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Kraft lignin (KL) was oxidized by peracetic acid, which is generated by 
mixing acetic acid and hydrogen peroxide, to produce polycarboxylates for 
use as a plasticizer for cement paste. Peracetic acid cleaves the aromatic 
ring structure of KL and introduces carboxylate groups with ring-opened 
chain structure. After oxidation, the water-soluble fraction (Cx-lig) was 
obtained, and the performance of the Cx-lig as a plasticizer was compared 
with two commercial plasticizers, lignosulfonate (LS) and polycarboxylate 
ether (PCE). In mortar table tests, the increase in cement fluidity with the 
Cx-lig was greater than with LS and PCE. Fourier-transform infrared 
spectroscopy, carbon-13 nuclear magnetic resonance, gel permeation 
chromatography, elemental analysis, and charge density analysis were 
used to determine the structure of the Cx-lig. Considering all the results, 
the Cx-lig had a polycarboxylate structure containing numerous 
carboxylate groups, and their high charge density was the key factor that 
caused the Cx-lig to increase the cement fluidity more than LS or PCE. 
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INTRODUCTION 
 

Lignin, one of the major components of woody biomass, is an aromatic and 

heterogeneous polymer. This material is mainly composed of three types of monolignols: 

p-coumaryl, coniferyl, and sinapyl alcohols. During various treatments and pulping 

processes, such as organosolv pretreatment and kraft pulping, a great amount of lignin is 

produced as a by-product, called technical lignin. Based on strategies for total utilization 

of woody biomass, many researchers have made notable efforts to improve the processes’ 

economic efficiency and use these by-products by modifying the lignin structure and 

attaching a variety of functional groups such as carboxylate groups (Figueiredo et al. 2017; 

Sun et al. 2017), epoxide groups (El Mansouri et al. 2011; Ferdosian et al. 2012), and 

sulfonate groups (Aro and Fatehi 2017; Gao et al. 2019). Consequently, modified lignin 

has been used in various forms, such as monomers of polymers, bioplastic composites, 

adsorbents, and cement additives (Ouyang et al. 2009; He and Fatehi 2015; Zheng et al. 

2019). 
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Kraft lignin (KL) composes approximately 85% of lignin production and is a by-

product of kraft pulping. The kraft process produces pulp with the usage of sodium sulfide 

and sodium hydroxide. During kraft pulping, hydrosulfide and hydroxide anions not only 

decompose the lignin but also change its molecular structure, including the addition of thiol 

groups (Chakar and Ragauskas 2004). Consequently, β-aryl ether linkages decrease, and 

C-C bonds among aromatic and aliphatic structures increase. Due to the cleavages of β-

aryl ether linkages, phenolic hydroxyl groups on the lignin structure increase. Moreover, 

these C-C bonds, which are not easily cleaved without a metallic catalyst (Zhao et al. 2018), 

can prevent derivatives of KL from degrading into small molecules. This behavior is due 

to the sulfur in KL, which can easily deactivate a metal catalyst (Narani et al. 2015). These 

C-C bonds maintain the chain structure after chemical reactions because they are too strong 

to be cleaved (Luo 2012).  

Carboxylation is a reaction that introduces carboxylate groups onto the chemical 

structure. Specifically, this reaction is beneficial to making negatively charged materials 

for use as polymers (Lee and Park 2000) or cement additives. However, it is necessary to 

use suitable catalysts such as (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), cobalt, or 

rhodium to perform carboxylation. Many studies have been conducted to introduce 

carboxylate groups onto the chemical structure. It is better to use less expensive chemicals 

to attach carboxylate groups, rather than very expensive catalysts. Many studies have 

examined chemical modification with peracetic acid, which has been used as a powerful 

oxidizing agent that can react even at room temperature. For example, the mechanisms of 

hydroxylation and carboxylation for KL by peracetic acid have been demonstrated in 

previous research (Fig. 1) (Barros et al. 2010). 

 

 

Fig. 1. Mechanisms of hydroxylation and carboxylation of lignin by peracetic acid  
(Barros et al. 2010) 

 

Plasticizers, such as lignosulfonate (LS) or polycarboxylate ether (PCE), have been 

used to reduce the amount of added water in cement paste, which is advantageous because 
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water reduces the strength of hardened cement (Plank et al. 2010; Huang et al. 2018). LS 

is a by-product of sulfite pulping, but production of LS has decreased because the sulfite 

pulping process has been widely displaced by kraft pulping. This LS material increases 

cement fluidity when it is added into cement paste by using electrostatic repulsion force 

caused by sulfonate group on its structure. Meanwhile, PCE shows good performance in 

increasing the fluidity of cement paste. Its structure, called a comb structure, consists of 

two parts, backbone and side chains. The former contains few carboxyl group to be 

adsorbed on cement surface, and the latter cause steric hindrance which is the main 

mechanism to increase cement fluidity for PCE. However, it is expensive to use for this 

purpose (Cecel et al. 2019), and it would be beneficial to replace this expensive plasticizer. 

