Prediction of the Thermal Conductivities of Wood Based on an Intelligent Algorithm

Shiyu Zhou,^{a,*} Xiaoxia Yang,^b Yandong Zhang,^b Xiaoping Liu,^b and Yucheng Zhou^b

For thermal comfort and energy-saving performance, a floor-heating method is superior to conventional heating modes, e.g., radiator, fan coil, etc. The floor-heating method has been developed to be a primary indoor heating form. Wood is the most common floor surface material. Due to the anisotropy of wood, it is difficult to obtain a general theoretical formula for its thermal physical properties. In this paper, intelligent algorithms were adopted to predict thermal conductivities of wood. First, the study elaborated frequently used testing methods of thermal conductivity. Next, 130 types of common wood species were measured to form a database of thermal properties. With this database, intelligent algorithms were used to make predictions. For the thermal conductivity predictions that were conducted with support vector machine, the degree of fit between the predicted results and the measured results was not less than 0.87 (k-fold validation). This study validated the feasibility of the usage of the intelligent algorithm for the research and prediction of the thermal conductivities of wood.

Keywords: Wood; Floor heating; Support Vector machine; Thermal conductivity

Contact information: a: School of Thermal Engineering, Shandong Jianzhu University, Jinan, Shandong 250101 China; b: School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan, Shandong 250101 China; *Corresponding author: zhou-1sy@163.com

INTRODUCTION

Since the supplying water temperature of a floor heating system is lower than that of a conventional heating system, such as a radiator, its energy consumption can be provided by renewable energies, e.g., solar energy, air source, and shallow geothermal energy. This characteristic allows floor heating systems to save greater amounts of energy, leading to its popularity. The study by Márquez et al. (2017) compared and analyzed the heating effects of different end forms of heating systems, *i.e.*, fan-coil, floor heating, and a combination of the two. The results showed that a floor heating system is superior in terms of both energy consumption and indoor comfort. Zhou and He (2015) conducted experiments on wooden floor heating systems with different heat storage materials and different heating pipes. Research by Shin et al. (2015) showed that the floor surface temperature distribution of oak wood was more even than other covering panels, such as linoleum, which means that wooden surfaces can provide a more comfortable indoor heating environment. The heating performance of wooden floors is closely related to the thermal properties of wood. The recent studies about this theme have concentrated on the thermal conductivity of wood. The publications have been primarily divided into theoretical studies and experimental studies:

1) Theoretical studies include model formulas and empirical formulas, *e.g.*, calculation models of the basic structural units of wood. Research involving the calculation

model of the effective thermal conductivity of wood has gradually developed from the earlier empirical formula to the calculation model of the basic structural units of wood. For example, in the study conducted by Thunman and Leckner (2002), measurable parameters were employed, *e.g.*, density, moisture content, and shrinkage, to calculate the effective thermal conductivity of wood. They also developed a calculation model of the effective thermal conductivity at different combustion stages. A study by Guo *et al.* (2013) was based on the linear heat source model, which numerically calculated the effective thermal conductivity and specific heat capacity of bulk wood particles by the least square method. According to the experimental and numerical results, the empirical relationships between the effective thermal conductivity of wood particles and the water content, as well as the porosity were obtained. The results showed that the thermal conductivity had nothing to do with the size of the wood particles. Meanwhile, the empirical relationship between the specific heat capacity and the water content was obtained.

2) Experimental studies have been primarily conducted at the macroscale and microstructural levels. At the macroscale level, the studies primarily have concentrated on the effective thermal conductivity (neglecting the wood structure and composition). Wood is a typical porous material, and the heat transfer process in wood is the result of the heat transfer in the solid, liquid, and air phases that are present in the wood. Therefore, the thermal conductivity of porous materials such as wood is usually defined as an effective thermal conductivity or an apparent thermal conductivity. At the microscale level, the relevant studies have extended from the effective thermal conductivity to the real thermal conductivity. These studies have concentrated on the thermal properties of wood elements, such as the thermal conductivity of the cell walls. The study by Vay et al. (2013), focused on the heat conductivity properties of wood from a cellular view via scanning thermal microscopy (SThM). It was found that heat conductibility along the axis direction of the wood cell was higher than that of the cross-section direction. Fan et al. (2006) established a fractal dimension model of the effective thermal conductivity of horizontal grain wood, which was validated with experiments conducted via an improved transient plane source measurement method. Afterwards, Lagüela et al. (2015) measured the axial and radial heat conductivity of different wood specimens *via* the hot-disk transient technique. Their study demonstrated that the heat transfer rate was greatly affected by the direction of the wood grain. Since the measurements were conducted while the wood was in the drying state, moisture percentage effects were not considered.

