟2=1 )

                                      (5)                       

𝑠. 𝑡. 
 𝑥0 = 𝑋𝜆 + 𝑠−                                                                  (6) 

𝑦0
𝑔

= 𝑌𝑔𝜆 − 𝑠𝑔                                                               (7) 

𝑦0
𝑏 = 𝑌𝑏𝜆 + 𝑠𝑏                                                              (8) 

𝑠− ≥ 0, 𝑠𝑔 ≥ 0, 𝑠𝑏 ≥ 0, 𝜆 ≥ 0,                                    (9) 
  

where θ* is each DMU’s value [0.1]; i is the index of inputs (1,2 ...,m); j is the number of 

inputs; r1 is the index of desirable outputs; r2 is the index of undesirable outputs; e is the 

number of desirable outputs; f is the number of undesirable outputs; s- is the slack of inputs;  

sg is the slack of desirable outputs; and sb is the slack of undesirable outputs. 

The DMU is regarded as being efficient if 𝜃∗ is equal to 1, which means that all the 

slack values, 𝑠−, 𝑠𝑔 , and 𝑠𝑏  are equal to 0. If 𝜃∗ is less than 1, then the DMU is considered 

as out of efficiency, and it could be improved by proper adjusting the ratio of the slacks in 

inputs and undesirable outputs and augmenting the desirable outputs. But Eq. 2 is not a 

linear function. As proposed by Tone (2001), a convertible model is used, and the result is 

seen as: 

𝑟∗ = 𝑚𝑖𝑛 𝑐 −
1

𝑗
∑

𝑠𝑖
−

𝑥𝑖

𝑗
𝑖=1                                                 (10) 

    𝑠. 𝑡. 

1 = 𝑐 +
1

𝑒+𝑓
(∑

𝑠𝑟1
𝑔

𝑦𝑟1

𝑔
𝑒
𝑟1=1 + ∑

𝑠𝑟2
𝑏

𝑦𝑟2
𝑏

𝑓
𝑟2=1 )                         (11) 

𝑥0𝑐 = 𝑋𝜑 + 𝑠−                                                               (12) 

𝑦0
𝑔

𝑐 = 𝑌𝑔𝜑 − 𝑠𝑔                                                            (13) 

𝑦0
𝑏𝑐 = 𝑌𝑏𝜑 + 𝑠𝑏                                                            (14) 

𝑠− ≥ 0, 𝑠𝑔 ≥ 0, 𝑠𝑏 ≥ 0, 𝜑 ≥ 0, 𝑐 ≥ 0                       (15) 

The best solution of the linear program model (Eqs. 10 to 15) can be found, and the 

optimal solution is found to be (𝑟∗, 𝑐∗, 𝜑∗, 𝑠−∗, 𝑠𝑔∗ , 𝑠𝑏∗), where 𝜃∗ = 𝑟∗ , 𝜆∗ =
𝜑∗

𝑐∗ , 𝑠−∗ =

𝑠−∗

𝑐∗ , 𝑠𝑔∗ =
𝑠𝑔∗

𝑐∗ , 𝑠𝑏∗ =
𝑠𝑏∗

𝑐∗  from the linear program model. The solution to 𝑐∗, 𝜑∗, 𝑠−∗, 𝑠𝑔∗and 

𝑠𝑏∗can be generated through the linear program model with 𝑐∗ ≥ 0. 
 

 

Stochastic Frontiers Analysis (SFA) 
SBM-DEA and stochastic frontiers are two alternative methods for estimating 

frontier functions and thereby measuring the efficiency of production. The input-output 

slacks are assumed to analyze the initial inefficiency, which is classified as external 

environmental factors, government regulations, and stochastic interference (Coelli et al. 

2005). The traditional SBM-DEA model cannot accurately reflect the optimal adjustment 
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on slacks of inputs and outputs which have been influenced by the external environment 

and random errors on the environmental efficiency evaluation. Different from SBM-DEA 

software, which involves the use of non-linear programming, SFA involves the use of 

econometric regression functions (Coelli et al. 1998). The main objective of using the SFA 

method is to decompose the slack variables into the above external environmental effects 

by SFA regression, where the slack variables are used to be explained by the environment 

variables and the mixed error items (Herrala and Goel 2012). The regression equation is as 

follows: 

            Sij = αij + xiλi = 1,2, ⋯ ⋯ m, j = 1,2, ⋯ ⋯ n                  (16) 

              Sij = f i(zj; βi) + νij + μij                                                  (17) 

Among the above equations, Sij explains the slack variable of inputi or outputi of 

DMUj , and zj = [z1j, z2j , ⋯ , zkj], βi  explains the external environment parameter to be 

estimated, νij + μij are comprehensive errors term, where it is supposed that νij and μij are 

independent of each other, and also that they are independent of the k external environment 

variables. Therefore, the aforementioned SFA regression needs to be designed as follows, 

       γ = σμ
2/(σν

2 + σμ
2)                                                             (18) 

             σ2 = σν
2 + σμ

2                                                                     (19) 

where σν
2 and σμ

2 explain the variances of the comprehensive error term, and γ indicates 

the ratio of the variance of the inputs and outputs inefficiency to the total variance. When 

γ approaches 1, this indicates that the environmental efficiency of each DMU is different, 

and the stochastic factor seem small. When γ  approaches 0, it indicates that the 

environmental efficiency difference between the DMUs is not significant and the stochastic 

difference seems large. Thus, one needs to estimate the parameter by using the maximum 

likelihood method. The results of each parameter can be estimated and inputs and outputs 

slack could be adjusted by analyzing its coefficient so that all of the DMUs are taken into 

consideration for the environmental efficiency. 

