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This study reports the feasibility of using deep convolutional neural 
networks (CNN), for automatically detecting knots on the surface of wood 
with high speed and accuracy. A limited dataset of 921 images were 
photographed in different contexts and divided into 80:20 ratio for training 
and validation, respectively. The “You only look once” (YoloV3) CNN-
based architecture was adopted for training the neural network. The Adam 
gradient descent optimizer algorithm was used to iteratively minimize the 
generalized intersection-over-union loss function. Knots on the surface of 
wood were manually annotated. Images and annotations were analyzed 
by a stack of convolutional and fully connected layers with skipped 
connections. After training, model checkpoint was created and inferences 
on the validation set were made. The quality of results was assessed by 
several metrics: precision, recall, F1-score, average precision, and 
precision x recall curve. Results indicated that YoloV3 provided knot 
detection time of approximately 0.0102 s per knot with a relatively low false 
positive and false negative ratios. Precision, recall, f1-score metrics 
reached 0.77, 0.79, and 0.78, respectively. The average precision was 
80%. With an adequate number of images, it is possible to improve this 
tool for use within sawmills in the forms of both workstation and mobile 

device applications.   
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INTRODUCTION 
 

According to the Food and Agriculture Organization of the United Nation - FAO 

(FAO 2020), the United States is the second largest producer of sawn wood in the world. 

Traditionally, lumber grading is done by trained and experienced human graders. In fact, 

sawmills are increasingly requiring intimate knowledge of the condition of raw material to 

effectively manage their inventory and improve business performance (Rudakov 2018). 

Over the years, automated sorting machines have been implemented to expedite the process 

in order to increase production and accuracy (Kontzer 2019).   

 In general, wood is a central material for furniture, fine-working, and civil 

construction. In the first two cases, visual appearance is important. Therefore, wood defects 

negatively affect the aesthetic appearance of the final products. In the latter case, defects 

play a critical role in degrading the mechanical properties of wood, including detrimental 

effects on modulus of rupture (MOR) and modulus of elasticity (MOE) (Zhong et al. 2012; 

Rocha et al. 2018).  
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 According to Nasir and Cool (2018), most research efforts in sawing have been 

concentrated in advancements of primary and secondary wood processing with band and 

circular saws. Nasir and Cool (2018) have advocated for new prediction techniques during 

processing for increasing optimization and overall sawmill yield. Prediction, monitoring, 

and controlling artificial intelligence techniques have the capability of helping the wood 

machining field transition to industry 4.0. 

 In a study conducted by Nasir and Cool (2020), vibration signals combined with 

self-organizing maps (SOM) were fed into the adaptive neuro-fuzzy inference system 

(ANFIS) and multi-layer perceptron (MLP) for cutting power and waviness prediction by 

using a circular saw in climb cutting. Both methods obtained nearly perfection in prediction 

of average cutting power and surface waviness for the testing set. Furthermore, a vibration 

signal could be successfully used for online monitoring of cutting power and surface 

waviness.  

 Several investigations have been conducted on machine-vision-enabled defect 

detection. Schmoldt et al. (1997) investigated using a multi-layer perceptron neural 

network to identify and locate internal log defects. In addition, techniques such as Gabor 

or wavelet can also be used to scan products and report defects (Lampinen et al. 1998; 

Cetiner et al. 2016). However, expensive equipment and several steps are necessary for 

defect classification and detection. Moreover, these techniques are not fast, nor are they 

accurate enough to meet the required speed in sawmill processing. 

 Machine-learning (ML) studies for defect detection have been developed by Gu et 

al. (2010), Mahram et al. (2012), and Urbonas et al. (2019). These authors used ML to 

classify defects on wood surfaces using support vector machine (SVM) and feature 

extraction with gray level co-occurrence, local binary pattern (LBP), principal component 

analysis (PCA), and linear discriminant analysis (LDA) techniques. 