In this study, 130 wood specimens, belonging to different families, were tested with a thermal constant analyzer in order to measure their thermal conductivities. Then, an intelligent model was established using support vector machines to predict the thermal conductivities of the tested wood specimens.

EXPERIMENTAL

Measuring Equipment and Theory

Experimental apparatus

The experiment was conducted with a thermal constant analyzer (TPS2200) produced by Hot Disk located in Gothenburg, Sweden, as shown in Fig. 1a. The analyzer can measure the volume specific heat, thermal conductivity, and thermal diffusion coefficient of different materials, *e.g.*, metal, wood, plastic, *etc.* Since there is a mathematical relationship between the thermal conductivity and thermal diffusion

coefficient, the two parameters can be measured with the same probe, as shown in Fig. 1b. The device is also equipped with a vessel for testing heat capacity, which is not figured in the following text.

(a) Thermal constant analyzer (TPS2200)

(b) Polyimide coated probe

Fig. 1. Experimental apparatus

Transient plane source method

The thermal conductivity and thermal diffusion coefficient were determined based on the transient plane source (TPS) method. Figure 2 is the test sketch map, and as shown, the probe was clamped above and below the tested specimen.

Fig. 2. Sketch map of the thermal property measurement testing procedure

The specimens were processed into two parts with the same square shape prior to testing. As depicted in He (2005), the temperature distribution of the probe along with time and space can be expressed according to Eq. 1,

$$T(\vec{r},t) = T_0 + \int_0^t \int_{V'} \frac{\varrho(\vec{\epsilon},t')}{\rho c} \times \frac{1}{\left[4\pi\alpha(t-t')\right]^{\frac{3}{2}}} \times exp\left(-\frac{(\vec{r}-\vec{\epsilon})^2}{4\alpha(t-t')}\right) d^3\vec{\epsilon}dt'$$
(1)

where *r* is the radius, *t* is the time, $Q = Q(\vec{r}, t)$ is a function of space and time, *Q* is the power dissipation per unit volume $[J/(s \cdot m^3)]$, T_0 is the initial temperature, α is the thermal diffusion coefficient, ρ is the density, *c* is the thermal capacity, and *V*' is the heat source volume. Equation 1 can be simplified according to Eq. 2,

$$T(\vec{r},t) = T_0 + \frac{Q_0/\rho c}{(4\pi\alpha t)^{\frac{3}{2}}} exp\left(-\frac{(\vec{r}-\vec{r}_0)^2}{4\alpha t}\right)$$
(2)

where Q_0 is the power of the heat source at the initial time $[J/(s \cdot m^3)]$. The mathematical relationship between the thermal conductivity and thermal diffusion coefficient is shown in Eq. 3,

$$\alpha = \lambda / \rho \tag{3}$$

As shown in Fig. 1b, the probe is a double helical structure and provides constant heating power. Therefore, the probe can be simplified into a series of isometric concentric circles for analysis purposes, in order to simplify the calculation. For a probe with a cylinder number of m and a maximum radius of a, the length of the metal wire is calculated according to Eq. 4,

$$L = \sum_{l=1}^{n} 2\pi l \frac{a}{m} = (m+1)\pi a$$
(4)

