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Strength grading of hardwoods is required for their use in structural 
engineered wood products. However, hardwood strength grading is 
considerably less developed than it is for softwood species. Previous study 
has shown that white ash and yellow birch are promising species for the 
manufacture of glued-laminated timber. However, no dedicated strength 
grading procedure for hardwoods is available in Canada. This study aimed 
to identify the relevant properties for predicting the ultimate tensile strength 
of the investigated species. A model selection approach allowed the 
identification of the best performing models, comparison of each species, 
and determination of the relative impact of the indicating properties. The 
indicating properties included in the final models were the density of the 
specimens, the dynamic modulus of elasticity, the sine of the maximum 
local grain deviation (SGDmax), and the knot area index (KAI), which was 
derived from the knot area ratio. The final models revealed important 
differences between the two species that indicated that they should be 
graded separately to ensure the most efficient resource utilization. The 
coefficients of determination between the actual and model predicted 
ultimate tensile strength (UTS) were 0.82 for white ash and 0.78 for yellow 
birch. 
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INTRODUCTION 
 

In the last few decades, there has been a renewed interest in the use of hardwoods 

in construction (Green et al. 1994; Erickson and Ross 2005; Aicher et al. 2014). Their 

availability, impressive mechanical properties, and distinctive appearance are among the 

main factors driving the development of new structural engineered wood products from 

various broadleaf species. The value of the timber from hardwood species and its potential 

for use in engineered wood products depends on the knowledge of its mechanical properties 

and behavior under load. However, the inherent variability associated with the structure 

and anatomical features of hardwoods causes uncertainty with respect to their mechanical 

properties. The types of cells, their proportion, the relative amount of their chemical 

constituents, and the nature and abundance of the strength-reducing defects are highly 
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variable between species, within the individuals of a given species, and even in a single 

tree (Panshin and Zeeuw 1970; Ridley-Ellis et al. 2016). 

In engineering applications, this uncertainty is managed via design approaches that 

consider the natural variability of the material. Consideration of the 5th percentile level 

from the normal distribution of the lumber properties (also called characteristic properties) 

in the design calculations is a widespread practice. However, the variability is so large that 

the establishment of characteristic properties applicable to all hardwoods, or even to a 

single species, would lead to inefficient utilization of the raw material (Ravenshorst 2015). 

The strength grading process allows segregation of the timber in groups with the same 

strength properties, which allows for more efficient and economical use of the resource. 

For engineered wood products, such as glued-laminated timber (glulam), grading the 

lumber allows the identification and selection of the strongest material in the most solicited 

portions of the beam’s cross section.  

The strength grading process is based on the measurement of various parameters 

called indicating properties (IP), which affect the strength of timber and can be measured 

nondestructively (Erickson and Ross 2005; Schlotzhauer et al. 2019). The slope of grain, 

knots, density, and modulus of elasticity are among the most common characteristics 

measured for the strength grading of lumber. The influence of the slope of grain stems from 

the orthotropic nature of the wood material, which possesses independent mechanical 

properties in its three different axes, namely longitudinal, tangential, and radial. Wood is 

the strongest in the longitudinal axis, when a load is applied parallel to the direction of the 

wood fibres, vessels, or tracheids (Bodig and Jayne 1982; Ross 2010). However, in lumber 

this is rarely achieved. The growth conditions and structural features of the trees as well as 

the sawing pattern of the boards can result in lumber pieces in which the grain in not 

parallel to the longitudinal axis; this presents what is called slope of grain or grain 

deviation. Since the wood material is considerably weaker when the load is applied 

perpendicular to the grain, any deviation of the grain from the longitudinal axis reduces the 

strength of the lumber. This relationship has been studied and can be approximated using 

the Hankinson equation (Bodig and Jayne 1982; Ross 2010; Ravenshorst et al. 2019).  

Knots are the remains of branches that were more or less perpendicular to the 

longitudinal axis of the tree trunk. In lumber, knots are considered to reduce the effective 

cross section and to cause discontinuity of the wood’s oriented structure. The distortion of 

the fibres around the knot generates stress concentrations, which is directly related to the 

proportion of the cross section occupied by the knot (Ross 2010; Ravenshorst 2015). In 

addition, knots have a larger impact on strength in axial tension than in bending (Green et 

al. 1999). The density of the wood material is also related to its strength. Theoretically, a 

higher density implies a higher amount of cell wall material per volume unit and therefore, 

a higher strength. However, this relationship is only evident in clear wood specimens and 

is considerably weaker when defects such as grain deviations or knots are present 

(Bendtsen and Youngs 1981; Ross 2010; Ravenshorst 2015). The modulus of elasticity, as 

a measure of the stiffness, is known to be a good predictor of timber bending strength (Ross 

2010; Ravenshorst 2015). It is frequently used in conjunction with density as the basis of 

timber strength grading because those properties are together dependent on other 

properties, such as the presence of grain deviations and knots (Ravenshorst 2015).  

Most grading methods can be classified as either visual or machine grading. Visual 

grading is based on characteristics that can be assessed visually, such as the position, 

dimensions, and number of knots, the slope of grain, and the presence of reaction wood, 

fissures, wane, or rot (Ravenshorst 2015; Ridley-Ellis et al. 2016). Visual grading was the 
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only available method until the 1960s, and since the 1990s, grading has been based on the 

large-scale testing of lumber (Galligan and McDonald 2000). However, a considerable 

margin for safety must be added to account for the limited precision of human evaluation 

and the uncertainty in the relationships between the visual characteristics and strength. 