In this study, simple oxidation of KL by peracetic acid, which was produced by 

mixing acetic acid and hydrogen peroxide, gave KL a ring-opened chain structure with 

carboxylate groups by cleaving aromatic rings and produced a water-soluble fraction (Cx-

lig), which was able to act as a plasticizer that disperses cement particles. The cement 

fluidity caused by the Cx-lig exceeded that caused by commercial LS or PCE. Fourier-

transform infrared (FT-IR) spectroscopy, carbon-13 nuclear magnetic resonance (13C 

NMR) spectroscopy, gel permeation chromatography (GPC), elemental analysis, and 

charge density analysis were used to reveal the structure of the Cx-lig. Based on the 

analyses, the structure of the Cx-lig was similar to that of polycarboxylates that have many 

carboxylate groups. 

 

  

EXPERIMENTAL 
 
Materials 

Hardwood KL was obtained from Moorim P&P (Ulsan, Republic of Korea). Acetic 

acid and hydrogen peroxide, which were purchased from Samchun Chemical Co., Ltd. 

(Seoul, Republic of Korea), and Daejung Chemicals & Metals Co., Ltd. (Siheung, Republic 

of Korea), respectively, were used to make peracetic acid as a reagent. For GPC analysis, 

pyridine (99.8%) (Sigma Aldrich, St. Louis, MO, USA) and acetic anhydride (≥99%) 

(Sigma Aldrich, St. Louis, MO, USA) were utilized to conduct acetylation. The 13C NMR 

analysis was performed with dimethyl sulfoxide-d6 (DMSO-d6, Sigma Aldrich). For 

measurement of cement fluidity, Portland cement (Asia Cement Co., Ltd, Seoul, Republic 

of Korea) was purchased. Lignosulfonate and PCE were supplied by Dongnam Co., Ltd. 

(Pyeongtaek, Republic of Korea). 

 
Methods 
Calculation for Klason lignin and acid-soluble lignin content of KL 

 The measurement of both Klason lignin and acid-soluble lignin contents of KL was 

conducted according to NREL/TP-510-42618.  

 
Carboxylation of KL 

Peracetic acid was manufactured by mixing acetic acid (99.5%) and hydrogen 

peroxide (30%). The mixing ratio (1:4, acetic acid : hydrogen peroxide) was fixed 

according to the authors’ previous research to maximize peracetic acid concentration (Park 

et al. 2019). A mixture of 1.8 g of KL and 13.5 mL of peracetic acid was reacted at 70 °C 

for 80 min. After the reaction, excess water was poured into the reacted solution. 

Consequently, the lignin-derived compounds that had not completely reacted with the 
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peracetic acid precipitated because of the change of pH. Subsequently, the water-soluble 

and -insoluble fractions were separated by centrifugation. To remove excess acetic acid 

and hydrogen peroxide, the water-soluble fraction was dialyzed with a CelluSep H1 

dialysis tube (Membrane Filtration Products, Inc., St. Seguin, TX,  USA) for 24 h, with a 

change of water every 12 h. Finally, the dialyzed water-soluble fraction was lyophilized to 

obtain a solid sample.  

 

Comparison of solubility in water of KL and Cx-lig 

After carboxylation by peracetic acid, to compare the solubility in water, 10 mg of 

each sample was dissolved in 1 mL of deionized water at room temperature, separately. 

 

Structural characterization of Cx-lig 

The FT-IR spectra were gathered in the range of 4000 cm-1 to 650 cm-1 with 32 

scans at a spectral resolution of 4 cm-1 using a Nicolet 6700 FT-IR spectrometer (Thermo 

Fisher Scientific, Waltham, MA, USA). The spectrum of the atmosphere was used as a 

reference. In addition, KL and Cx-lig were analyzed directly on a ZnSe attenuated total 

reflectance crystal. 

