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Lignin biomass is an important renewable woody material that can be 
converted into high value-added products through physical and chemical 
reactions, such as paper strength additives. In this study, a cationic 
methacryloyloxyethyl trimethylammonium chloride monomer (DMC) and 
anionic acrylic monomer (AA) were grafted onto softwood kraft lignin 
through free radical polymerization to prepare an amphoteric lignin 
copolymer. Fourier transform infrared spectroscopy (FTIR), proton nuclear 
magnetic resonance spectroscopy (1H NMR), elemental analysis, and 
charge density analysis methods confirmed that the anionic and cationic 
monomers were successfully grafted onto the lignin. The grafting ratios of 
AA and DMC monomer in the lignin-DMC-AA copolymer were 62.4% and 
51.3%, respectively. The application of lignin-DMC-AA copolymer as a 
paper additive for enhancing the physical properties of paper sheets was 
studied in the papermaking industry. The results indicated that the 
copolymer had a maximum increase in physical strength at around 2 wt% 
lignin-DMC-AA. The amount absorbed on the fibers was 18.5 mg/g, and 
the retention of the lignin-DMC-AA copolymer was over 90%. 
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INTRODUCTION 
 

Lignin is a heterogeneous and amorphous polymer that constitutes a large part of 

the cell wall, making it the second largest biomass after cellulose (Saito et al. 2012; Marino 

et al. 2016). Lignin accounts for 15 to 35% of the cell walls in terrestrial plants, which is 

generally considered a waste for low-value applications (Kai et al. 2016; Banu et al. 2019). 

Some chemical modifications can alter the properties of lignin and make it have high value 

utilization to fully realize its potential (Fang et al. 2010; Gao et al. 2019; Hajirahimkhan 

et al. 2019). These chemical modifications give lignin better miscibility over other 

polymeric matrices, thus improving the performance of lignin-based composites (Wang et 

al. 2011; Thakur et al. 2014; Liu et al. 2015). 

Low-cost lignin has high carbon content, high thermal stability, biodegradability 

(Triwulandari et al. 2019), antioxidant activity, and favorable stiffness (Ten and Vermerris 

2015; Thakur and Thakur 2015; Li et al. 2019b). These attributes have attracted a large 

number of researchers. Lignin-based resin was prepared with kraft lignin and glycerol to 

replace formaldehyde-based adhesives (Li et al. 2018). Meister et al. (2010) successfully 
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prepared the lignin graft copolymer, which had a good effect as a mud thinner for drilling 

operations. Cai et al. (2017) successfully synthesized amphoteric lignin surfactant (SLQA) 

through the quaternization of sulfonated lignin, which could enhance the enzymatic 

hydrolysis of lignocellulose. Wang et al. (2016) developed a soda lignin-acrylamide 

copolymer, which can significantly enhance the physical properties of paper. Previously, 

the effects of three different lignin polymers as a paper dry-strength additive on pulp 

properties were studied (Liu et al. 2018). However, the amount absorbed on the fibers and 

the retention of lignin copolymer have not yet been studied. Moreover, it is rare to use 

lignin-based materials as paper additives in the paper industry according to current research 

(Wang et al. 2016). 

In this study, amphoteric lignin copolymer was prepared by free radical 

polymerization using softwood kraft lignin as raw material, which can be used to improve 

the paper’s physical properties as a strengthening agent. The main objectives were as 

follows: (1) production of an amphoteric lignin copolymer and analysis characterization 

through various analytical techniques; (2) Analysis of amphoteric lignin copolymer as a 

strengthening agent to improve the paper’s physical properties. Additionally, the physical 

properties of the paper sheets were determined to measure the tensile, tear, and burst 

indices. The absorption of the amphoteric lignin copolymer on the pulp fibers was 

measured by a polyelectrolyte titration method after retention experiments for doses of 0.5 

to 3% amphoteric lignin copolymer relative to pulp. 