 More recently, state-of-the-art classification, detection, and segmentation of 

images and videos with important theoretical and practical achievements have been 

achieved by leveraging deep convolutional neural networks (CNN) (Gu et al. 2017). 

Inspired by the breakthrough of CNNs in object-detection, the present work investigates 

using one of the latest deep learning CNN approaches to perform real-time object detection 

of wood surface defects. In the wood science field, image data are scarce and are expensive 

and time-consuming to acquire. Knots on a wood surface vary in size, location, and type. 

According to Cao et al. (2018), knots can be classified as encased or intergrown and further 

extended to sound or unsound classifications.  

The overall goal of this work is to advance the wood science field by demonstrating 

that artificial intelligence can be used for defect detection. This is done by employing a 

real-time object-detection algorithm called You Only Look Once (YoloV3) (Redmon and 

Farhadi 2018). The hypothesis to be evaluated in this work is: compared to common 

methods that are slow and expensive, convolutional neural networks are capable of 

classifying, and locating wood surface knots automatically, accurately, fast, and reliably.    

 

 

EXPERIMENTAL 
 

Materials 
 Usually, in sawmill processing, line bucking and merchandising play a critical role 

in optimization. Those steps are responsible for separating defective boards to increase 

clear cuttings and help in the sorting process. To that end, the authors created a small image 
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dataset that included both Southern yellow pine (Pinus spp.) defect and defect-free boards 

of varied sizes. Images were taken by the Department of Sustainable Bioproducts at 

Mississippi State University by using a high-definition commodity camera. The surface of 

the boards also was photographed in several different contexts in order to improve model 

robustness (Fig. 1). A total of 921 high-definition images were obtained.  

 

 

 

 

 

 

 

 

Fig. 1. Southern yellow pine boards with knots in two different contexts, namely, in the field (left) 
and as an isolated image with white background (right).   

 

Methods 
Data annotation 

Image annotation is a crucial step for object detection. The main objective of 

annotation is to label the position and defect class (type of defect) on the boards. For this 

stage, the work was carried out with open-source software written in Python 3.6.7 called 

labelImg (Tzutalin 2020). With this algorithm and knowledge, it was possible to select, 

locate, and label areas on the image that contained knots. As previously mentioned, images 

with no defects were not annotated but were included in the neural network training. The 

labeling algorithm allows exporting location of knots in .txt format, which is the format 

needed by YoloV3. The .txt format contained the defect class and pixel coordinates of the 

knots in the image. The labeling specifications included: a) one row per defect object, b) 

each row consisted of the data: class, x_center, y_center, width, height of a box that 

enclosed the defect; c) box coordinates were normalized between 0 – 1; and d) class number 

was zero-indexed, i.e., started from 0 (zero).  
 

Detection model 

 The Yolo (You only look once) CNN-based object detection algorithm is an 

architecture designed for real-time image processing. The first release of the algorithm was 

made by Redmon et al. (2015) in which the authors framed object detection as a regression 

problem for identifying spatially separated bounding boxes and associated class 

probabilities. The second Yolo release was made by Redmon and Farhadi (2016) that 

included a series of improvements, namely batch normalization, high resolution classifier, 

convolutional layers with bounding boxes, dimension clusters, direct location prediction, 

fine-grained features, and multi-scale training. The YoloV3 architecture was released by 

Redmon and Farhadi (2018) with a feature extractor called Darknet-53 that uses 53 

convolutional layers and adds the idea of skipped connection from ResNet architecture (He 

et al. 2015). Darknet-53 is much more powerful than Darknet-19 but is still more efficient 

than ResNet-101or ResNet-152 backbones (Redmon and Farhadi 2016). It also accepts 
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images with different sizes. YOLOv3 uses multi-scale prediction and multiple scale feature 

maps, which leads to better accuracy for target detection. Figure 2 shows the structure of 

the architecture.  