To reveal the changes in functional groups, 13C NMR was utilized. For this analysis, 

60 mg of each sample was dissolved in 0.6 mL of DMSO-d6. The NMR spectra were 

collected for 8 h at 60 °C with a 600 MHz NMR spectrometer (AVANCE 600, Bruker, 

Billerica, MA, USA) 

Before analyzing the molecular weight of the KL, acetylation was performed. For 

acetylation, 50 mg of each sample was dissolved in 0.5 mL of pyridine, and 0.5 mL of 

acetic anhydride was added. Acetylation was conducted for 2 h at 105 °C. Next, acetylated 

KL was obtained by adding the solution into water. Finally, centrifugation and freeze-

drying were implemented, followed by acetylation. For GPC analysis, 20 mg of solid 

sample was dissolved in 2 mL of tetrahydrofuran, which was the hydrophobic mobile 

phase. Filtration was conducted with a 13JP050AN disposable membrane syringe filter 

(Advantec, Tokyo, Japan). Number average molecular weight (Mn), weight average 

molecular weight (Mw), and polydispersity index (PDI) were analyzed with a 1260 Infinity 

II refractive index detector (Agilent Technologies, Santa Clara, CA, USA). The column 

used was a PLgel 5 μm MIXED-C column (300 mm × 7.5 mm, Agilent Technologies, 

Santa Clara, CA, USA). The flow rate was 1 mL/min, and the injection volume was 20 μL. 

For the Cx-lig, 20 mg of the sample was dissolved in 2 mL of deionized water, which was 

the hydrophilic mobile phase. To remove impurities, a 13HP045AN disposable membrane 

syringe filter (Advantec, Tokyo, Japan) was utilized. For GPC analysis, a Thermo Dionex 

HPLC UltiMate 3000 RI system (Thermo Fisher Scientific) was used to measure the Mn, 

Mw, and PDI of the Cx-lig. Because the mobile phase was not the same for all GPC 

analyses, polystyrene and pullulan were utilized as a standard polymer for hydrophobic 

and hydrophilic samples based on the previous research (Lange et al. 2016) and 

international standard (ISO/DIS 13885-3), respectively. 

To determine the atomic compositions of the KL and Cx-lig, elemental analysis 

was performed. The elemental content was measured with a Flash EA 1112 (Thermo 

Electron Co., Waltham, MA, USA). The oxygen content was calculated by subtracting the 

total fractions of C, H, N, and S from 100%. 

Charge density analysis was performed with a streaming current detector (Mütek 

PCD-03, BTG, Eclépens, Switzerland). Forty milligrams of each sample was dissolved in 

40 mL of deionized water. To obtain the water-soluble fraction, centrifugation was 
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conducted with a Mega 17R (Hanil Science Medical, Daejeon, Republic of Korea) at 

10,000 rpm for 10 min. Then, 10 g of Cx-lig solution was used to measure charge density. 

The standard solution for titration was 1 mmol/L poly(diallyldimethylammonium 

chloride). Charge density was calculated using Eq. 1, 

q = vc / m         (1) 

where q is specific charge density (meq/g), v is titrant volume (mL), c is titrant 

concentration (mol/L), and m is the sample dried weight (g). 

To compare cement fluidities after adding plasticizers, a flow table test was 

conducted according to KS L 5111 (2017). Portland cement (600 g) and plasticizer (0.3 g 

of Cx-lig, LS, or PCE) were mixed with water (159.7 g) to make a cement paste. The 

mixture was mildly mixed for 1 min and then vigorously stirred for 3 min. Then, the paste 

was poured into a flow table mold, and the table was dropped 25 times to flatten the paste 

after removing the mold. Finally, the diameter of cement paste was measured in three 

directions through the center of the cement paste. 

 
 
RESULTS AND DISCUSSION 
 

The Cx-lig, in which carboxylate groups were introduced in the KL, was prepared 

by peracetic acid oxidation, as shown in Fig. 2. The KL was not soluble in deionized water, 

but the Cx-lig could be completely dissolved in water. The Cx-lig was subsequently 

analyzed to reveal its chemical structure. 

 

 
 

Fig. 2. Physical appearance of KL and Cx-lig (a) before and (b) after dissolving in water 

 
Klason Lignin and Acid-soluble Lignin Content of KL 
 To measure the pure lignin content of KL, Klason lignin and acid-soluble lignin 

contents were calculated (Table 1). 

  

Table 1. Klason Lignin and Acid Soluble Lignin Content of KL 

 Klason lignin Acid-soluble lignin Total 

Contents 90.26% (±0.51) 8.60% (±0.53) 98.86 (±0.10) 
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Chemical Structural Analysis of Cx-lig 
Changes in the FT-IR spectra of the KL and Cx-lig were observed (Fig. 3). Before 

carboxylation by peracetic acid, the KL showed peaks for methoxy groups at 2915 cm-1 

and 2848 cm-1 and aromatic ring units from 1620 cm-1 to 1400 cm-1 (Coates 2006). 