On the basis of the above simplified analysis (Eq. 4), one of the single rings was taken for analysis. In the cylindrical coordinate, the coordinates of any point on the sample surface can be expressed as $p=(r,\theta,z)$ and the coordinates of any point on the metal ring can be written as $q=(r', \theta', z')$. There is an equality relationship between the two coordinates, as demonstrated in Eq. 5,

$$(p-q)^{2} = r^{2} + r'^{2} + (z-z')^{2} - 2rr'\cos(\theta - \theta')$$
(5)

At the plane of z'=0 on the cylindrical coordinate grid, temperature variation of the sample surface can be written as Eq. 6,

$$T(r,\theta,z,t) - T_0 = \frac{2\pi b Q_0 e^{-(r^2 + b^2 + z^2)/(4\alpha t)}}{\rho c (4\pi \alpha t)^{\frac{3}{2}}} I_0\left(\frac{rb}{2\alpha t}\right)$$
(6)

where $I_0(x) = \frac{1}{2\pi} \int_0^{2\pi} e^{x\cos\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} e^{x\sin\theta} d\theta$ is the first type of correctional Bessel function with zero order and *b* is the radius of a single ring.

The output power of a single ring is supposed to be constant; therefore, when u(t') is the unit step function, the mathematical equation of the output power is shown in Eq. 7,

$$Q = Q_0 \delta(r' - b) \delta(z') u(t') \tag{7}$$

Integration should be made towards to the output power of a single ring and the probe power can be formulated according to Eq. 8,

$$Q = Q_0 \sum_{i=1}^m \delta\left(r' - \frac{ia}{m}\right) \delta(z') u(t')$$
(8)

Since the probe is defined at the surface of z'=0, the temperature rise equation of the probe surface can be written as Eq. 9,

$$\Delta T(r,\tau) = \int_0^\tau \frac{Q_0 I_0 \sum_{i=1}^m i^2 \exp\left(-(\frac{r^2}{a^2} + i^2/m^2\right)/(4\sigma^2))r}{2\pi^2 b m(m+1)\alpha\sigma^2} d\sigma$$
(9)

where $\sigma = \frac{\alpha(t-t)}{b^2}$ represents the integration variable and $\tau = \frac{\sqrt{\alpha t}}{b}$ is the dimensionless time constant. By searching for the mean values of $\Delta \overline{T}(r, \tau)$, the temperature rise function can be formulated as Eq. 10,

$$\Delta \overline{T}(\tau) = \frac{Q_0}{\pi^{3/2}b\lambda} D(\tau) \tag{10}$$

where $D(\tau)$ is given by Eq. 11,

$$D(\tau) = \frac{1}{m^2(m+1)^2} \int_0^{\tau} \frac{d\sigma}{\sigma^2} \sum_{k=1}^m k \sum_{l=1}^m l \exp(-(k^2 + l^2)/(4\sigma^2 m^2)) \times I_0(\frac{kl}{2m^2\sigma^2})$$
(11)

It can be seen from Eq. 10 that there is a proportional relationship between the average surface temperature rise function of the probe $\Delta \overline{T}(\tau)$ and function of $D(\tau)$. When using the thermal constant analyzer, the thermal conductivity (λ) can be computed with an equation between $\Delta \overline{T}(\tau)$ and $D(\tau)$ where $D(\tau)$ is the function of τ . Therefore, when variables such as the number of wire loops is fixed, the value of $D(\tau)$ can be computed with τ . In addition, $\Delta \overline{T}(\tau)$ is the function of τ , which can be calculated during the heating process. The computation theory can be clearly elaborated with the above formulations. However, there are also shortcomings that exist in the calculation process. It can be concluded from the above analysis that $D(\tau)$ cannot be directly obtained, because the value of τ is decided by the thermal diffusion coefficient (α), heating time (t), and probe radius (b), but the thermal diffusion coefficient is unknown, *i.e.*, it needs to be measured. Therefore, it can only be computed *via* the iteration method, which is a time-consuming and complicated process. Therefore, in subsequent work it is intended to adopt the intelligent method for data processing and prediction works.