 

Data 
To analyze the characteristics of the U.S. pulp and paper industry, the data of 130 

facilities were collected from the Environmental Protection Agency (U.S. EPA, 2018)) and 

FisherSolve databases for 2015 to 2018. The number of facilities was selected based on an 

optimal collection and data availability of inputs and outputs. These 130 facilities account 

for 75.83% of the GHGs emissions (million metric tons) of the pulp and paper industry in 

the U.S in 2018 (U.S. EPA 2018). Therefore, empirical results derived from these data 

could substantially reflect the U.S. pulp and paper industry. The models described in 

Section 3 have been applied to study the environmental efficiency of these 130 facilities. 

According to Cooper (1978), the number of DMUs should follow Eq. 20 below. 

This means that the number of DMUs could be appropriate when it is more than 30 

subjects. In this study ( 𝑚 + 𝑝 ) is the sum of input and output variables.  

𝑁 ≥ max
𝑚>0
𝑝>0

{5(𝑚 + 𝑝)}                         (20) 

The information described in the framework was collected (Table 1). The data on 

capital and production were obtained from FisherSolve database (FisherSolve, 2015-2018). 
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Based on the availability of the data, the inputs for energy (mmBTU) and labor (number 

of employees) were estimated by using the information of 2019, and adjusting for 2015-

2018 through the change in price of energy (U.S. EPA 2018) and Employment Cost Index 

respectively (U.S. Bureau of Labor Statistics 2015-2018). The energy use, selected as an 

input, includes all gas usage and electricity usage from the pulp and paper industry. The 

official data of GHGs emissions for each facility, selected as undesirable output, are 

available in the U.S. EPA database as part of the Greenhouse Gas Reporting Program (U.S. 

EPA 2018), specifically, the Facility Level Information on Greenhouse Gases Tool 

(FLIGHT), which includes CO2eq from stationary combustion, pulp and paper 

manufacturing, and industrial waste landfills (Myhre et al. 2013). One advantage of the 

non-parameter slack measure method is that the desired output of the model not only can 

be selected as the profit but also as the quantity produced.  

Because it would be difficult to present each DMU’s result based on each facility 

throughout the paper, the data were grouped by the states of the U.S., covering 31 states. 

The average environmental efficiency of each state was estimated based on the 

environmental efficiency of each facility within the state. Therefore, this study assesses the 

environmental efficiency of the U.S. pulp and paper industry at a state-level from 2015 to 

2018. The data descriptions are presented in Table 1. The degree of variations in all selected 

variables across each facility from 2015 to 2018 is shown from the standard deviations in 

Table 2.  

 

Table 1. Input and Output Variables and Data Sources, 2015–2018 
 

Indicators Definition Unit Data Source 

Input 

Capital Millions USD 

 
FisherSolve 

Energy mmBTU 

Labor Employees 

Desirable Output Production MT 

Undesirable Output GHG emissions (CO2eq) MMT EPA 

 Note:  Unit (MT): Metric Tons; Unit (MMT): Million Metric Tons. 
 

Table 2. Descriptive Statistics of Inputs and Outputs, 2015-2018. (N=520) 
 

Inputs & 
Outputs 

Variable Unit Min Max Mean Std.dev. 

Non-energy 
inputs 

Capital 
Millions 

USD 
6.70 468.40 126.62 86.05 

Labor Employees 41.19 1,435.10 399.19 246.98 

Energy 
inputs 

Energy 
Use 

mmBTU 182,905 26,782,117 5,305,867 4,233,380 

Desirable 
output 

Produc-
tion 

MT 386,46 1,605,349.00 424,086.13 299,592 

Undesirable 
output 

 CO2eq MMT 0.022 1.350 0.215 0.211 
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RESULTS AND DISCUSSION 
 
Environmental Efficiency Assessment 

 In terms of environmental efficiency (EE), the performance from 2015 to 2018 of 

the U.S. pulp and paper industry (PPI) shows that only one state (Vermont) was found to 

be relatively environmentally efficient with an EE score of 1. The scores from the 

remaining 30 states, gathered in Table 3, performed inefficiently, ranging from 0.27 to 

0.93.  

 