Therefore, visual grading does not allow the most efficient utilization of the real properties 

of the timber. Machine strength grading is now well-established, and a variety of methods 

and equipment are available to measure properties that can or cannot be assessed visually. 

These properties include the modulus of elasticity, density, moisture content, and direction 

of the wood fibres (Galligan and McDonald 2000). Currently, most grading approaches 

rely on a combination of visual and machine-based methods (Niemz and Mannes 2012; 

Ehrhart et al. 2016a). For instance, machine stress rated lumber (MSR) is also graded 

visually, because adding knot information to the stiffness considerably improves the 

precision of the process (Bendtsen and Youngs 1981). 

The structure and mechanical properties of hardwood species are more complex 

and more variable than softwoods (Panshin and Zeeuw 1970; Bollmus et al. 2017), so the 

grading process is essential for their use in structural applications. Strength grading of 

hardwoods is considerably less developed than it is for softwoods (Kovryga et al. 2019a; 

Weidenhiller et al. 2019), which is probably because the mechanical properties of 

hardwood are less predictable (Schlotzhauer et al. 2019). In Canada, the dominant use of 

hardwoods in decorative products has defined the grading method. Hardwood lumber is 

sawn in factory lumber rather than in dimension lumber and graded for its appearance 

rather than for its mechanical properties (NHLA 2019). Moreover, hardwood grading based 

on the tensile strength, which is relevant for tension laminations in glulam, is still in the 

early stages of development. Despite comprising the tensile strength classes for softwoods, 

European standard CEN EN 338 (2016) does not yet include tensile strength classes 

dedicated to hardwood species.  

However, research efforts conducted in the United States in the early 1990s showed 

that the relationships between the mechanical properties of softwoods, on which current 

strength grading methods are based, also apply to hardwoods (Green et al. 1994). 

Compared to softwoods, most hardwood species have a higher ultimate tensile strength 

(UTS) for a given bending strength (MOR) and a higher bending strength for a given 

modulus of elasticity (MOE). Therefore, it may be overly conservative to use the softwood 

relationships (Green et al. 1994; Kovryga et al. 2019b) to predict the characteristic 

properties of hardwood species. Moreover, the mechanical properties of some hardwood 

species are difficult to predict (Weidenhiller et al. 2019), and the interrelationships between 

the indicating properties vary as a function of the species (Kovryga et al. 2019b). 

Previous work has shown that white ash (Fraxinus americana L.) and yellow birch 

(Betula alleghaniensis Britt.) are promising species for the manufacture of glulam (Morin-

Bernard et al. 2020). However, there is little scientific knowledge on the mechanical 

properties of these species, which are not currently strength graded in Canada. This study 

aimed to identify the most suitable indicating properties, measured by a combination of 

visual and machine grading methods, to predict the ultimate tensile strength of white ash 

and yellow birch timber, using a modelling approach. In addition, the relative impact of 

the IPs on their mechanical properties and their capacity to be subjected to a strength 

grading process was discussed. To our knowledge, this is the first study to establish the 

basis for an operational and industrially applicable tensile strength grading of the 

investigated species. This study was part of a broader project aiming to foster the use of 

northern hardwood species in structural engineered wood products  
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EXPERIMENTAL 
 

Materials 
Lumber from the investigated hardwood species was purchased from Goodfellow 

Inc. in Quebec, Canada. Boards were processed to lamellae with cross-sectional 

dimensions of 38 mm × 38 mm and a length of 1830 mm. The resulting samples consisted 

of lamellae that presented a wide range of strength-reducing defects and lamellae without 

knots or any other visible strength-reducing defects. When a knot or a major grain deviation 

was present, the lamella was sawn so that the worst defect was positioned in the central 

portion of the lamella within the test span. A total of 62 white ash and 55 yellow birch 

specimens were prepared and tested.  

 

Methods 
Measurement of indicating properties and non-destructive testing 

The maximum local grain deviation, the maximum grain deviation on a length 

equivalent to the width of the specimen, and the average slope of grain in the 610 mm test 

span (middle third) were recorded on each face of the specimens. The average slope of 

grain on the four faces of the piece was derived from the measurements. Due to the 

difficulty of measuring the fiber direction in hardwoods, multiple methods were used. 

When a radial surface was present, the growth ring boundaries were used to determine the 

angle of the grain, as suggested by Koehler (1955). For less evident specimens, a 

magnifying glass, a scribe, and the pattern after tensile failure were used to ensure the 

accuracy of the measurements. Data relative to the knots were recorded using the concept 

of the Knot Area Ratio (KAR), which corresponds to the projection of the knot on the cross-

sectional area of the piece. The width of the knot, measured on every face where it was 

visible, was taken as the distance between lines drawn parallel to the length of the board 

and enclosing the knot. Every specimen had only one knot within the test span. 

The dynamic modulus of elasticity (MOEdyn) was measured using a HM200 

Director acoustic velocity tool (Fiber-gen Instruments Limited, Christchurch, New 

Zealand) on all lamellae. The velocity of the sound wave measured by the tool was used to 

calculate MOEdyn with Eq. 1,  

MOEdyn = ρV 2        (1) 

where ρ is the density (kg/m3) and V is the acoustic wave velocity (km/s). 