Data Collection and Preprocessing

Experimental data collection

This experiment measured 130 species of wood, which belonged to 39 different families (Table S1). The experimental specimen samples were processed from the original specimens, whose size was 210 mm x 105 mm x 20 mm (length by width by thickness). Figure 3(a) shows the processed specimen for measuring thermal conductivity and thermal diffusion coefficient, which was 50 mm x 50 mm x 20 mm (length by width by thickness). These specimens had been oven-dry to remove moisture before each test. So the influence of moisture content in the measured values was avoided.

Since the study was conducted under the context that applying wood floor to the floor heating system, the measurement directions were defined as shown in Fig. 3(b), rather than the real axial and radial directions of the wood. In this study, the two directions were defined according to the pavement of wood floor, the direction perpendicular to the floor was defined as 'Perpendicular', while the direction parallel to the floor is defined as 'Parallel'. Thermal conductivities of the two directions were measured for the reason that 'Perpendicular' thermal conductivity affects the heat release to the room, which will determine the indoor temperature distribution, while 'Parallel' thermal conductivity affects the heat diffusion along the floor, which will determine the temperature uniformity of the floor.

(a) The processed specimens

(b) Definition of the two measurement directions

Fig. 3. Specimens for measuring the thermal conductivity

Data preprocessing

It was stated in the above section that the thermal properties of wood can be computed from the transient temperature data. Therefore, it is necessary to extract features that can reflect the temperature-changing characteristics. For the study of the thermal conductivity, transient temperature rise diagram is necessary, as shown in Fig. 4.

Fig. 4. Transient temperature rise diagram of anisotropy thermal conductivity (Monterey pine)

According to the suggestions from the Hot Disk company, the number of gathered temperature data points of each test should be approximately 200. As described by the study objective in the first section, intelligent models for predicting the thermal properties of wood needed to be constructed in this study. If 200 data points are all set as model inputs, then it is almost impossible to obtain a valid and efficient model. In order to consider the regularity of the temperature change, feature extraction should be conducted towards to the temperature data. As shown in Fig. 4, the temperature curve was similar to the water temperature variations in the thermal response test (TRT) (Gehlin 2002). The data processing method of TRT, *i.e.*, a logarithmic curve, was adopted for feature extraction, and the detailed linear fitting equation is shown as Eq. 12,

$$\Delta T = A \ln(t) + B \tag{12}$$

where ΔT is the temperature increment, [K]; *t* is the time, [s]; and *A* and *B* are the coefficients that were extracted from the temperature process data. The measured data of 130 kinds of wood were processed with the above formula (Eq. 12). All of the degrees of fitness (R²) values were larger than 0.98 and the partial fitting results are plotted in the following diagrams (as shown in Fig. 5).

Fig. 5. Transient temperature rise scatter diagrams of different specimens

Evaluation of the model accuracy should be calculated with several error indexes, *e.g.*, the mean relative error (*MRE*), the max relative error (*MAE*), the mean square error (*MSE*), and the absolute fraction of variance (\mathbb{R}^2). The formulations of the above error indexes are expressed as Eqs. 15 through 18, respectively.

$$MRE = \frac{1}{n} \sum_{i=1}^{n} \frac{|X_c(i) - X_r(i)|}{(X_{r-max} - X_{r-min})} \times 100\%$$
(15)

$$MAE = max_i \left(\frac{|X_c(i) - X_r(i)|}{(Xr - min_{r - max})} \times 100\% \right)$$
(16)

$$MSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \frac{|X_{c}(i) - X_{r}(i)|}{(X_{r-max} - X_{r-min})}} \times 100\%$$
(17)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (X_{c}(i) - X_{r}(i))^{2}}{\sum_{i=1}^{n} (X_{c}(i) - X_{c-mean})^{2}}$$
(18)

where X_c is the output of the model, X_{c-mean} is the average output of the model, X_r is the experimental value, X_{r-max} is the maximum experimental value, and X_{r-min} is the minimum experimental value.

There are usually two validation ways, *e.g.*, holdout validation and k-fold validation. For holdout validation: the data is split into training set and testing set, and then the model is trained and tested separately; while for k-fold validation, which is also called cycle validation. In the data preprocessing progress, the data is split into k subsets averagely. Then the training and testing processes are conducted for k times. In each time, one subset is defined as testing set for once, while the rest k-l subsets are defined as training set. In turn, every subset can be treated as testing set for once. The prediction errors of each time are averaged to denote the final validation errors of the model.