Table 3. Environmental efficiency of the U.S. PPI  
 

State 2015 2016 2017 2018 Mean 
Returns to 

Scale 

Alabama 0.578 0.591 0.656 0.633 0.614 Increasing 

Arkansas 0.406 0.454 0.466 0.505 0.458 Increasing 

California 0.622 0.605 0.651 0.786 0.666 Increasing 

Connecticut 0.590 0.617 0.652 0.989 0.712 Increasing 

Florida 0.502 0.518 0.528 0.582 0.532 Increasing 

Georgia 0.615 0.616 0.670 0.675 0.644 Increasing 

Idaho 0.443 0.451 0.435 0.471 0.450 Increasing 

Indiana 0.305 0.313 0.301 0.314 0.308 Increasing 

Kansas 0.209 0.311 0.311 0.319 0.287 Increasing 

Kentucky 0.510 0.517 0.529 0.662 0.554 Increasing 

Louisiana 0.586 0.614 0.682 0.761 0.661 Increasing 

Massachusetts 0.311 0.350 0.281 0.406 0.337 Increasing 

Maine 0.390 0.441 0.462 0.473 0.442 Increasing 

Michigan 0.411 0.428 0.455 0.456 0.438 Increasing 

Minnesota 0.396 0.429 0.443 0.459 0.432 Increasing 

Mississippi 0.896 0.901 0.964 0.956 0.929 Increasing 

North Carolina 0.243 0.278 0.322 0.435 0.320 Increasing 

New 
Hampshire 

0.325 0.282 0.307 0.311 0.306 Increasing 

New York 0.705 0.698 0.676 0.729 0.702 Increasing 

Ohio 0.394 0.387 0.371 0.394 0.386 Increasing 

Oklahoma 0.596 0.603 0.607 0.652 0.614 Increasing 

Oregon 0.557 0.589 0.615 0.655 0.604 Increasing 

Pennsylvania 0.248 0.275 0.250 0.297 0.268 Increasing 

South Carolina 0.535 0.490 0.561 0.553 0.535 Increasing 

Tennessee 0.365 0.445 0.436 0.482 0.432 Increasing 

Texas 0.540 0.570 0.629 0.616 0.589 Increasing 

Virginia 0.428 0.451 0.488 0.604 0.493 Increasing 

Vermont 1.000 1.000 1.000 1.000 1.000 Constant 

Washington 0.388 0.421 0.468 0.430 0.427 Increasing 

Wisconsin 0.274 0.305 0.310 0.322 0.303 Increasing 

West Virginia 0.292 0.310 0.354 0.361 0.329 Increasing 

Mean 0.473 0.492 0.512 0.558 0.509  

 

Specifically, there were 17 states with an environmental efficiency score below 0.5 

on average. Thus, there is considerable room for improvement in the environmental 

efficiency of the PPI. Instead of analyzing the efficiency of the PPI in a purely economic 

measurement, the environmental efficiency of PPI was assessed including an undesirable 

output into the SBM-DEA model, so that the contribution of CO2eq emissions to the 

inefficiency and potential CO2eq reduction could be analyzed (Table 4). These emissions 
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are produced during the pulp and paper manufacturing process, fuel combustion, and 

delivery waste into landfills. Combusting paper products results in emissions of both 

carbon dioxide (CO2) and nitrous oxide (N2O) (U.S. EPA 2016). When paper products are 

landfilled, anaerobic bacteria can slowly degrade the materials, producing CH4, and CO2 

over time (U.S. EPA 2016). The sustainable practice must be implemented by the P&P 

Industry from the process of production to landfills. In sum, the U.S. PPI needs 

improvement in environmental efficiency and sustainable development. 

 

Potential Carbon Equivalents Emission Reduction of PPI 
As the results of Environmental efficiency show, most states are not performing 

efficiently in the PPI, with the exception of Vermont.  

 

Table 4. Potential CO2eq Reduction (MMT) 
 

State 2015 2016 2017 2018 Mean 

Alabama (0.17) (0.17) (0.15) (0.15) (0.16) 

Arkansas (0.18) (0.17) (0.17) (0.17) (0.17) 

California (0.10) (0.10) (0.10) (0.10) (0.10) 

Connecticut (0.05) (0.05) (0.05) (0.01) (0.04) 

Florida (0.19) (0.18) (0.16) (0.14) (0.17) 

Georgia (0.18) (0.16) (0.15) (0.16) (0.16) 

Idaho (0.14) (0.16) (0.17) (0.13) (0.15) 

Indiana (0.03) (0.03) (0.03) (0.03) (0.03) 

Kansas (0.01) (0.01) (0.01) (0.01) (0.01) 

Kentucky (0.05) (0.04) (0.04) (0.03) (0.04) 

Louisiana (0.18) (0.19) (0.18) (0.16) (0.18) 

Massachusetts (0.01) (0.01) (0.01) (0.01) (0.01) 

Maine (0.16) (0.17) (0.15) (0.15) (0.16) 

Michigan (0.10) (0.10) (0.11) (0.11) (0.10) 

Minnesota (0.07) (0.07) (0.07) (0.06) (0.07) 

Mississippi (0.04) (0.02) (0.02) (0.02) (0.03) 

North Carolina (0.09) (0.09) (0.08) (0.07) (0.08) 

New 
Hampshire 

(0.01) (0.08) (0.07) (0.07) (0.06) 

New York (0.06) (0.06) (0.07) (0.03) (0.06) 

Ohio (0.13) (0.24) (0.20) (0.18) (0.19) 

Oklahoma (0.12) (0.12) (0.13) (0.13) (0.12) 

Oregon (0.07) (0.07) (0.08) (0.07) (0.07) 

Pennsylvania (0.11) (0.10) (0.08) (0.08) (0.09) 

South Carolina (0.15) (0.19) (0.12) (0.12) (0.14) 

Tennessee (0.07) (0.07) (0.07) (0.07) (0.07) 

Texas (0.08) (0.08) (0.08) (0.09) (0.08) 

Virginia (0.24) (0.24) (0.23) (0.24) (0.24) 

Vermont 0.00 0.00 0.00 0.00 0.00 

Washington (0.08) (0.08) (0.07) (0.07) (0.08) 

Wisconsin (0.11) (0.09) (0.08) (0.08) (0.09) 

West Virginia (0.01) (0.02) (0.02) (0.02) (0.02) 
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In Table 4, the average result indicates that the total cumulative growth of CO2eq 

emissions (31 states) in the PPI should have been reduced by 2.967 MMT to be 

environmentally efficient, with a range from a minimum 0.01 MMT to a maximum 0.24 

MMT by one state from 2015 to 2018. As a general summary, the findings indicate that 

CO2eq emissions need to be cut considerably. 