To confirm the suitability of the HM200 Director as a tool to measure the stiffness 

of hardwood lamellae, the apparent modulus of elasticity in third point bending was also 

measured on 17 white ash and 18 yellow birch specimens. The loading span of 813 mm 

and the test setup conformed to ASTM D4761 (2013). Equation 2 was used to calculate the 

apparent modulus of elasticity (MOEapp), 

MOEapp = 23Pl3 / 108bd3Δ        (2) 

where P is the increment of applied load on the specimen (N), l is the span of flexure (mm), 

b is the width of the specimen (mm), d is the depth of specimen (mm), and Δ is the 

increment of deflection of the specimen (mm) when subjected to the applied load, P. 

Generalized linear models were built with the data from the lamellae that was 

subjected to both dynamic and static MOE measurement to establish the relationship 

between the two methods of measurement. 
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Fig. 1. The dynamic MOE values plotted against the apparent MOE measured in third point 
bending for white ash (A) and yellow birch (B) 

 

The results in Fig. 1 are in line with the findings of Liu et al. (2014), who concluded 

that the MOE measured by dynamic techniques led to 5% to 20% higher values than that 

obtained from static measurement methods. In this study, the linear models relating the two 

methods showed a coefficient of determination of 0.94 for white ash and 0.87 for yellow 

birch. Coefficients derived from the linear models were used to assign an apparent modulus 

of elasticity value to the lamellae, for which the MOE was only assessed using the acoustic 

velocity tool. The relevant characteristics of the lumber tested in this study, including the 

strength-reducing defects, are shown in Table 1. 

 

Table 1. Relevant Characteristics of the White Ash and Yellow Birch Lamellae  

 White Ash Yellow Birch 

Number of Specimens 62 55 

Density (kg/m3) 

Mean 712.7 717.9 

Minimum 634.9 577.9 

Maximum 798.5 794.0 

SD 45.1 41.3 

MOEapp (MPa) 

Mean 14,195 15,254 

Minimum 8,806 11,035 

Maximum 18,217 18,972 

SD 2,342 1,857 

Maximum Local Grain Deviation (°) 

Mean 26.3 26.6 

Minimum 1.9 1.9 

Maximum 71.7 62.4 

SD 20.6 18.4 

Knot Area Ratio (%) 

Mean 5.4 3.9 

Minimum 0.0 0.0 

Maximum 50.6 24.7 

SD 11.0 6.1 
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Tension testing of the lumber 

Tension testing of the specimens was realized with a hydraulic tension testing 

machine (Model 412; Metriguard Technologies Inc., Pullman, WA, USA) in accordance 

with ASTM D4761 (2013) for determination of axial strength in tension with a test span of 

610 mm for a specimen width of 38 mm. The specimens were held in place by grips 

designed to minimize slippage. Samples were collected from each specimen after testing 

for determination of the moisture content (MC) in the vicinity of the failure zone. The UTS, 

MOE, and density values were adjusted to a 12% moisture content according to ASTM 

D1990 (2016). 

 

Model development 

To identify the explanatory variables that influence the UTS of the lamellae, a 

model selection process was performed using package AICcmodavg (Mazerolle 2019) 

within the R programming environment (R Foundation for Statistical Computing, version 

3.6.3, Vienna, Austria). The procedure was realized separately for each of the species. 

Three groups of candidate models comprising a total of 20 models were built a priori. The 

first set comprised models with variables related to the characteristics measured by non-

destructive testing of the lamellae, namely the dynamic MOE and density. The second 

group included the models involving variables linked to the defects recorded during the 

visual grading process. A third group was created with the models combining variables 

from the two aforementioned groups. In addition, an intercept-only model was included in 

the analysis. The variables included in the candidate models are presented in Table 2. Due 

to the nature of the relationship between the maximum grain deviation and UTS, a 

transformation was required. Variable SGDmax corresponded to the sine of the maximum 

local grain deviation in radians. The knot area ratio also required transformation to avoid 

generating negative UTS in the selected models. The KAI, or Knot Area Index, was created 

by exponential transformation of variable KAR. Therefore, the KAI value tended to zero as 

the KAR increased. 

 

Table 2. Indicating Properties Included in the Candidate Models 

Variable Description 

ρ12 Density adjusted to 12% moisture content (kg/m3) 

MOEdyn  Dynamic modulus of elasticity adjusted to 12% moisture content 
(N/mm2) 

SGDmax Sine of the maximum local grain deviation in radians on the worst 
face of the lamella 

GDmax1.5 Maximum grain deviation on the worst face of the lamella on a 
length equivalent to the width of the lamella (°) 

Combined_SOG1.5 Average maximum grain deviation on the four faces of the lamella 
on a length equivalent to the width of the lamella (°) 

Combined_SOGSpan Average slope of grain in the test span of the four faces (°) 

KAI Knot Area Index [e(-0.1*KAR)] 

 

When multiple models showed a comparable performance (i.e., similar AICc 

values), a final model was built by multimodel inference, which is also known as model 

averaging. This approach, described by Mazerolle (2006), uses the Akaike weights of the 
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models to weight the estimates and standard errors (SE) of each parameter, which results 

in estimates and SE that consider the information of all relevant models. All selected 

models presented normally distributed errors and homogeneous variances. The interactions 

between the explanatory variables were dismissed. 

 

 

RESULTS AND DISCUSSION 
 
Results from the Tensile Strength Tests 

The ultimate tensile strength and other relevant properties of the specimens tested 

in tension are shown in Table 3. The mechanical properties determined from the test 

campaign appeared slightly higher than those in the literature. For white ash, Jessome 

(1977) reported a mean MOE of 12,800 MPa (13,406 MPa when adjusted to 12% MC), 

whereas the declared MOE for yellow birch was 14,100 MPa (14,700 at 12% MC). The 

respective mean density values from Jessome (1977) are 690 kg/m3 for white ash and 670 

kg/m3 for yellow birch. No data were available regarding UTS of the investigated species. 