Intelligent Algorithms

Many kinds of intelligent algorithms have been developed for the prediction or classification work in the last decades, such as Artificial Neural Network (ANN), Support Vector Machines (SVM), Adaptive Network-based Fuzzy Inference System (ANFIS) and Radial Basis Neural Network (RBN), *etc.* In these intelligent algorithms, SVM is commonly recognized to be suitable for the process of small data set. Because the number of experimental data is not so big, SVM was adopted for the prediction work in this study.

SVM is a machine learning algorithm basing on the statistical learning theory. Its principle is to construct the optimal separating hyperplane by mapping the input vector into a high-dimensional feature space according to the prior selected non-linear operator. SVM was born in the 90s of the last century; since then, it has been applied into more and more widely fields, such as predictions of outdoor/indoor temperature, wind speed, solar radiation, *etc.* (Paniagua-Tineo *et al.* 2011; Cai *et al.* 2015; Mohandes *et al.* 2004; Chen *et al.* 2011).

RESULTS AND DISCUSSION

Models for Predicting Thermal Conductivity

As mentioned in the above text, both 'Perpendicular' and 'Parallel' values of thermal conductivity need to be studied. Therefore, two separate models were trained in order to predict each of the two conductivity values. The two models have same input parameters, *e.g.*, the sample density, together with the slope term (A) and intercept term (B) from Eq. 12. Although the two thermal conductivities were trained as outputs of two separate SVM models, their data was measured under the same testing conditions. The experiments were repeated 3 times and conducted under the following conditions: a heating power of 50 mW and an application period of 80 s. There were 390 sets of data generated from the experiment (as shown in Table S2), in which 360 of the sets were picked out at random to train the SVM model, while the remaining 30 sets were gathered for testing.

In the k-fold validations, the k value was selected as 13, meaning that the whole data was divided into 13 subsets averagely after the data sequence was disturbed, so as to keep the random selection of the training data. And then 13 times of training and validation process were conducted for each model. For the training parameters of SVM model, their values were given as 'svmtrain(y_1_train,x_train,'-s 4 -t 2 -c 50 -g 180')'.

Fig. 6. Training results of the Perpendicular thermal conductivity

Fig. 7. Validation results of the two thermal conductivities

The model prediction results are listed in Figs. 6 and 7. In these figures, the 'x' means the output of SVM model, and ' \circ ' means an experimental value. The horizontal axis represents the sample number, while the vertical axis represents the thermal conductivity, whose unit is W/(m·K). Training results of the Perpendicular thermal conductivity are not shown here to save space. Good coincidence between prediction value and experimental value can be found in the figures. The detailed prediction errors are given in Table 1, which shows that the holdout validation results were superior to k-fold validation results. For both of the two validation methods, the degree of fitness of the training data sets was as high as 0.99, while the degree of fitness of the testing data sets was 0.87 or higher. The results demonstrated that the model was effective for an anisotropic thermal conductivity module.

Thermal Conductivity		Data Set	MRE%)	MAE(%)	MSE(%)	R²
	Perpen-	Training data	0.1271	7.1687	0.4348	0.9993
holdout	dicular	Testing data	2.2473	12.0598	2.4356	0.9821
validation	Parallel	Training data	0.1202	3.1695	0.2580	0.9996
		Testing data	2.2393	11.5298	2.2198	0.9789
	Perpen- dicular	Training data	0.1355	6.7599	0.4078	0.9994
k-fold		Testing data	4.3397	29.8905	5.5189	0.8940
validation	Darallal	Training data	0.1264	3.3281	0.2403	0.9997
	Faidlei	Testing data	5.0247	31.3020	5.3212	0.8710