 

 
Fig. 2. YoloV3 detailed architecture. Adapted from Redmon and Farhadi (2018) and Mao et al. 
(2019). 
 

By default, each YoloV3 layer has 255 outputs filters: 85 values per anchor (4 box 

coordinates + 1 object confidence + 80 class confidences, times 3 anchors). The settings to 

filters were updated, = [5 + n] *3, which resulted in 18 filters. The entire network was 

trained from scratch; i.e., pre-trained weights were not employed. A standard 608 pixels x 

608 pixels input image was used, with standard anchor boxes ([116 x 90, 156 x 198, 373 x 

326], [30 x 61, 62 x 45, 59 x 119], [10 x 13, 16 x 30, 33 x 23] in order to detect large, 

medium, and small objects in the images, respectively. The object threshold was set to 0.5. 
 

Experimental evaluation 

The training was performed on a CentOS 7 Linux computer with an Intel i9-9920X 

CPU @3.5 GHz accelerated by 4x Nvidia RTX 2080Ti with each GPU having 4,352 

CUDA cores and 11Gb of memory. The YoloV3 CNN was implemented in PyTorch 1.5.1 

and torchvision 0.6.1. The implementation was derived from Jocher et al. (2020). A batch 

size of 96 was used, with an adaptive momentum estimation with initial learning rate of 

0.01 to iteratively optimize the generalized intersection-over-union cost function as 

described in Rezatofighi et al. (2019). The weights and biases were updated through the 

backpropagation algorithm with a maximum number of batches of 4000 over 1500 epochs. 

Training required approximately 12 hours on 737 training images. The model was validated 

on 184 images. Data augmentation was performed on-the-fly by rotating and translating 

images. The CNN-based object detection quality metrics included precision, recall, F1-

score, precision-recall curve, and average precision at 0.5 intersection-over-union (IOU) 

threshold. The precision x recall curve is a method to evaluate the performance of an object 

detection. A detector is considered satisfactory if its precision stays high as recall increases, 

which means that if the threshold varies, the precision and recall will still be high. The 

metrics are given by Eq. 1, 2, 3, and 4. 
  

Precision = 
TP

TP + FP
                                                                                        (1) 

  

Recall = 
TP

TP + FN
                                                                                              (2) 
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F1-Score = 2 ∗  
Precision * Recall

Precision + Recall
                                                                  (3) 

 

where TP is the true positive, correct detection (detection with IOU ≥ threshold, FP is the 

false positive, a wrong detection (detection with IOU ≤ threshold, and FN is the false 

negative, a ground truth not detected.  

The intersection-over-union (IOU) function is the ratio of the area of intersection 

to the area of union between detected and the ground-truth bounding box(es). Our knot 

detection system was considered to work satisfactorily if: 

 

IOU = 
Area of overlap

Area of Union
 > 0.5                                                                            (4) 

 
Better understanding is provided in Fig. 3.  

 

 
(a) 

(b) (c) 
 

Fig. 3. Intersection-over-union for knots detection. (a) Ground-truth bounding box and detected 
knot bounding box. (b) intersection of boxes, and (c) union of boxes 

 
 Three videos were recorded of knotted boards and the YoloV3 model was applied 

the trained with them. The video files were recorded by commodity smartphones (the 

authors have no access to sawmill quality scanning equipment). The videos had a frame 

rate of 30 frames per second, a frame width of 1920 pixels, and frame height of 1080 pixels. 

Lopes et al. (2020a; 2020b).  
 
 
RESULTS AND DISCUSSION 
 

 The generalized intersection-over-union loss function of the object detection 

algorithm is plotted for 1500 epochs (Fig. 4). The loss function is defined as the difference 

between the output and target variable overlapping and is a good indicator of the quality of 

a trained model. The training was done until the cost function remained below 1.0 to ensure 

model convergence. The loss values are initially very large and slowly decay to a somewhat 

constant value below 1.0 from epoch 1200 and onward.  