 

Table 2. UTS and Other Relevant Properties of the White Ash and Yellow Birch 
Lamellae Tested in Tension 

Species n 
Mean 

Density 
(kg/m3) 

Density 
SD 

(kg/m3) 

Mean 
MC 
(%) 

Median 
UTS 

(MPa) 

Min. 
UTS 

(MPa) 

UTS 
SD 

(MPa) 

Mean 
MOEapp 
(MPa) 

Min. 
MOEapp 

(MPa) 

White ash 62 712.7 45.1 10.0 85.7 16.4 38.0 14,195 8,806 

Yellow 
birch 

55 717.9 41.3 11.0 95.3 19.6 32.8 15,254 11,035 

 

Table 3. Ranking of the Candidate Models and Related Indicators for White Ash 
after Model Selection 

Model 
ID 

Explanatory Variables K AICc 
Delta 
AICc 

AICc 
Weight 

Log-
likelihood 

14 p12 + MOEdyn + SGDmax + KAI 6 533.42 0.00 0.69 -259.95 

17 MOEdyn + SGDmax + KAI 5 535.21 1.78 0.28 -262.07 
16 p12 + SGDmax + KAI 5 540.17 6.74 0.02 -264.55 

9 SGDmax + KAI 4 550.89 17.46 0.00 -271.09 

13 SGDmax + Combined_SOGSpan + KAI 5 551.28 17.86 0.00 -270.11 

15 p12 + MOEdyn + Combined_SOGSpan + KAI 6 554.31 20.88 0.00 -270.39 

4 SGDmax 3 565.80 32.37 0.00 -279.69 
10 GDmax1.5 + KAI 4 566.72 33.30 0.00 -279.01 

11 Combined_SOG1.5 + KAI 4 566.81 33.38 0.00 -279.05 

8 KAI 3 585.38 51.95 0.00 -289.48 

12 Combined_SOGSpan + KAI 4 586.36 52.94 0.00 -288.83 

19 MOEdyn + Combined_SOGSpan 4 586.40 52.98 0.00 -288.85 

5 GDmax1.5 3 588.46 55.03 0.00 -291.02 
18 p12 + Combined_SOGSpan 4 589.29 55.86 0.00 -290.29 

6 Combined_SOG1.5 3 590.92 57.50 0.00 -292.25 

2 MOEdyn 3 618.39 84.96 0.00 -305.99 

3 p12 + MOEdyn 4 620.61 87.19 0.00 -305.95 

7 Combined_SOGSpan 3 628.96 95.54 0.00 -311.27 
20 Intercept only 2 630.14 96.71 0.00 -312.97 

1 p12 3 630.36 96.93 0.00 -311.97 
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Results of the Model Selection Process 
Table 4 shows the ranking of the candidate models for white ash after the model 

selection process based on the AICc. The best model for the prediction of white ash UTS 

was model 14 (AICc = 533.42, wi = 0.69). This model included visually assessed variables, 

namely the maximum local grain deviation (SGDmax) and Knot Area Index (KAI) as well 

as the density and the dynamic MOE (MOEdyn). The second-best model was model 17 

(AICc = 535.21, wi = 0.28), which included all variables from model 14, except the density. 

The third most performing model was model 16 (AICc = 540.17, wi = 0.02), which included 

the density, SGDmax, and KAI. The multi-model inference allowed the calculation of model-

averaged estimates and their corresponding standard error at a 95% confidence level for 

the three best performing models, as presented in Table 5. 

 

Table 4. Model-averaged Estimates and 95% Confidence Level Standard Error 
of the Final Models for the Two Investigated Species 

 White Ash Yellow Birch 

Parameter 
Model-averaged 

Estimate 
SE 

Model-averaged 
Estimate 

SE 

p12 0.1141 0.0572 -0.1373 0.0596 

MOEdyn 0.0034 0.0011 0.0058 0.0013 

SGDmax -66.46 9.44 -59.31 12.15 

KAI 42.78 8.60 23.20 9.59 

Intercept -29.86 45.65 79.68 46.04 

 

Figure 2 shows the model-averaged predictions and unconditional 95% confidence 

intervals for the best-fit model parameters for white ash. 

 

 
 

Fig. 1. The model-averaged predictions and unconditional 95% confidence intervals for the best-
fit model parameters for white ash: a) Density; b) Dynamic modulus of elasticity; c) Sine of the 
maximum local grain deviation; d) Knot Area Index 
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The ranking of the candidate models for yellow birch is presented in Table 6. For 

this species, model 14 (AICc = 459.83, wi = 0.81) was the best model for predicting UTS. 

Model 17 (AICc = 462.86, wi = 0.18) was the second best model, followed by model 15 

(AICc = 468.88, wi = 0.1), which included the density, MOEdyn, KAI, and the combined 

average slope of grain in the test span (Combined_SOGSpan). However, the effect of 

Combined_SOGSpan was not included in the final model because the maximum local grain 

deviation SGDmax was a stronger predictor of tensile strength.  