Table 1. Prediction Errors of Thermal Conductivity

CONCLUSIONS

- 1. The thermal properties of 130 species of wood that belonging to different families were tested with a Hot Disk thermal constant analyzer to generate the initial training database. The prediction works were then conducted towards to these woods based on intelligent algorithm.
- 2. SVM was adopted for the prediction of the thermal conductivity. In order to simplify the calculation process, feature extraction was adopted and separate models for predicting the Perpendicular and the Parallel thermal conductivity (relative to the floor) were established. The testing degrees of fitness of the two models both were at least 0.87, while holdout validation results were even better.
- 3. The success prediction of thermal conductivity with inputs of term A and B validated the fact that there may exists a mathematical relationship between thermal conductivity and ln(t), not only with $D(\tau)$, although the specific equations has not been found.

REFERENCE CITED

- Cai, Q., Wang, W., and Wang, S. (2015). "Application of indoor temperature prediction based on SVM and BPNN," *Control & Decision Conference*, 2883-2887. DOI:10.1109/CCDC.2015.7162418
- Chen, J. L., Liu, H. B., Wu, W., and Xie, D. (2011). "Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study," *Renewable Energy* 36(1), 413-420. DOI: 10.1016/j.renene.2010.06.024
- Fan, L.-W., Hu, Y.-C., Tian, T., and Yu, Z.-T. (2006). "The prediction of effective thermal conductivities perpendicular to the fibres of wood using a fractal model and an improved transient measurement technique," *International Journal of Heat and Mass Transfer* 49(21-22), 4116-4123. DOI: 10.1016/j.ijheatmasstransfer.2006.03.027
- Gehlin, S. (2002). *Thermal Response Test Method Development and Evaluation*, Ph.D. Dissertation, Lulea University of Technology, Luleå, Sweden
- Guo, W., Lim, C. J., Bi, X., Sokhansanj, S., and Melin, S. (2013). "Determination of effective thermal conductivity and specific heat capacity of wood pellets," *Fuel* 103, 347-355. DOI:10.1016/j.fuel.2012.08.037
- He, Y. (2005). "Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations," *Thermochimica Acta* 436(1-2), 122-129. DOI:10.1016/j.tca.2005.07.003
- Lagüela, S., Bison, P., Peron, F., and Romagnoni, P. (2015). "Thermal conductivity measurements on wood materials with transient plane source technique," *Thermochimica Acta* 600, 45-51. DOI:10.1016/j.tca.2014.11.021
- Márquez, A. A., López, J. M. C., Hernández, F. F., Muñoz, F. D., and Andrés, A. C. (2017). "A comparison of heating terminal units: Fan-coil versus radiant floor, and the combination of both," *Energy and Buildings* 138, 621-629. DOI:10.1016/j.enbuild.2016.12.092
- Mohandes, M. A., Halawani, T. O., Rehman, S., and Hussain, A. A. (2004). "Support vector machines for wind speed prediction," *Renewable Energy* 29(6), 939-947. DOI: 10.1016/j.renene.2003.11.009
- Paniagua-Tineo, A., Salcedo-Sanz, S., Casanova-Mateo, C., Ortiz-Garcia, E. G., Cony,

M. A., and Hernandez-Martin, E. (2011). "Prediction of daily maximum temperature using a support vector regression algorithm," *Renewable Energy* 36, 3054-3060. DOI: 10.1016/j.renene.2011.03.030

Shin, M. S., Rhee, K. N., Ryu, S. R., Yeo, M. S., and Kim, K. W. (2015). "Design of radiant floor heating panel in view of floor surface temperatures," *Building and Environment* 92, 559-577. DOI: 10.1016/j.buildenv.2015.05.006

Thunman, H., and Leckner, B. (2002). "Thermal conductivity of wood – Models for different stages of combustion," *Biomass and Bioenergy* 23(1), 47-54. DOI:10.1016/S0961-9534(02)00031-4

Vay, O., Obersriebnig, M., Müller, U., Konnerth, J., and Gindl-Altmutter, W. (2013).
"Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM)," *Holzforschung* 67(2), 155-159. DOI:10.1515/hf-2012-0052