Among the 31 states, Virginia showed the most potential for CO2eq emissions cut 

by 0.24 MMT, followed by Ohio with 0.19 MMT and Louisiana with 0.18 MMT. Almost 

every state had a relatively lower environmental efficiency score and excess of CO2eq 

emissions, which suggests that a reduction of CO2eq emissions can contribute to the 

improvement of environmental efficiency in the U.S. PPI. Besides, recycling could reduce 

CO2eq emissions significantly more than landfilling or combustion (U.S. EPA 2020). 

However, recycling, as a pathway to reduce GHG emissions, costs significantly more than 

combustion or landfilling. The state government need to encourage recycling by imposing 

subsidies and incentive programs on recycling compared to landfilling or combustion. 

 

Analysis of Slack Variables  
From the result of environmental efficiency (EE) scores, all 31 states performed 

inefficiently with low-efficiency values. Therefore, each state within pulp and paper 

facilities should seriously consider the slack values of the inputs and outputs each year. 

The purpose of assessing efficiency and slack value is to achieve the slack value of excess 

input, while considering undesirable outputs, so that each inefficient DMU can find the 

optimal implementations and actions in maintaining and operating a sustainable PPI system. 

 The best target values and the estimated slack values are shown in Table 5. Each 

slack value with the negative value from Table 5 explains the proportion of potential input 

and undesirable output cuts for each state from 2015 to 2018. For each state, to achieve an 

EE score of 1, the capital needs to be cut by the estimated slack value shown in Table 4. 

Besides, the excess carbon emissions output needs to be reduced by the corresponding 

slack value. The situation just mentioned does not apply for the highly eco-efficient state, 

Vermont, which has non-slacks in the capital, energy, and labor input and also has non-

excess in the CO2eq emissions. Among the more environmentally efficient ranked states, 

the highest-ranked state Mississippi could increase its environmental efficiency growth by 

7% on average per year while cutting its carbon emissions by 0.03 MMT per year and 

reducing its capital, energy, labor inputs by 22.33 Million USD, 0.52 mmBTU and about 

60 employees respectively. For this state, it is estimated that the target value of capital, 

energy, and labor input and CO2eq emissions that could achieve the optimal environmental 

efficiency value is 67.07 million USD, 2.29 mmBTU, 181 employees, and 0.05 MMT 

respectively per year. On the other hand, the lowest-ranked state of Pennsylvania should 

reduce 30.67 million USD, 1.18 mmBTU, and about 116 employees, as well as 0.09 MMT 

of emissions. This shows that Pennsylvania has more than 73.2% needs for improvement 

until its environmental efficiency score reaches a peak value. Comparing the findings from 

Tables 3 to 5, the excess capital, energy, and labor input, and potential CO2eq emissions 

output had an inhibiting effect on environmental efficiency in the U.S. PPI. Achieving a 

balance between adequate pulp and paper production provisions and reducing GHGs 

emissions has been a challenging task. The slack results show that the environmental 

efficiency performances in the PPI through each through each facility's environmental 

efficient allocation of inputs and sustainable practices on the reduction of CO2eq emissions 

can be potentially improved.  
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Table 5. Summary of Average Excess in Inputs and Shortfall in Outputs, 2015–
2018 (31 States) 
 

State 

Input Excess 
Undesirable 

Outputs 
(Excess) 

Desirable 
Outputs 

(Shortfalls) 

Capital      
(Millions USD) 

Energy                
(mmBTU) 

Labor  
(Employees) 

CO2eq   (Million 
MT) 

Production 
(MT) 

Slack 
(Percent

age) 

Target 
Value 

Slack 
(Percen

tage) 

Target 
Value 

Slack 
(Percen

tage) 

Target 
Value 

Slack 
(Percent

age) 

Target 
Value 

Slack 
(Percen- 

tage) 