 
 
EXPERIMENTAL 
 

Materials 
Kraft pulping black liquor was used to produce softwood kraft lignin by an acid 

precipitation process (Kim 2015). Methacryloxyethyltrimethyl ammonium chloride 

(DMC) and acrylic acid (AA) were used as the grafting monomer as received from Sigma-

Aldrich (Beijing, China). Potassium persulfate (KPS) as an initiator reagent was purchased 

from Sigma-Aldrich and used without further purification. Anionic polyvinyl sulfate 

(PVSK) and cationic polydiallyldimethylammonium chloride (PDADMAC) (Macklin, 

Shanghai, China) standard samples were diluted in ultrapure water. The alkaline peroxide 

mechanical pulp (APMP) was obtained from Shandong Sun Paper Industry (Jining, China).  

 

Preparation of Amphoteric Lignin Copolymer  
The preparation of amphoteric lignin copolymer was completed using DMC and 

AA as monomers, according to the earlier method by Liu et al. (2018). Here, 1 g of lignin 

was dispersed in 40 mL of ultrapure water and stirred at 400 rpm. Then, NaOH solution 

(0.1 M) was used to adjust the pH of lignin solution to 11. The lignin solution was heated 

to 75 °C for 30 min, and then the pH was adjusted to 4 using sulfuric acid (0.1 M). Nitrogen 

was used for 30 min to remove oxygen from the solution, and a certain amount of KPS was 

added as an initiator. After 10 min, the DMC monomer was added dropwise to the solution, 

and then the AA monomer was added to the solution. The copolymerization reaction of 

lignin with anionic and cationic monomers was carried out at 75 °C for 3 h. Next, the lignin 

solution was cooled, and ethanol/water (80 vol%) was added to precipitate the amphoteric 

lignin copolymer. The precipitate was washed twice with ethanol/water (80 vol%) and 

dried at 105 °C to produce a purified amphoteric lignin copolymer (lignin-DMC-AA 

copolymer). 
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Analytical Methods 
FTIR analysis 

The lignin and lignin-DMC-AA copolymer samples were investigated using a 

Fourier transform infrared spectrophotometer (FTIR, Bruker VERTEX70; Bruker, 

Karlsruhe, Germany). Here, a 5 mg sample of lignin and lignin-DMC-AA copolymer was 

used and recorded with 32 scans in transmittance mode. 
 

1H NMR analysis 

The proton nuclear magnetic resonance (1H-NMR) spectroscopy analysis of lignin 

and lignin-DMC-AA copolymer samples used a nuclear magnetic resonance (NMR) 

spectrometer (Bruker AVANCE II 400 MHz; Bruker, Karlsruhe, Germany). 

Approximately 10 mg of the lignin and lignin-DMC-AA copolymer sample were dissolved 

in D2O and recorded over 32 scans. 

 

Thermal analysis 

The thermal analysis of lignin and lignin-DMC-AA copolymer samples was 

performed using a thermogravimetric analyzer (TGA Q50; TA, New Castle, DE, USA). 

Samples of 3 to 10 mg lignin and lignin-DMC-AA copolymer were studied using nitrogen 

as protective gas from 50 to 600 °C at 10 °C/min. 

 

Elemental analysis 

Elemental analysis of lignin and lignin-DMC-AA copolymer samples were 

measured using an elemental analyzer (Vario EL III; Elementar, Hanau, Germany). Two 

to five samples of lignin and lignin-DMC-AA copolymer samples were used while the 

detection temperature was raised to 1150 °C. 

 

Charge density analysis 

Approximately 20 mg of lignin and lignin-DMC-AA copolymer samples were 

dissolved in a certain amount of ultra-pure water, and ultrasonicated at 30 °C for 1 h. A 

particle charge detector (PCD 04; Mutek, Berlin, Germany) was performed to measure the 

charge density of the lignin solution with 0.001 M PDADMAC and PVSK standard 

solutions. 

  

Molecular weight analysis 

Approximately 5 mg of lignin and lignin-DMC-AA copolymer samples were 

dissolved in NaNO3 solution (0.1 M) at 35 °C and continuously stirred at 500 rpm for 36 

h. Then, 0.2-µm nylon filters were used to filter the sample solutions, which was used to 

determine the lignin molecular weight by gel permeation chromatography (LC-20AD; 

Shimadzu, Tokyo, Japan). The chromatographic columns of PolyAnalytic PAA 203 and 

PAA 206 were used at 35 °C, while NaNO3 solution (0.1 M) was considered as the sample 

solvent and eluent. The flow rate of the sample solution was set to 0.50 mL/min. 

 

Grafting ratio 

The grafting ratio of lignin-DMC-AA copolymer sample was identified using Eq. 