 

Table 6. Ranking of the Candidate Models and Related Indicators for Yellow 
Birch After Model Selection 

Model 
ID 

Explanatory Variables K AICc 
Delta 
AICc 

AICc 
Weight 

Log-
likelihood 

14 p12 + MOEdyn + SGDmax + KAI 6 459.83 0.00 0.81 -223.02 

17 MOEdyn + SGDmax + KAI 5 462.86 3.03 0.18 -225.80 

15 p12 + MOEdyn + Combined_SOGSpan + KAI 6 468.88 9.04 0.01 -227.54 

9 SGDmax + KAI 4 475.35 15.52 0.00 -233.27 

16 p12 + SGDmax + KAI 5 477.51 17.68 0.00 -233.13 
13 SGDmax + Combined_SOGSpan + KAI 5 477.74 17.91 0.00 -233.25 

10 GDmax1.5 + KAI 4 477.78 17.94 0.00 -234.48 

11 Combined_SOG1.5 + KAI 4 480.11 20.28 0.00 -235.65 

4 SGDmax 3 480.45 20.62 0.00 -236.99 

19 MOEdyn + Combined_SOGSpan 4 482.94 23.11 0.00 -237.06 

5 GDmax1.5 3 484.80 24.97 0.00 -239.16 
6 Combined_SOG1.5 3 489.02 29.19 0.00 -241.27 

18 p12 + Combined_SOGSpan 4 490.33 30.49 0.00 -240.76 

8 KAI 3 497.91 38.08 0.00 -245.71 

12 Combined_SOGSpan + KAI 4 499.41 39.58 0.00 -245.30 

3 p12 + MOEdyn 4 505.49 45.66 0.00 -248.34 
2 MOEdyn 3 514.96 55.13 0.00 -254.24 

1 p12 3 529.51 69.68 0.00 -261.51 

20 Intercept only 2 529.58 69.75 0.00 -262.67 

7 Combined_SOGSpan 3 530.54 70.71 0.00 -262.03 

 

 
 

Fig. 3.  The model-averaged predictions and unconditional 95% confidence intervals for the best-
fit model parameters for yellow birch: a) Density; b) Dynamic modulus of elasticity; c) Sine of the 
maximum local grain deviation; d) Knot Area Index 
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The model-averaged estimates and their corresponding standard error at a 95% 

confidence level are presented in Table 5, and the model-averaged predictions plots for 

yellow birch are shown in Fig. 3.  

 

Effect of the Explanatory Variables Included in the Final Models 
The final models for white ash and yellow birch, despite showing similarities, 

exhibited major differences. The relationships between the mechanical and indicating 

properties were different for both species. Through isolating the effect of each of the 

explanatory variables included in the final models (Figs. 2 and 3), it was possible to better 

understand these differences and their implications for the grading of these species.  

  

Effect of the density on the UTS 

In this study, the density affected the two species differently, which is evident in 

the results in Table 5. Though the UTS of the white ash specimens increased as density 

increased, the opposite trend was observed for yellow birch. A deeper analysis of the test 

specimens revealed that the densest yellow birch lamellae that failed at a lower tension 

stress presented a wavy-grained pattern (Fig. 4) that was not visible on the other specimens. 

The presence of irregular grain patterns in yellow birch was well established, and it is 

generally undesirable except in some specific decorative products (Clausen and Godman 

1967; Erickson and Ross 2005). Differences have already been observed between northern 

hardwood species regarding the effect of the density on their mechanical properties. In a 

study involving North American white ash, yellow birch, and sugar maple specimens, 

Kretchmann et al. (2010) concluded that the density changes affected the three species 

differently. Although their data suggested that strength increased as density increased, it 

was not possible to conclude definitively. In addition, higher density sometimes leads to 

lower mechanical properties. In a study on the grading of European hardwoods, Kovryga 

et al. (2019c) found a negative relationship between density and MOE for European maple.  

 

 
 

Fig. 4. Wavy-grained yellow birch specimens after failure 

 

However, it is generally acknowledged that wood density has a direct and positive 

impact on the strength of both softwoods and hardwoods (Bendtsen and Youngs 1981; 

Ross 2010; Ravenshorst 2015). A study conducted on small, clear wood specimens from 

160 hardwoods species and 32 softwood species revealed a coefficient of determination of 

0.64 for the linear model relating the density to the bending strength of all species together 
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(Ravenshorst 2015). After subjecting small, clear wood specimens to bending tests, Zhang 

(1997) found R2 values ranging from 0.50 to 0.74 between the density and MOR for four 

European birch and oak species. For structural timber, the effect of density is less obvious 

than it is for small, clear wood specimens. The variability in the properties of hardwood 

species reduces the accuracy of strength grading based on density (Frühwald and 

Schickhofer 2005; Brunetti et al. 2019; Kovryga et al. 2019b). Therefore, Ehrhart et al. 

(2016a) did not include this property in any of their candidate models. In this study, the 

generalized linear models in which the density was the sole predicting variable for UTS 

resulted in R2 values of 0.015 for white ash (p = 0.167) and 0.024 for yellow birch (p = 

0.132). Density, though not a good predictor in isolation, was still included in the best-

performing models retained after the model selection process. In the first-ranked model 

(Model 14), the effect of the density was significantly correlated to the UTS (p = 0.049). 