Alabama -37.08% 49.77 -24.86% 2.31 -33.63% 136.06 -55.22% 0.01 0% 

Arkansas -39.23% 36.94 -42.53% 1.26 -36.31% 114.84 -55.92% 0.01 0% 

California -46.27% 8.96 -21.57% 0.96 -17.40% 59.19 -56.50% 0.01 0% 

Connecticut -45.26% 9.08 -8.36% 0.99 -13.67% 54.77 -44.51% 0.01 0% 

Florida -40.98% 34.04 -36.62% 2.34 -34.38% 111.28 -55.13% 0.01 0% 

Georgia -33.10% 44.51 -30.01% 2.39 -34.95% 132.68 -52.79% 0.02 0% 

Idaho -37.27% 67.21 -28.87% 2.52 -40.95% 163.55 -53.65% 0.02 0% 

Indiana -51.11% 3.82 -47.77% 0.25 -40.95% 42.84 -50.76% 0.01 0% 

Kansas -52.26% 1.68 -48.81% 0.17 -39.20% 28.45 -48.56% 0.01 0% 

Kentucky -45.57% 34.25 -34.20% 0.89 -23.97% 89.23 -48.31% 0.01 0% 

Louisiana -28.83% 64.29 -25.37% 3.53 -31.54% 149.10 -54.12% 0.02 0% 

Massachusett
s 

-50.66% 13.58 -38.68% 1.60 -45.85% 77.21 -36.96% 0.01 
0% 

Maine -47.84% 28.52 -34.79% 1.89 -40.29% 97.63 -56.18% 0.01 0% 

Michigan -47.98% 17.09 -30.91% 1.68 -39.64% 75.97 -55.91% 0.01 0% 

Minnesota -43.43% 34.72 -35.00% 1.31 -38.96% 113.99 -50.63% 0.01 0% 

Mississippi -13.63% 67.07 -11.10% 2.46 -14.85% 182.67 -22.19% 0.05 0% 

North Carolina -53.15% 6.95 -35.75% 0.60 -44.25% 41.85 -54.94% 0.01 0% 

New 
Hampshire 

-49.87% 9.40 -41.91% 0.98 -46.88% 60.40 -53.78% 0.01 
0% 

New York -31.30% 52.16 -17.69% 1.32 -20.48% 154.06 -41.70% 0.02 0% 

Ohio -47.49% 10.84 -44.71% 0.44 -41.67% 62.43 -57.78% 0.01 0% 

Oklahoma -30.15% 97.68 -3.42% 3.90 -4.05% 145.12 -54.16% 0.01 0% 

Oregon -49.98% 22.81 -21.22% 1.85 -27.12% 84.94 -53.84% 0.01 0% 

Pennsylvania -54.07% 4.86 -41.56% 0.52 -45.80% 35.91 -57.59% 0.01 0% 

South Carolina -41.90% 31.06 -25.91% 2.80 -40.67% 110.79 -56.03% 0.01 0% 

Tennessee -51.42% 18.73 -36.75% 1.21 -36.74% 72.00 -54.18% 0.01 0% 

Texas -42.69% 23.09 -22.82% 1.92 -37.05% 89.20 -54.15% 0.01 0% 

Virginia -43.77% 22.14 -27.68% 1.60 -37.07% 98.70 -58.27% 0.01 0% 

Vermont 0.00% 118.28 0.00% 1.90 0.00% 315.61 0.00% 0.02 0% 

Washington -47.72% 16.70 -40.04% 0.77 -38.95% 78.49 -53.66% 0.01 0% 

Wisconsin -54.08% 5.07 -45.10% 0.36 -45.73% 39.87 -57.15% 0.00 0% 

West Virginia -52.28% 10.50 -42.82% 1.27 -41.58% 53.37 -45.87% 0.01 0% 

 

 

For further analysis, this study analyzes specific Pulp and Paper facilities within 

two states above with environmental efficiency ratings from the highest (Mississippi) to 

lowest (Pennsylvania). In Mississippi, it was shown that Georgia Pacific contributes the 

most shares to the state’s optimal environmental efficiency. Georgia Pacific Company has 
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been focusing on sustainable practice, not only on the economic stability of the company 

but also on protecting environmental resources to minimize GHG emissions (Georgia-

Pacific 2018). G-P LLC plans to estimate that approximately $80 million sustainability 

investments will be invested to help the mill to reduce nitrous oxide emissions by 67 

percent (Georgia-Pacific 2020).  

Two other mills, International Paper’s Columbus Mill and Vicksburg Mill, have 

not been as efficient as Georgia Pacific (Monticello) in terms of the allocation and 

utilization of capital, labor, and energy. However, the International Paper mills had less 

(0.01 and 0.02) slack of CO2eq MMT, respectively, while G-P had excess CO2eq at 0.11 

MMT from 2015-2018 due to the different size of mills.   

 

Table 6. Summary of Average Excess in Inputs and Shortfall in Outputs, 2015–
2018 (Representative Facilities) 
 

State  

Input Excess 
Undesirable 

Outputs  
(Excess) 

Desirable 
Outputs 

(Shortfalls) 

Capital      
(Millions 

USD) 

Energy                
(mmBTU) 

Labor  
(Employees) 

CO2eq   
(Million MT) 

Production 
(MT) 

Slack Slack Slack Slack Slack 

Mississippi 

GEORGIA PACIFIC 
MONTICELLO LLC 0.00 0.00 0.00 0.00 0.00 

INTERNATIONAL PAPER 
- COLUMBUS MILL -38.16 -1.56 -109.2 -0.06 0.00 

INTERNATIONAL PAPER 
- VICKSBURG MILL -28.82 -0.57 -88.95 -0.01 0.00 

Pennsylvania 

CASCADES TISSUE 
GROUP PA RANSOM PLT -10.96 -0.84 -43.06 -0.01 0.00 

DOMTAR PAPER 
COMPANY, LLC -62.98 -0.92 -157.4 -0.17 0.00 

NGC INDUSTRIES INC -12.71 -0.67 -29.73 -0.02 0.00 

NEWMAN & CO -6.90 -0.29 -64.70 -0.02 0.00 

PIXELLE SPECIALTY LLC -15.79 -1.56 -44.69 -0.32 0.00 
WESTROCK LLC – 

STROUDSBURGE MILL -74.50 -2.78 -355.2 -0.01 0.00 

 

In Pennsylvania, input and output slack results of six mills have been reported in 

Table 6. The reason for the lowest environmental efficiency ranking of the State is mainly 

due to which five of the six mills, including Cascades, Domtar, NGC, Pixelle, and West 

Rock, have not been equipped with high efficiency in the usage of capital, energy, and 

labor, resulting in the slack of resources, making it difficult to achieve the dual goals of the 

economy and environmental protection.  