1 according to the previous calculation method (Wang et al. 2015), 

Grafting ratio = (N / 14 × Mw(DMC)) / (100 - N / 14 × Mw(DMC)) × 100     (1) 
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where N is the nitrogen content of samples (wt%), and Mw (DMC) is the molecular weight 

of DMC (207.7 g/mol). 

The carboxylate group content of lignin-DMC-AA copolymer sample was 

measured using an automatic potentiometer (905 Titrado; Metrohm, Berne, Switzerland). 

A sample of 1 g of lignin and lignin-DMC-AA copolymer was dissolved in 100 mL of 

ultrapure water and ultrasonicated for 30 min, and then the pH value of the sample solution 

was adjusted to 10.5. Finally, the sample solution was titrated dropwise with the cationic 

surfactant to measure the carboxylate content of the sample. The grafting ratio was 

calculated using Eq. 2 (Bayazeed et al. 1989), 

Grafting ratio = (C × Mw(AA)) / (1 - C × Mw(AA) ) × 100                 (2) 

where C is the total carboxylate group content (mmol/g), and Mw (AA) is the molecular 

weight of AA (72 g/mol). 

 

Performance Assessments of Amphoteric Lignin Copolymer as 
Strengthening Agent  

The performance of lignin-DMC-AA copolymers as a strengthening additive was 

evaluated using APMP (a chemi-mechanical pulp used in making most kinds of paper). In 

this experiment, the lignin-DMC-AA copolymer sample was first dissolved in ultrapure 

water by stirring the sample for 2 h at 30 °C. From 0 to 3 wt% dosage of lignin-DMC-AA 

copolymer were then added to the 1% pulp slurry, respectively. Before formation of the 

paper sheets, the pulp slurry containing lignin-DMC-AA copolymer was continuously 

stirred at 1500 rpm for 5 min. Formed paper sheets were dried at 97 °C for 7 min. Paper 

sheets were tested for tensile and tear indices with a grammage of 60 g/m2; burst index and 

the internal bond strength were tested with a grammage of 100 g/m2. Before testing the 

physical strength properties of the paper, the paper sheet was held at 23 °C and 50% 

humidity for 24 h (Wang et al. 2016). After drying, the tensile, burst, and tear strengths, 

brightness, as well as the internal bonding strength of the handsheets, were measured 

according to the TAPPI T494 om-88 (1988), TAPPI T403 om-91 (1991), TAPPI T414 om-

88 (1988), TAPPI T452 om-92 (1992), and TAPPI T569 om-14 (1996) standards, 

respectively. All data described here were the average value of three repetitions. 

 

Absorption of Lignin-DMC-AA Copolymer on the Pulp Fibers 
For the absorption measurements, 5 g of pulp was dispersed in water at high speed, 

and 0 to 3% lignin-DMC-AA copolymer was added for production of paper sheets. The 

pulp and the lignin-DMC-AA copolymer (total volume 1 L) interacted with each other for 

15 min under stirring conditions and then underwent dehydration treatment. After 

dehydration, the filtrate was titrated with PCD for charge titration. The content of lignin-

DMC-AA copolymer in the filtrate was calculated according to an appropriate standard 

curve. These were created according to the work on the cationic xylan copolymer 

(Deutschle et al. 2014). 

 

Lignin-DMC-AA Copolymer Retention 
The amount of nitrogen in the paper with different amounts of lignin polymer was 

determined via elemental analysis. The lignin-DMC-AA copolymer retention was 

calculated according to Eq. 3, 

Retention = N × M / (No × Mo) × 100%                      (3) 
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where N is the nitrogen content of paper (wt%), No is the nitrogen content of lignin-DMC-

AA copolymer (wt%), M is the quality of the paper (g), and Mo is the addition of the lignin-

DMC-AA copolymer (g). 

 

 
RESULTS AND DISCUSSION 
 
Preparation of the Amphoteric Lignin Copolymer 

The reaction mechanisms of lignin, DMC, and AA are shown in Fig. 1. The KPS 

was added to the lignin solution as an initiator, resulting in lignin free radicals on the 

phenolic hydroxyl group. Moreover, the alkenyl groups of the DMC and AA monomers 

have high activity and can generate monomer-free radicals.  
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Fig. 1. Mechanism of the copolymerization of lignin with DMC and AA monomers (a: lignin-DMC-
AA; b: PDMC; c: PAA; and d: PDMC-AA) 
 

These active free radicals become receptors for lignin free radicals, leading to the 

chain initiation of the amphoteric lignin copolymers (lignin-DMC-AA) (Wang et al. 2015). 