The inclusion of additional indicating properties in the final models appeared to explain a 

larger proportion of the residual variance, which increased the significance of the density 

as a predictor of the UTS. These results, although different from initial expectations, were 

still consistent with findings from other studies on hardwood strength grading. When 

studying the relationship between the UTS and the density of European ash timber, 

Sarnaghi et al. (2017) obtained an R2 of 0.006, whereas Kovryga et al. (2019c) found a 

slightly higher coefficient of determination (R2 = 0.034) for the same species. Considering 

the results of the model selection process and the differences in the effect of the density on 

the UTS of the investigated species, this indicating property should be considered for the 

grading of white ash and yellow birch, unless its influence can be accounted for with other 

characteristics or indicating properties.  

 

Effect of the grain deviations of the UTS 

In this study, the generalized linear models in which the maximum local grain 

deviation was the only explanatory variable allowed the conclusion that this indicating 

property had a significant but limited impact on the UTS for both white ash (R2 = 0.05, p 

= 0.05) and yellow birch (R2 = 0.07, p = 0.03). It is well known that the angle made by 

wood fibres from the longitudinal axis of a lumber piece affects its bending strength. This 

effect can be approximated using the Hankinson equation (Bodig and Jayne 1982; Ross 

2010; Ravenshorst et al. 2019), which is not linear. This non-linear relationship was also 

observed by Ravenshorst (2015) in a study on tropical hardwoods. In this study, the 

maximum local grain deviation had to be transformed to account for the non-linear 

relationship between the UTS and the maximum local grain deviation. In the models 

relating the grain deviations to the UTS, the substitution of the maximum local grain 

deviation with SGDmax considerably increased the portion of the UTS explained, as there 

was an R2 of 0.65 (p < 0.001) for white ash and an R2 of 0.62 (p < 0.001) for yellow birch. 

In softwood structural grading, the general slope of grain is often considered, and it is 

measured on a certain length and ignores the local grain deviations (Fruhwald and 

Schickhofer 2005; ASTM D245 2011). Due to the anatomical differences of hardwoods 

and their diversity, Sarnaghi et al. (2017) concluded that the grading methods for softwoods 

should not be applied for hardwoods. In this study, all the variables that expressed the 

general slope of grain were poor predictors of the tensile strength compared to the 

maximum local grain deviation expressed by SGDmax. The final models show that the 

relative importance of SGDmax as a predictor of UTS differed between white ash and yellow 

birch. The reduction in tensile strength caused by the maximum local grain deviation 

appeared to be of a larger magnitude for white ash, as there was an estimated reduction of 
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-66.46 for white ash compared to -59.31 for yellow birch. In a study of the impact of the 

slope of grain on the bending strength of white ash, yellow birch, and sugar maple, 

Kretschmann et al. (2010) came to a similar conclusion, suggesting that grain deviations 

had a bigger impact on the bending strengths of white ash and sugar maple than on that of 

yellow birch.  

In addition, results from other studies on hardwood grading revealed a certain 

variability in the relationships between the grain angle and the bending or tensile strength. 

The main challenge in relating the grain deviations to the mechanical properties comes 

from the difficulty of visually assessing this property on sawn hardwood products 

(Fruhwald and Schickhofer 2005; Ravenshorst 2015; Bollmus et al. 2017), which depends 

on the species and evaluation method. Fruhwald and Schickhofer (2005) measured the 

grain deviations accurately on beech by considering the fracture pattern after testing, and 

they obtained a moderate correlation (R2 = 0.44) with bending strength. However, Brunetti 

et al. (2019) found that neither the slope of grain measured visually or after failure was 

related to any of the mechanical properties of beech timber. Kovryga et al. (2019d) 

measured the slope of grain by transverse ultrasound on the worst 150 mm section of 

European ash and maple lamellae and concluded that neither transverse ultrasound 

measurement nor the slope measured after failure were significantly correlated with tensile 

strength. For European oak, Riesco-Muñoz and Remacha-Gete (2012) also found that the 

general slope of grain did not have a significant impact (p > 0.05) on the bending strength 

or MOE. 

In this study, the high significance of SGDmax is attributable to the short span of the 

measurements but may have also been due to the limited cross section (38 mm × 38 mm) 

of the tested specimens, which resulted in a more accurate estimation of the real grain 

deviations. Stapel and van de Kuilen (2014) showed that visual grading techniques are 

strongly influenced by the cross section of the specimen, and some defects cannot be 

properly detected on larger cross sections. Nevertheless, it was feasible to measure the 

grain deviations visually for both investigated species. A considerable proportion of the 

specimens failed in the region where the worst local grain deviation was measured. The 

annual rings boundary method was the easiest way to measure the grain deviations, and the 

failure patterns (Fig. 5) confirmed the suitability of this method. However, this technique 

was only appropriate for specimens that presented an almost perfectly radial face. Grain 

deviations were more difficult to assess on the other specimens, and the process required 

more time. In addition, grain deviations were easier to measure visually on white ash than 

on yellow birch.  

The results confirmed a statistically significant effect of the grain angle on the UTS. 

The maximum local grain deviation appeared to be a relevant indicating property for the 

strength grading of the investigated species. To accurately and efficiently measure the grain 

deviations of a greater diversity of cross sections and species, the measurement method 

must be refined, as the measures taken on larger specimens may be less reliable. To address 

this issue, Ehrhart et al. (2018) developed an automatic image analysis method for beech 

that calculates the grain deviations from the spindles formed by the medullary rays. This 

technique is also be applicable to other species. In a study on the strength grading of 

European ash and European maple, Kovryga et al. (2019d) found a strong correlation 

between the slope of grain measured by transverse ultrasound and the measure taken from 

the failure pattern. However, the deviation measured on a 150 mm length was not 

correlated with the tensile strength, but reduction of the measurement span may lead to 

better results. Similar methods could be applied to the species investigated in this study. 
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However, the prohibitive cost of some of these scanning technologies may limit their 

applicability in an industrial context (Erickson and Ross 2005). 