It is undeniable that some facilities have been doing a good job in protecting our 

environment, resulting in less CO2eq redundancy at range from 0.01 to 0.02 MMT from 

2015 to 2018, such as WestRock, it business strategy has been in connection with matters 

relating to environmental compliance (WestRock 2016, 2019). Based on these results, it 

can be concluded that for the sustainable development of PPI, more attention needs to be 

paid to environmental practices as well as efficient allocation of labor, energy, capital, and 

other resources in the production process. 
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The Influence of External Environmental Factors on the Slack of Input and 
Unexpected Output 
 
Table 7. Stochastic Frontier Analysis (SFA) Regression Results 
 

 
Capital Slack Energy Slack Labor Slack CO2e Slack 

Coef. 
t-value 

test 
Coef. 

t-value 
test 

Coef. 
t-value 

test 
Coef. 

t-value 
test 

Industrial Waste 
Landfill 

0.61 44.12*** 0.54 1.45* 0.61 23.00*** 0.38 1.26* 

Wastewater 
Treatment 

-0.28 2.31*** -0.28 0.91* -0.13 8.03*** -0.31 -1.29* 

Solid Waste 
Combustion 

 
0.15 0.56 0.04 0.20 0.25 2.80*** -0.21 -0.99* 

Constant 1.92 29.34*** 0.55 3.14*** 2.33 1.93*** -1.18 -2.14*** 

Sigma-squared 0.24*** 0.22*** 0.34*** 0.13*** 

Gamma 0.983 0.962 0.991 0.989 

Log likelihood -141.49 -39.98 -176.82 -46.85 

LR Test of the 
one-side Error 

19.82*** 8.74*** 21.71*** 6.38*** 

Note: * p < 0.1; ** p < 0.05; *** p < 0.01 The values in parentheses are the corresponding estimated T-statistics. 

 

Through the calculation of the SBM-DEA model (Table 5), it was found that the 

slack on production output of each state was estimated as having a 0 value, and all inputs 

and the undesired output CO2eq emissions had a certain degree of slack, indicating that 

insufficient production in the production process is not a contributor to environmental 

inefficient in the U.S. PPI. In addition, the main reasons for the loss of environmental 

efficiency are contributed by the capital, energy, labor input, and CO2eq emissions. By 

applying Frontier 4.1 software, a regression analysis was carried out on all inputs and 

undesirable outputs. The results are shown in Table 7. The gamma value was greater than 

0.95, indicating that proposing SFA was reasonable in this study, and the likelihood ratio 

(LR) test results of 19.82, 8.47, 21.71, and 6.38 were located outside of the 99% confidence 

interval, explaining that external environment inefficiency was present. The slack of inputs 

and CO2eq output could be reduced by cutting external environmental variables. And, if 

external environmental variables are negatively correlated with inputs and CO2eq 

emissions, it indicates that the increase of external environmental variables will reduce the 

slack amount of the input and undesirable output variable. In other words, the external 

environmental factor will be conducive to the environmental efficiency of U.S. PPI and 

vice versa. 

In this study, external environmental variables were selected from the amount of 

Industrial Waste Landfills, Wastewater Treatment Plants, and Solid Waste Combustion of 

each state which represent variables of IWL, WWT, and SWC, respectively (U.S. EPA, 

2018). From the table, firstly it can be seen that the amount of Industrial Landfills is 

significantly positively correlated with the slack value of capital, energy, labor input, and 

CO2eq emissions. This shows that the larger the number of industrial waste landfills in 

each state, the larger the scale of IWL, which may indirectly lead to inefficient use and 

distribution of capital, energy, and labor, and also contribute to increasing CO2eq 

emissions. This result indicated that the loss of the environmental efficiency of the U.S. 

PPI. (U.S. EPA 2018). Secondly, the variable of wastewater treatment is significantly 
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negatively correlated with the slack value of capital, energy, labor input, and CO2eq 

emissions. This result showed that wastewater treatment plants (WWTPs) have been 

widely applied to the P&P industry, and supplementary treatments have positive effects on 

the cost-effective inputs of capital, labor, and energy in the PPI. The P&P industry has been 

a big contributor to the usage of water as process water (Savant et al. 2006; Hubbe et al. 

2016).  Although traditional WWTPs may generate nitrogen due to chemical and energy 

use (Bani Shahabadi et al. 2009), more advanced treatment, such as anaerobic wastewater 

treatment can be used to convert extra CO2eq to methane as fuels in other places which can 

help reduce CO2eq emissions and energy input (Sanusi and Menzes 2014; Meyer and 

Edwards 2014).  These results also showed that WWTPs are currently focusing on 

environmental efficiency using environmentally friendly treatment methods instead of the 

traditional one to decrease CO2eq emissions for the PPI. Therefore, the more advanced 

WWTPs in a state, the more optimized wastewater treatments could provide those pulp and 

paper mills with producing more sustainable and environmental products. Thirdly, the 

variable of solid waste combustion is positively correlated with the slack of capital, energy, 

and labor input, but has no significant impact on capital and energy slack. This shows that 

the waste-paper treatment methods of the PPI mainly include recycling, combustion, and 

landfills. With the implementation of the National Sword Policy, China banned imports of 

solid waste including recovered papers by the end of 2017 (Paben 2017). Consequently, 

the U.S. MRFs have suspended the recycling of solid wastes, and the available treatments 

of solid waste were largely chosen as combustion and landfill (Staub 2017). The regression 

result shows that due to the larger the scale of solid waste combustion, it may adversely 

affect the effective use of capital, energy, and labor, and ultimately lead to the ecological 

inefficiency of the PPI. However, the variable is significantly negatively correlated with 

the relaxation value of CO2eq emissions. This may be dependent on whether the CO2eq 

emissions estimated in this study were mainly collected from the PPI manufacturing, 

combustion, and landfill.  The combustion could reduce GHG emissions by transforming 

methane to carbon dioxide.  And the combusted residue could be used as agricultural 

fertilizers (US EPA 2020).  