Furthermore, the above reaction was accompanied by side reactions to produce 

homopolymers of PDMC, PAA, and PDMC-AA. 
 

FTIR Analysis 
The FTIR spectra of the lignin and amphoteric lignin copolymer are shown in Fig. 

2. The strong peak at 3440 cm-1 was assigned to the O–H of the lignin and amphoteric 

lignin copolymer (Yu et al. 2016; Bian et al. 2018; Li et al. 2019a). The three absorption 

peaks at 1612 cm-1, 1514 cm-1, and 1456 cm-1 are attributed to the aromatic skeletal 

vibrations from lignin and amphoteric lignin copolymer (Santos et al. 2012; Zhang et al. 

2017). The peak at 2938 cm-1 originated from the C–H stretching vibration (Konduri et al. 

2015; Sarma et al. 2018). The absorption bands at 1219 cm-1 and 1121 cm-1 are assigned 

to the C–O and C–H stretching of the guaiacyl unit (Kong et al. 2015). The two peaks at 

1716 cm-1 and 961 cm-1 were attributed to the C＝O (DMC and AA) and quaternary 

ammonium group (DMC), respectively (Wang et al. 2015). These peaks indicated that the 

amphoteric lignin copolymer had been successfully prepared. 
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Fig. 2. FTIR spectra of lignin and amphoteric lignin copolymer (lignin-DMC-AA) 
 
1H NMR Analysis 

The 1H NMR spectra of the lignin and amphoteric lignin copolymer are shown in 

Fig. 3.  
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Fig. 3. B) 1H-NMR spectra of amphoteric lignin copolymer (lignin-DMC-AA) 

 

The peaks at 6.0 to 7.0 ppm are mainly due to aromatic protons, and the peaks at 

5.1 to 5.9 ppm are due to aliphatic protons. The peaks at 3.0 to 4.0 ppm originate from the 

methoxyl groups of lignin and amphoteric lignin copolymer (Li et al. 2017); the peak at 

3.2 ppm is attributed to the -CH2 structure from lignin and amphoteric lignin copolymer. 

The peaks appearing from 0.9 to 1.1 ppm originate from the -CH3 structure from lignin and 

amphoteric lignin copolymer (Nagy et al. 2010). The peaks at 4.5 to 5.0 ppm are attributed 

to the solvent of the lignin and amphoteric lignin copolymer (D2O). 

Relative to the spectrum of lignin, the characteristic signal at 3.4 ppm can be 

attributed to -N+(CH3)3 protons, and the characteristic signals near 3.9 ppm and 4.3 ppm 

are assigned to the methylene proton (-O-CH2-CH2-) from the DMC monomer of the 

amphoteric lignin copolymer (Li et al. 2011). The peaks from 1.4 to 2.2 ppm originate from 

C-H, and the peak at 2.6 ppm is assigned to the hydroxyl end from the AA monomer of the 

amphoteric lignin copolymer (Witono et al. 2013). The above results indicated that the 

amphoteric lignin copolymer was prepared. 

 

Thermogravimetric Analysis 
The lignin and lignin-DMC-AA copolymer samples were analyzed using nitrogen 

as protective gas, and results are shown in Fig. 4. The weight of lignin and lignin-DMC-

AA copolymer samples decreased with increased temperature from 50 to 100 °C, which 

was due to the loss of moisture (Ünlü et al. 2015). The thermal characteristics of lignin and 

lignin-DMC-AA copolymer were analyzed. The main degradation temperature of lignin 

weight ranged from 250 to 500 °C. The temperature range of amphoteric lignin copolymer 

f1 (ppm) 
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samples was 200 to 500 °C. The maximum degradation rate of lignin and amphoteric lignin 

copolymer was slightly different, which is represented by Tmax (maximum weight loss) at 

385 and 397 °C, respectively. The lignin remained approximately 40 wt%; lignin-DMC-

AA copolymer remained approximately 30 wt%. The above analysis showed that some 

chemical modifications lead to a certain degree of reduction in the thermal stability of the 

final product, which was contributed to the degradation of the new access group described 

in previous studies (Kong et al. 2015; Baniasad and Ghorbani 2016; Liu et al. 2018). 
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Fig. 4. Weight loss and weight loss rate of lignin and lignin-DMC-AA copolymer 

 

Properties of Lignin and Lignin-DMC-AA Copolymer 
The properties of the lignin and lignin-DMC-AA copolymer are shown in Table 1.  