 

 

 
 

Fig. 5. The failure patterns following the ring boundaries on radially sawn white ash specimens 

 

Effect of the modulus of elasticity on the UTS 

The effect of the stiffness, accounted for by MOEdyn, was comparable for both 

species. Increased stiffness improved the UTS, but the magnitude of the effect was larger 

for yellow birch, as shown by the higher model-averaged estimate for yellow birch than 

white birch (0.0058 and 0.0034, respectively). The coefficient of determination of the 

linear model relating MOEdyn to the UTS was also higher for yellow birch (R2 = 0.28, p < 

0.001) than for white ash (R2 = 0.19, p < 0.001). The modulus of elasticity is currently the 

main indicating property considered in machine grading, and its relationship with the 

bending strength is among the most documented. Experiments conducted by Smulski 

(1991) on small, straight-grained white ash, sugar maple, and white oak specimens revealed 

that the dynamic MOE was significantly (p ≤ 0.05) correlated with the bending strength. 

Smulski also concluded, in line with the tensile strength results of this study, that the MOE 

explained a larger portion of the bending strength of yellow birch (R2 = 0.92) than that of 

white ash (R2 = 0.85). For hardwoods, the MOE is correlated to the tensile strength. 

However, the power of this indicating property is lower for temperate hardwoods (R2 = 

0.38) than for softwoods (R2 = 0.48) and tropical hardwoods (R2 = 0.50) (Ravenshorst 

2015).  

In structural timber, the introduction of strength-reducing defects reduces the 

portion of the strength variations explained by the MOE, which results in lower R2 values. 

In a study of strength grading of European ash and European maple, Kovryga et al. (2019d) 

found a coefficient of determination of 0.62 between MOE and UTS, whereas Sarnaghi et 

al. (2017) found a slightly lower R2 of 0.41 between the two variables for European ash. 

Further, Weidenhiller et al. (2019) reported an R2 of 0.19 between tensile strength and 

dynamic MOE for European ash. However, the different span considered in both 

measurements would explain the weaker correlation. The prediction accuracy for tensile 

strength also depends on the quality of the material. Westermayr et al. (2018) reported an 

R2 value of 0.48 between UTS and MOE for low quality beech, whereas Ehrhart et al. 

(2016b) reported an R2 of 0.22 with high quality beech.  
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The dynamic MOE, as measured in this study, was found to be a reliable indicating 

property that should be included in strength grading procedures for the investigated 

hardwood species. However, considering the relatively low coefficients of determination 

(especially for white ash), other indicating properties should be included to reach 

satisfactory prediction accuracy. 

 

Effect of knots on the UTS 

In this study, knots were among the factors that most notably affected the UTS. The 

KAR measured on the specimens was transformed and expressed by the KAI, which 

prevented the model to generate negative UTS values. There was a direct and highly 

significant influence of KAI on the UTS, as there were R2 values of 0.52 for white ash (p < 

0.001) and 0.48 for yellow birch (p < 0.001). Figures 2 and 3 show that increasing KAI 

values resulted in a higher UTS because the KAI value increases as the dimension of the 

knot decreases. The results also indicated that the relative influence of the knots was 

considerably higher for white ash than for yellow birch, which was evident in their 

respective estimates (42.78 and 23.20) in the final models.  

The results from this study were consistent with findings from other studies on 

hardwood species that concluded that the relationship between knots and UTS was existent 

but variable among species. When relating the largest knot parameter to the tensile strength, 

Fruhwald and Schickhofer (2005) found a coefficient of determination of 0.34 for 

European ash, beech, and oak species, whereas Ehrhart et al. (2016a) reported an R2 of 

0.53 between KAR and the UTS of European beech. Kovryga et al. (2019d) found an R2 of 

0.78 between KAR measured by transverse ultrasound and UTS. The coefficient of 

determination was only slightly lower (R2 = 0.74) when considering the KAR measured 

visually.  

The KAR (expressed here as KAI) should be included as an indicating property in 

grading procedures for the investigated species. However, for grain deviations, additional 

test campaigns are required to confirm the applicability of the results to larger cross 

sections. The impact of the position of the knot should also be assessed. In this study, no 

distinction was made between edge and centre knots. Knots located on the edge of a board 

affect bending strength depending if the knots are positioned on the tension or compression 

side of a lumber piece. Edge knots are also presumed to have a larger impact on tensile 

strength than knots located in the centre of boards, as their eccentricity induces additional 

stresses (Ross 2010). 

 

Implications for the Strength Grading of the Investigated Species 
The results from this study have confirmed several of the difficulties in hardwood 

strength grading, which are among the main factors limiting their use in structural 

engineered wood products (Schlotzhauer et al. 2019). However, the final models built from 

multimodel inference were satisfactorily accurate in predicting the UTS of both species 

using the selected indicating properties. In Fig. 6, the values predicted from the model-

averaged estimates are plotted against the values obtained in the tests. The coefficients of 

determination of the linear models relating the actual UTS and model predicted UTS were 

0.82 for white ash and 0.78 for yellow birch. As observed for the relationship between 

MOEdyn and MOEapp, the coefficient of determination was slightly higher for white ash, 

which indicated that the mechanical properties of this species may be easier to predict than 

those of yellow birch.  
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Fig. 6. The model-predicted and actual UTS results for white ash (A) and yellow birch (B) 
samples 