 
 
CONCLUSIONS 
 
1.  Based on the analysis, 31 states had an average environmental efficiency (EE) score of 

0.509 from 2015 to 2018, indicating that these states considerably have a potential room 

for improvements of environmental efficiency and have the potential to reduce CO2eq 

emissions and inputs. And for the CO2eq potential reduction analysis, the estimation results 

showed that the U.S. Pulp and Paper Industry (PPI) had a large potential range to cut the 

excess CO2eq emissions, with a wide range from a minimum 0.01 MMT to a maximum of 

0.24 MMT from 2015 to 2018 in the U.S. PPI. Therefore, P&P facilities need to implement 

more sustainable practices from the process of production to landfills. Also, recycling was 

shown to be a promising pathway to minimizing greenhouse gas (GHG) emissions. This 

indicates that state governments should encourage recycling by imposing less tax on 

recycling compared to landfilling or combustion. 

2. When assessing the slacks of inputs and outputs by using a non-radial slacks-based 

measure – data envelopment analysis (SBM-DEA) model, the result of excess inputs and 

undesirable output can explain that each state has responsibility for the cutting of excess 
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capital, energy and labor input cost, respectively, by the estimated input slacks. In addition, 

the excess carbon equivalents emissions output needs to be reduced. The slack results 

indicates that environmental efficiency performances in the PPI through each facility's 

environmental efficient allocation of inputs and sustainable practices on the reduction of 

CO2eq could be potentially improved.  

3. In terms of the differentiated performance of the environmental efficiency of the PPI in 

each state, each U.S. state’s government and relevant environmental authorities are 

promoting sustainable industrial development and implementing active ecological 

incentive policies. It is necessary to take into account the difference both on quantity and 

quality of industrial waste landfills, wastewater treatment, and solid waste combustion in 

each state and put forward target requirements that match each state's developmental stage 

and waste management capability. Also, more attention needs to be paid to the issue of 

environmental efficiency in the development of the PPI and improve the environmental 

efficiency of the U.S. PPI. 

 

 

ACKNOWLEDGMENTS  
 

The work was financially supported by the Jiangxi Province Graduate Student 

Innovation Program (Jiangxi, China, No. YC2019-B071). Thanks are due to FisherSolve 

for valuable assistant. We greatly thank NCSU for the valuable opportunity to learn. We 

also appreciate the anonymous reviewers for their valuable comments on an earlier draft 

of our paper.  

 

 

REFERENCES CITED 
 

Aigner, D., Lovell, C. A. K., and Schmidt, P. (1977). “Formulation and estimation of 

stochastic frontier production function models,” Journal of Econometrics, 6(1), 21-

37. DOI: 10.1016/0304-4076(77)90052-5. 

Ashrafi, O., Yerushalmi, L. and Haghighat, F. (2013). “Greenhouse gas emission by 

wastewater treatment plants of the pulp and paper industry - Modeling and 

simulation,” International Journal of Greenhouse Gas Control. 17, 462-472. DOI: 

10.1016/j.ijggc.2013.06.006. 

Bani Shahabadi, M., Yerushalmi, L. and Haghighat, F. (2009). “Impact of process design 

on greenhouse gas (GHG) generation by wastewater treatment plants,” Water 

Research. 43(10), 2679-2687.  DOI: 10.1016/j.watres.2009.02.040 

Carvalho, A., Mimoso, A. F., Mendes, A. N., and Matos, H. A. (2014). “From a literature 

review to a framework for environmental process impact assessment index,” Journal 

of Cleaner Production 64, 36-62. DOI: 10.1016/j.jclepro.2013.08.010 

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). “Measuring the efficiency of 

decision making units,” Eur. J. Oper. Res. 2(6), 429-444. DOI: 10.1016/0377-

2217(78)90138-8 

Chang, Y.-T., Zhang N., Danao D., and Zhang N. (2013). “Environmental efficiency 

analysis of transportation system in China: A non-radial DEA approach,” Energy 

Policy 58, 277-283. DOI: 10.1016/j.enpol.2013.03.011 

Chang Y.-T., Park, H.-s., Jeong, J.-b., and Lee, J.-w. (2014). “Evaluating economic and 

https://doi-org.prox.lib.ncsu.edu/10.1016/j.enpol.2013.03.011
https://www-sciencedirect-com.prox.lib.ncsu.edu/science/article/pii/S0959652616302402#bbib5


 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Li & Xiao (2020). “Environmental efficiency,” BioResources 15(4), 7796-7814.  7811 

environmental efficiency of global airlines: A SBM-DEA approach,” Transp. Res. 

Part D: Transp. Environ. 27, 46-50. DOI: 10.1016/j.trd.2013.12.013 

Chen, J., Song, M., and Xu, L. (2015). “Evaluation of environmental efficiency in China 

using data envelopment analysis,” Ecol. Indic. 52, 577-583. DOI: 

10.1016/j.ecolind.2014.05.008 

Chen, L., and Jia, G. (2017). “Environmental efficiency analysis of China’s regional 

industry: A data envelopment analysis (DEA) based approach,” Journal of Cleaner 

Production 142, 846-853. DOI: 10.1016/j.jclepro.2016.01.045 

Climate Action (2019). “Climate Change - Summit,” United Nations, Retrieved from 

(http://www.un.org/en/climatechange/faq.shtml), Accessed October, 2019 

Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., and Battese, G. E. (2005). “Additional topics 

on stochastic frontier analysis,” in: An Introduction to Efficiency and Productivity 

Analysis,” Springer, US, pp. 263-288. DOI: 10.1007/0-387-25895-7_10 

Coelli, T., Rao, D. S. P., and Battese, G. E. (1998). “Efficiency measurement using 

stochastic frontiers,” in: An Introduction to Efficiency and Productivity Analysis,” 

Springer, US, pp. 183-198. DOI: 10.1007/978-1-4615-5493-6_8 

Cook, W. D., Liang, L., and Zhu, J. (2010). “Measuring performance of two-stage 

network structures by DEA: A review and future perspective,” ACS Omega 38(6), 

423-430. DOI: 10.1016/j.omega.2009.12.001 

Färe, R., and Grosskopf, S. (2004). “Modeling undesirable factors in efficiency 

evaluation: Comment,” European Journal of Operational Research 157(1), 242-245. 