 

Table 1. Properties of Lignin and Lignin-DMC-AA Copolymer 

Samples Lignin Lignin-DMC-AA 

C (wt%) 63.51 55.34 

H (wt%) 6.21 6.08 

O (wt%) 30.57 26.32 

N (wt%) 0.004 2.591 

Molecular formula C9H10.56O3.25 C9H11.86O3.21N0.36 

DMC (Graft ratio (%)) -- 62.44 

AA (Graft ratio (%)) -- 51.28 

Charge density (mmol/g) -0.002 +0.946 

Mn (g/mol) 1.725  104 3.647  105 

Mw (g/mol) 2.600  104 4.256  105 

Mw/Mn 1.51 1.17 
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The charge densities of the lignin and lignin-DMC-AA copolymer dramatically 

increased from -0.002 mmol/g to +0.946 mmol/g. The grafting ratios of AA and DMC in 

the lignin-DMC-AA copolymer were 62.4% and 51.3%, respectively. Compared with 

unmodified lignin, lignin-DMC-AA copolymer had slightly higher weight average 

molecular weight (Mw) and number average molecular weight (Mn). The polydispersity 

(Mw/Mn) of lignin and lignin-DMC-AA copolymer showed the change of molecular weight 

distribution. In addition, the N content of the lignin-DMC-AA copolymer remarkably 

increased from 0.004 to 2.591wt% due to the amide group grafted onto the lignin. 

Therefore, the above analysis indicated that the copolymerization of DMC and AA 

monomer and lignin successfully changed the elemental content and charge density of 

lignin. 

 

Application of Lignin-DMC-AA Copolymer as a Strengthening Agent in 
Papermaking 

The results in Fig. 5 indicate that the lignin-DMC-AA copolymer can act as strength 

additive to improve the physical properties of paper sheets. As the dosage of lignin-DMC-

AA copolymer was increased, the tear, tensile, and burst indices increased remarkably. The 

increase in the paper strength was attributed to the formation of H bonding between the 

lignin-DMC-AA copolymer and cellulose fibers (Wang et al. 2016). At 2 wt% dosage of 

the lignin-DMC-AA copolymer, the maximum increases of 48.8%, 71.4%, and 65.1%, 

were obtained for burst, tensile, and tear indices, respectively. However, when the dosage 

of lignin-DMC-AA copolymer was further increased, the strength of the paper sheet 

decreased slightly. This decrease was due to an excess of lignin-DMC-AA copolymer, 

which lowered the retention of the lignin-DMC-AA copolymer on the fibers. This was due 

to the total amount of fiber remaining constant, while the positive and negative ions of 

lignin-DMC-AA copolymer were fixed to the surface of the fiber by adsorption, which was 

limited by the specific surface area of the fiber (Kong et al. 2018).  
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Fig. 5. Paper properties as function of lignin-DMC-AA copolymer dose 
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The increase in the physical strength of paper sheets was attributed to the formation 

of an ionic bond between the amide groups of lignin-DMC-AA copolymer and negative 

charge of pulp fibers. It was also reported that the hydrogen bonding can be formed 

between the OH groups of starch and carboxyl (COOH) groups of carboxymethyl cellulose 

(Tavares et al. 2020). Here, it would also be some hydrogen bonding development between 

the COO- groups of lignin-DMC-AA copolymer and OH groups of pulp fibers, which 

prompted the increase of internal bonding strength (see Table 2) and connections between 

fibers. The bonding development of lignin-DMC-AA copolymer and pulp fibers prompted 

the adsorption of lignin-DMC-AA copolymer on fibers. The lignin-DMC-AA copolymers 

were adsorbed between adjacent fibers (Fig. 6), such that the DMC and AA segments of 

the lignin-DMC-AA copolymer would bridge each other and remarkably enhance the 

bonding between the fibers (Wang et al. 2016). 
 