 

The performance of the models developed in this study was comparable to the 

performance of commercially available machine grading systems for softwoods. With 

European spruce, Hanhijärvi and Ranta-Maunus (2008) reported R2 values between 0.55 

and 0.61 for the relationship between the UTS and the selected indicating properties, 

whereas the most advanced systems could lead to R2 values above 0.70 between the 

indicating properties and the bending strength (Olsson et al. 2013). In addition, the 

prediction performance of the models from this study was comparable to that achieved in 

other studies on hardwood strength grading. Using 3D finite element numerical 

simulations, Sarnaghi et al. (2017) obtained a higher coefficient of determination (R2 = 

0.91) than that obtained in this study for the tensile strength prediction of European ash 

and European maple. Kovryga et al. (2019a) developed an automated grading system for 

European ash and European maple based on the MOE and the detection of knots by X-ray, 

which resulted in coefficients of determination of 0.58 and 0.53 for European ash and 

European maple, respectively.  

The species investigated in this study presented some important differences in their 

behavior. The KAI and SGDmax variables more importantly affected the UTS of white ash, 

whereas the effect of MOEdyn on UTS was more pronounced for yellow birch. The effect 

of increasing density was also opposite for the studied species. Because of interrelations 

between indicating properties and structural differences between hardwood species, it was 

difficult to determine the impact of density on hardwoods’ strength in general. For instance, 

the density changes more importantly affected the stiffness of white ash and yellow birch 

than it did for sugar maple (Kretchmann et al. 2010). As the stiffness also impacts the 

bending and tensile strengths, these confounding effects are difficult to distinguish. Zhang 

(1997) also identified a statistically significant impact of density on the MOE of hardwood 

species, but this impact was of larger magnitude for ring-porous species than for diffuse 

porous species. In this study, some of the differences between the two species could be 

attributed to the fact that white ash is a ring-porous species, whereas yellow birch is a 

diffuse porous species. However, most of the differences were related to grain irregularities 

in yellow birch. This characteristic must be investigated to develop an accurate strength 

grading procedure for this species. A potential solution would be to define the presence of 

wavy grain as a criterion for exclusion. For instance, Riesco-Muñoz et al. (2011) suggested 

to systematically exclude European oak specimens presenting wavy grain because of their 

poor mechanical properties. However, before taking such action, the incidence of this 

characteristic and potential yield upon implementation of the restriction must be known. 
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Because wavy-grained specimens were also the densest, an abnormally high density could 

also serve as a criterion for exclusion.  

Among the indicating properties included in the final models from this study, the 

grain angle was the most challenging to measure. The final models, including all four 

indicating properties, were more accurate in predicting the UTS than the other candidate 

models that were more parsimonious. However, for practical reasons, it may be necessary 

to simplify the grading procedure by removing indicating properties that are overly difficult 

to assess visually. For instance, Ravenshorst et al. (2019) suggested that the slope of grain 

should not be measured but rather considered indirectly from the MOE and density. The 

results from this study confirmed that both the maximum local grain deviation and SGDmax 

were significantly correlated with the dynamic MOE for yellow birch with respective p 

values of 0.037 and 0.029. However, for white ash, the p values of 0.069 for maximum 

local grain deviation and 0.052 for SGDmax were slightly over the desired significance level 

of 0.05. Further, candidate model 3, which included MOEdyn and density as explanatory 

variables, was one of the worst performing models for both white ash (AICc = 620.61, wi 

= 0) and yellow birch (AICc = 505.49, wi = 0). Therefore, more research should be 

conducted on the accuracy of grain deviation measurements and the relationships between 

the grain deviations and other indicating properties. Other methods to assess the direction 

of wood fibers should also be investigated to improve the efficiency of the grading process. 

The size effect of the specimens should also be investigated. As discussed earlier, 

the specimens tested in this study had uniform dimensions of 38 mm × 38 mm × 1830 mm. 

The conclusions presented in this study should be verified on larger cross section 

specimens. In addition, the probability of occurrence of strength-reducing defects increase 

as the cross section of the specimens increases (Weibull 1939; Pedersen et al. 2003). For 

European hardwoods, Schlotzhauer et al. (2017) were not able to conclude on the existence 

of a size effect on the tensile strength of the specimens. However, Kohler (2013) found that 

the tensile strength of spruce decreased as specimen length increased. These observations 

should be validated for white ash and yellow birch. 

 

 
CONCLUSIONS 
 
1. The ultimate tensile strength (UTS) of white ash and yellow birch lumber was 

successfully predicted from the density, dynamic modulus of elasticity, sine of the 

maximum local grain deviation (SGDmax), and knot area index (KAI). The final linear 

models resulted in coefficients of determination (R2) between the actual and predicted 

UTS of 0.82 for white ash and 0.78 for yellow birch. 

2. The final models revealed important differences between the two species, which 

indicated that it may be appropriate to grade them separately to ensure the most 

efficient resource utilization. The KAI and SGDmax more importantly affected the UTS 

of white ash than that of yellow birch, whereas the effect of the MOE on the UTS was 

more pronounced for yellow birch. The effect of increasing density was also opposite 

for the studied species.  

3. Because of interrelations between indicating properties and differences in the 

mechanical behavior of both species, it was difficult to determine the impact of the 

density on the strength of hardwood timber. For instance, some wavy-grained yellow 
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birch specimens had an abnormally high density and failed at a lower tensile strength 

than expected.  
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