DOI:10.1016/S0377-2217(03)00191-7 

Georgia-Pacific (2018). “Sustainable practice in Georgia Pacific,” Retrieved from 

(https://www.gp.com/sustainability), Accessed August, 2020 

Georgia-Pacific (2020). “Update: A change of scenery at Green Bay Broadway,” 

Retrieved from (https://www.gp.com/news/2020/02/change-of-scenery-green-bay), 

Accessed August, 2020 

Guo, X., Zhu, L., Fan, Y., and Xie, B. (2011). “Evaluation of potential reductions in 

carbon emissions in Chinese provinces based on environmental DEA,” Energy Policy 

39, 2352-2360. DOI: 10.1016/j.enpol.2011.01.055 

Hawkins, T. R., Singh, B., Majeau-Bettez, G. S., and Hammer, A. (2013). “Comparative 

environmental life cycle assessment of conventional and electric vehicles’,” Journal 

of Industrial Ecology 17(1), 53-64. DOI: 10.1111/j.1530-9290.2012.00532.x 

He, F., Zhang, Q., Lei, J., Fu, W., and Xu, X. (2013). “Energy efficiency and productivity 

change of China”s iron and steel industry: Accounting for undesirable outputs,” 

Energy Policy 54, 204-213. DOI: 10.1016/j.enpol.2012.11.020 

Herrala, R., and Goel, R. K. (2012). “Global CO2 efficiency: Country-wise estimates 

using a stochastic cost frontier,” Energy Policy, 45, 762-770. DOI: 

10.1016/j.enpol.2012.03.007 

Hong, L., and Shi, J. F. (2014). “Energy efficiency analysis on Chinese industrial sectors: 

An improved Super-SBM model with undesirable outputs,” J. Clean Prod. 65(4), 97-

107. DOI: 10.1016/j.jclepro.2013.09.035 

Hubbe, M. A., Metts, J. R., Hermosilla, D., Blanco, M. A., Yerushalmi, L., Haghighat, F., 

Lindholm-Lehto, P., Khodaparast, Z., Kamali, M., and Elliott, A. (2016). 

“Wastewater treatment and reclamation: A review of pulp and paper industry 

practices and opportunities,” BioResources 11(3), 7953-8091. 

DOI 10.15376/biores.11.3.Hubbe 

Kortelainen, M. (2008). “Dynamic environmental performance analysis: A Malmquist 

https://doi-org.prox.lib.ncsu.edu/10.1016/j.trd.2013.12.013
https://doi-org.prox.lib.ncsu.edu/10.1016/j.ecolind.2014.05.008
https://doi.org/10.1016/j.omega.2009.12.001
https://www.gp.com/news/2020/02/change-of-scenery-green-bay
https://doi-org.prox.lib.ncsu.edu/10.1016/j.enpol.2011.01.055
https://doi-org.prox.lib.ncsu.edu/10.1016/j.enpol.2012.11.020
https://doi-org.prox.lib.ncsu.edu/10.1016/j.jclepro.2013.09.035
https://doi.org/10.15376/biores.11.3.Hubbe


 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Li & Xiao (2020). “Environmental efficiency,” BioResources 15(4), 7796-7814.  7812 

index approach,” Ecological Economics 64(4), 701-715. DOI: 

10.1016/j.ecolecon.2007.08.001 

Lee, T., Yeo, G.-T. and Thai, V. V (2014). “Environmental efficiency analysis of port 

cities: Slacks-based measure data envelopment analysis approach,” Transport Policy, 

33, 82-88. DOI: 10.1016/j.tranpol.2014.02.009 

Li, Y., Shi, X., and Emrouznejad, A. (2018). “Environmental performance evaluation of 

Chinese industrial systems: A network SBM approach,” Journal of the Operational 

Research Society 69(6), 825-839.  DOI: 10.1057/s41274-017-0257-9 

Lozano, S., Iribarren, D., Moreira, M. T., and Feijoo, G. (2010). “Environmental impact 

efficiency in mussel cultivation,” Resources, Conservation and Recycling 54(12), 

1269-1277. DOI: 10.1016/j.resconrec.2010.04.004 

Lu, C. C., Chiu, Y. H., Shyu, M. K, and Lee, J. H. (2013). “Measuring CO2 emission 

efficiency in OECD countries: Application of the hybrid efficiency model,” Econ. 

Model 32, 130-135. DOI: 10.1016/j.econmod.2013.01.047 

Meyer, T., and Edwards, E. A. (2014). “Anaerobic digestion of pulp and paper mill 

wastewater and sludge,” Water Research 65, 321-349. DOI: 

10.1016/j.watres.2014.07.022 

Miettinen, P., and Hämäläinen, R. P. (1997). “How to benefit from decision analysis in 

environmental life cycle assessment (LCA),” European Journal of Operational 

Research 102(2), 279-294. DOI: 10.1016/S0377-2217(97)00109-4 
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