However, after carboxylation, the peaks for the aromatic units and the methoxy groups 

became weaker because the peracetic acid introduced carboxylate groups by reacting with 

phenolic hydroxyl and methoxy groups, according to the mechanism shown in Fig. 1. In 

the same manner, the guaiacyl ring absorption peaks at 1322 cm-1 and 1267 cm-1 became 

weaker after carboxylation. The former was assigned to the condensed structure of both 

syringyl and guaiacyl units, and the latter was for guaiacyl units (Boeriu et al. 2004). This 

result showed that the peracetic acid reacted with the syringyl and guaiacyl units, resulting 

in ring cleavage. Additionally, peaks for the carboxylate groups appeared at 1715 cm-1, due 

to C=O stretching, and 1172 cm-1, due to C-O stretching, for the Cx-lig structure (Chen et 

al. 2015). After carboxylation, the intensities of these two peaks exceeded those of the KL. 

The increases of these two peaks indicated that the phenolic hydroxyl and methoxy groups 

were successfully oxidized, leading to the introduction of the carboxylate groups during 

the peracetic acid treatment. Also, the authors’ previous research revealed by FT-IR 

spectroscopy that using peracetic acid is one of the ways to produce lignin derivatives with 

carboxylate group (Park et al. 2020). 
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Fig. 3. FT-IR spectra of KL and Cx-lig 

 

Figure 4 shows the 13C NMR spectra of the KL and Cx-lig. The peaks from 160 

ppm to 180 ppm were assigned to the carboxylate group carbon. For the Cx-lig, there were 

broad peaks in this range because each carboxylate group was in a different chemical 

environment in the structure. By its nature, KL is a heterogeneous polymer, so the carbon 

atoms are in a variety of chemical environments (Gellerstedt and Robert 1987). For this 

reason, carbons of each carboxylate group were shielded differently after carboxylation, 

such that broad peaks appeared for the carboxylate groups in the NMR spectra of the Cx-

lig. Furthermore, the peak at 126 ppm, which was assigned to the C=C bond, appeared after 

carboxylation by peracetic acid. This result implied that the final product had two double 

bonds on its structure, according to the previously mentioned reaction mechanism (Fig. 1). 

Moreover, the peaks near 148 ppm and 56 ppm were assigned to the aromatic ring and 

methoxy group carbons, respectively (Lu et al. 2017). The intensities of these peaks 

decreased due to the ring cleavage reaction by the peracetic acid, according to the reaction 

mechanism. 
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Fig. 4. 13C NMR spectra of KL and Cx-lig 

 

To reveal whether carboxylate groups were introduced in the Cx-lig, elemental 

analysis was performed. Figure 5 presents the elemental compositions of the KL and Cx-

lig. In the KL, the contents of C, O, H, N, and S were 59.51%, 31.70%, 5.87%, 0.01%, and 

2.91%, respectively. In contrast, the elemental ratios in Cx-lig for each atom were 49.78%, 

45.26%, 4.19%, 0.13%, and 1.25%, respectively. After carboxylation of the KL by the 

peracetic acid, the oxygen content increased, indicating successful carboxylation by the 

peracetic acid. Similar steps produced carboxymethylated hardwood KL. After 

carboxymethylation to attach the carboxylate groups onto KL, the oxygen content 

increased (Konduri et al. 2015). Moreover, sulfur content decreased, indicating that the 

elimination reaction of thiol also occurred during peracetic acid oxidation. 
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Fig. 5. Elemental compositions of the KL and Cx-lig 
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The GPC-determined values of the Mn, Mw, and PDI of the KL, Cx-lig (non-

dialysis), and Cx-lig (dialysis) are shown in Table 1. Carboxylation caused the PDI to 

decrease substantially. The Mn of the KL was less than that of the Cx-lig (non-dialysis). It 

has been reported that hydrogen peroxide is able to divide into two hydroxyl radicals by a 

metal ion (Zhou and Lu 2014). These radicals attack lignin molecules and produce lignin 

radicals, which have a high reactivity to collide into one another. When lignin radicals 

collide with each other, new bonds, such as β-β and β-5, are produced. Consequently, Mn 

increases due to the condensation reaction (Kim and Kim 2018). Additionally, Cx-lig 

(dialysis) had a greater Mw than Cx-lig (non-dialysis). This result means that Mw was able 

to increase by dialysis, which removes low-molecular-weight molecules.  