Ground-truth 

Detection 
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Fig. 4. Loss function for YoloV3 trained on wood surface knots for 1500 epochs 

 

The results of knots detection quality evaluation are presented in Table 1 and 

Precision x Recall curve can be seen in Fig. 5. 

 

Table 1. Knots Detection Metrics 

# of 
images 

# of 
knots 

Avg. # of 
knots per 

image 

# of 
knots 
detect 

# of not knots 
detected 

P. R. 
F1-

score 
AP 

185 427 2.3 351 46 0.77 0.79 0.78 0.8 

# = Number; Avg = Average; P. = Precision; R. = Recall; AP = Average precision  
 

 
Fig. 5. Precision x recall curve 
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 The quality metrics indicated acceptable results, since the number of false positives 

and false negatives were relatively low. In general, the YoloV3 model recognized and 

accurately detected small, medium, and large knots sizes. In some cases, the algorithm did 

not correctly identify knots on the surface that were easily observed by the human eye. 

This may be likely explained by the low number of training images used in the CNN 

training. Even though the dataset was augmented, commonly used object detectors use 

more than 3,500 training images (Lin et al. 2015). In comparison, the present dataset had 

less than 1,000 images.  

Wane was not labeled for this study. Usually, wane is found lengthwise on a board. 

It was observed that the ground-truth bounding box spanned almost the whole width of the 

board and on the length of the board. In other words, bounding boxes drawn for wane 

included large portions of clear wood. A better approach based on semantic segmentation 

is being developed to optimize this issue so that it is possible to label the image pixel-wise, 

which would preserve the precise shape of each defect and could include both knots and 

wane for detection.  

The YoloV3 model, on average, takes about 5 seconds to analyze all 184 validation 

images and 427 knots present. In comparison to previous works, Cavalin et al. (2006) used 

multi-layer perceptron and support vector machines to detect wood defects, but that 

approach did not account for how fast their classifier was or if it was possible to implement 

it in real-time. Schmoldt et al. (1997) used CT scans to classify logs defects and reported 

that it took 25s for analysis of a single 256 pixels x 256 pixels CT slice. With advanced 

technology, particularly, powerful GPU processing, the present methodology decreased 

knots detection speed by a factor of 5.  

Figure 6 shows several examples of the present automated knot detection. 
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PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Verly Lopes et al. (2020). “Detect wood knots with AI,” BioResources 15(4), 9351-9361.  9359 

  

Fig. 6. Examples of knots detection using our implementation of YoloV3 

 
  The authors plan to continue developing machine-learning approaches for 

supporting the wood science field. To that end, the plan is to label defects pixel-wise so 

that many types of defects can be analyzed. For future research, it is expected that semantic 

segmentation will provide a sufficient foundation for accurate and fast defect detection, 

identification of type of defect, and accurate estimation of defect surface area.   

 
 
CONCLUSIONS 
 

1. In this study, a deep learning approach for knot detection was presented based on 

YoloV3 convolutional neural network architecture. The Darknet-53 was trained from 

scratch on a custom image dataset. The model proved to be remarkably fast and 

accurate when identifying small, medium, and large knots. Results indicated an overall 

detection speed of 0.0102 seconds per knot.  
 

2. A training from scratch strategy was used to train a limited number of images with 

resulting average precision of 0.8, precision of 0.77, recall of 0.79, and F1-Score of 

0.78. 
 

3. Identification and location of knots can increase a sawmill’s overall yield. Automatic 

knot detection using state-of-the-art deep learning methods is a starting point for 

removing poor quality products from processing lines. With a trained AI model, 

sawmills can utilize this type of technology with reduced cost. Previously studied 

methods are accurate; however they are expensive and slow, which represents a 

crippling bottleneck for real-world applications. To that end, the present approach was 

5 times faster than previous literature. 
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Data Sharing 
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