 
 

Fig. 6. Bridging of fibers by lignin-DMC-AA copolymer 

 

Table 2 shows the changes in the internal bond strength and brightness of paper 

sheets using 2 wt% lignin and lignin-DMC-AA copolymer as a paper strengthening agent. 

The results indicated that the internal binding strengths of lignin-DMC-AA product 

increased by 64.9%, compared with that of no additives and only using lignin as additives, 

which was due to the H bonds and ionic bonds generating between the lignin-DMC-AA 

copolymer and cellulose fibers. The brightness of paper without additives is 76 % ISO, and 

the brightness of paper at additive dosages 2.0% drops slightly by 1 % ISO, which would 

give a smaller decrease in the brightness of corrugated paper and cardboard paper. 

 

Table 2. Internal Bond Strength and Brightness of the Paper 

Samples No 
additives 

Lignin Lignin-DMC-AA copolymer 

Internal bonding strength (J/m2) 180 185 305 

Brightness (% ISO) 76.0 75.6 75.0 

 

Absorption of Lignin-DMC-AA Copolymer on the Pulp Fibers 
The amount of absorbed lignin-DMC-AA copolymer on the pulp fibers was 

calculated (mg/g; Fig. 7). Relative to the amount of additives, the absorption behavior of 
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the fiber and the strength characteristics of the paper (Fig. 5) demonstrated the same 

increasing trend when the dosage of lignin-DMC-AA copolymer increased. With 

increasing amount of absorbed lignin-DMC-AA copolymer on the pulp fibers, the amount 

absorbed on the fibers reached a maximum of 18.5 mg/g at 2 wt% dosage, while the 

increase in paper strength plateaued. This was because the total amount of fiber remained 

constant, while the positive and negative ions of lignin-DMC-AA copolymer were fixed to 

the surface of the fiber by adsorption, which was limited by the specific surface area of the 

fiber (Kong et al. 2018).  

When the addition amount of lignin exceeds 2%, the increase in the cationic charge 

repulsion between the lignin polymers will result in a decrease in the amount of adsorption 

on the fiber. The ionic bond between the amide groups, negative charge of cellulose fibers, 

the hydrogen bonding development of lignin-DMC-AA copolymer, and negative charge of 

fibers balanced the electrostatic repulsion between the fiber and carboxyl group of lignin-

DMC-AA copolymer. 
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Fig. 7. Impact of lignin-DMC-AA copolymer dosage on fiber absorption  

 

Lignin-DMC-AA Copolymer Retention 
Figure 8 depicts the retention rate of paper on the lignin-DMC-AA copolymer 

sample, calculated as the total amount of lignin-DMC-AA copolymer added. When the 

dose of lignin-DMC-AA copolymer was less than 2%, the retention of lignin-DMC-AA 

copolymer was more than 90%. The lignin-DMC-AA copolymer retention continuously 

decreased with increasing dosage. Further increases up to 6% lignin-DMC-AA copolymer 

decreased the retention to 56%. When the dosage of the lignin-DMC-AA copolymer was 

near 1%, the retention of the lignin-DMC-AA copolymer sample was between 81% and 

98%. 
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Fig. 8. Influences of lignin-DMC-AA copolymer dosage on the lignin-DMC-AA copolymer retention 

 

 

CONCLUSIONS 
 

1. In this study, cationic monomer (DMC) and anionic monomer (AA) were grafted onto 

softwood kraft lignin by free radical polymerization to prepare an amphoteric lignin 

copolymer. 

2. The FTIR, 1H NMR, elemental analysis and charge density analysis methods confirmed 

that the anion and cation monomers were successfully grafted onto softwood kraft 

lignin.  

3. The grafting ratios of AA and DMC in the lignin-DMC-AA copolymer were 62.4% 

and 51.3%, respectively. The application of lignin-DMC-AA copolymer as a paper 

additive enhanced the product’s physical properties. At around 2wt% addition of the 

lignin-DMC-AA, the burst, tensile, and tear indices of paper increased by 48.8%, 

71.4%, and 65.1%, respectively  

4. The amount of the lignin-DMC-AA absorbed on the fibers was 18.5 mg/g, and its 

retention was over 90%. 
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