 

Table 2. Mn, Mw, and PDI of KL, Cx-lig (non-dialysis), and Cx-lig (dialysis) 

 KL 
Cx-lig 

(non-dialysis) 
Cx-lig 

(dialysis) 

Mn (Da) 1242 1634 2898 

Mw (Da) 3849 2303 4811 

PDI 3.10 1.41 1.66 

 

Charge Density Analysis of Cx-lig 
To anticipate the performances of the plasticizers, charge densities were compared. 

The charge density values for the KL, PCE, LS, and Cx-lig are shown in Fig. 6. Charge 

density is one of the key factors to increasing cement fluidity (He and Fatehi 2015). When 

the material, which was negatively charged, was added to the cement paste, it was adsorbed 

onto the surfaces of the cement particles. This negative charge caused a repulsive force 

among the cement particles. Consequently, negatively charged materials were able to 

increase the fluidity of cement paste (Pérez-Nicolás et al. 2016). The measured charge 

density values of the KL, LS, and PCE were 0.00 meq/g, -1.19 meq/g, and -0.08 meq/g, 

respectively. Other research has shown similar results for the charge densities of LS 

(Oveissi and Fatehi 2015; Aro and Fatehi 2017) and PCE (Plank et al. 2009). Meanwhile, 

the charge density of the Cx-lig was -1.94 meq/g, which was greater than the values for LS 

and PCE.  

Kraft lignin contains few functional groups that indicate negative or positive charge 

(Sjöström 1993), and its charge density was effectively zero. LS is a by-product of sulfite 

pulping, and it has a sulfonate group, making it negatively charged. Based on the structure 

of LS, the sulfonate group is heterogeneously attached to the aliphatic chain region (Lange 

et al. 2013). For this reason, the LS had a fairly high charge density. Compared to the LS, 

the PCE had a much lower charge density. This result was because PCE consists of two 

parts, a negatively charged part and a non-charged chain structure part (Qian and De 

Schutter 2018). The low charge density of PCE means that there is a small amount of the 

negatively charged part, which is needed for the PCE to adsorb onto the surface of the 

cement. After PCE is adsorbed onto the surface of the cement particle, a non-charged chain 

structure causes steric hindrance among the cement particles (Plank et al. 2010). For these 

reasons, the charge density of PCE does not need to be high. In the Cx-lig, a number of 

carboxylate groups were introduced by the peracetic acid because KL is mainly composed 

of an aromatic ring structure. As a consequence of the added carboxylate groups, the 

measured charge density was high. 
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Fig. 6. Charge densities of KL, LS, PCE, and Cx-lig 

 
Cement Fluidity Analysis 

To characterize the performances of the plasticizers, mortar table tests were 

conducted. Figure 7 presents a comparison of the cement paste diameter when each 

plasticizer was added. The diameter of the cement paste without any plasticizer was 177.00 

mm ± 1.73 mm. When each commercial plasticizer, LS and PCE, was added into the 

cement paste, the diameters were 189.33 mm ± 4.16 mm and 199.67 mm ± 1.53 mm, 

respectively. Compared to the commercial plasticizers, use of Cx-lig resulted in a greater 

cement paste diameter of 206.11 mm ± 1.36 mm.  
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Fig. 7. Cement paste diameter after adding LS, PCE, and Cx-lig 

 
The increased cement fluidity with PCE was mainly due to its branched structure 

and steric hindrance. In contrast, LS chiefly affected cement fluidity by electrostatic 

repulsion (Qian and De Schutter 2018). The Cx-lig had carboxylate groups in its structure, 
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so the functional groups may have increased the cement fluidity in the manner of LS, rather 

than that of PCE. Many studies have revealed that PCE performs well as a plasticizer to 

increase cement fluidity due to a non-charged comb structure (Shin et al. 2008; Lei and 

Plank 2014; Chuang et al. 2019). In this experiment, adding Cx-lig, which exhibited greater 

charge density, was able to increase the workability of the cement paste. In conclusion, this 

result demonstrates that increasing charge density can be one way to increase the fluidity 

of cement. 

 
 
CONCLUSIONS 
 

1. Polycarboxylates based on kraft lignin (KL) were able to substitute for commercial 

plasticizers. Kraft lignin could be modified using peracetic acid, which cleaves 

aromatic rings, resulting in the introduction of carboxylate groups, to produce 

polycarboxylates for a plasticizer.  

2. Because of the carboxylate groups, Cx-lig exhibited a greater charge density than 

lignosulfonate (LS) and polycarboxylate ether (PCE). Furthermore, Cx-lig provided 

greater cement workability than LS and PCE when added to cement paste.  

3. Charge density was as important a factor as a comb structure to increasing cement 

workability. 
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