Zhou, G., and He, J. (2015). "Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes," *Applied Energy* 138(15), 648-660. DOI:10.1016/j.apenergy.2014.10.058

Article submitted: August 27, 2020; Peer review completed: October 18, 2020; Revised version received and accepted: November 26, 2020; Published: December 21, 2020. DOI: 10.15376/biores.16.1.1161-1185

APPENDIX

No.	Latin name	Family	No.	Latin name	Family
1	Pterocarpus macrocarpus	Papilionaceae	66	Khaya sp.	Meliaceae
2	Pterocarpus pedatus	Papilionaceae	67	Eusideroxylon zwageri	Lauraceae
3	Pterocarpus erinaceus	Papilionaceae	68	Spirostachys africana	Euphorbiaceae
4	Dalbergia latifolia	Papilionaceae	69	Guibourtia conjugata	Caesalpiniaceae
5	Dalbergia frutescens var. tomentosa	Papilionaceae	70	Terminalia sp.	Combretaceae
6	Pterocarpus indicus	Papilionaceae	71	Triplochiton scleroxylon	Sterculiaceae
7	Dalbergia melanoxylon	Papilionaceae	72	Dryobalanops sp.	Dipterocarpaceae
8	Dalbergia cochinchinensis	Papilionaceae	73	Berlinia sp.	Caesalpiniaceae
9	Dalbergia bariensis	Papilionaceae	74	Koompassia sp.	Caesalpiniaceae
10	Dalbergia oliveri	Papilionaceae	75	Hevea brasiliensis	Euphorbiaceae
11	Dalbergia retusa	Papilionaceae	76	Aucoumea klaineana	Burseraceae
12	Millettia stuhlmannii	Papilionaceae	77	Calophyllum sp.	Guttiferae
13	Dalbergia louvelii	Papilionaceae	78	Excentrodendron hsienmu	Tiliaceae
14	Dalbergia cultrata	Papilionaceae	79	Pericopsis elata	Papilionaceae
15	Diospyros celebica	Ebenaceae	80	Betula alnoides	Betulaceae
16	Cassia siamea	Caesalpiniaceae	81	Pterocarpus angolensis	Papilionaceae
17	Baphia nitida	Papilionaceae	82	Sindora sp.	Caesalpiniaceae
18	Bulnesia sp.	Zygophyllaceae	83	Shorea sp.	Dipterocarpaceae
19	Cordia sp.	Boraginaceae	84	Swintonia sp.	Anacardiaceae
20	Combretum imberbe	Combretaceae	85	Pometia sp.	Sapindaceae
21	Swartzia madagascariensis	Papilionaceae	86	Ochroma sp.	Bombacaceae
22	Ulmus sp.	Ulmaceae	87	Platymiscium sp.	Papilionaceae
23	Pterocarpus tinctorius	Papilionaceae	88	Dicorynia sp.	Caesalpiniaceae
24	Colophospermum mopane	Caesalpiniaceae	89	Marmaroxylon racemosum	Mimosoideae
25	Gluta sp.	Anacardiaceae	90	Loxopterygium sagotii	Anacardiaceae
26	Streblus sp.	Moraceae	91	Tabebuia sp.	Bignoniaceae
27	Phoebe sp.	Lauraceae	92	Andira sp.	Papilionaceae
28	Platycladus orientalis	Cupressaceae	93	Humiria balsamifera	Humiriaceae
29	Lindera sp.	Lauraceae	94	Diplotropis sp.	Papilionaceae
30	Myroxylon balsamum	Papilionaceae	95	Brosimum sp.	Moraceae

31	Guibourtia tessmannii	Caesalpiniaceae	96	Martiodendron sp.	Caesalpiniaceae
32	Pterocarpus soyauxii	Papilionaceae	97	Vouacapoua americana	Caesalpiniaceae
33	Microberlinia sp.	Caesalpiniaceae	98	Manilkara sp.	Sapotaceae
34	Paraberlinia bifoliolata	Caesalpiniaceae	99	Platonia insignis	Guttiferae
35	Intsia sp.	Caesalpiniaceae	100	Hymenaea sp.	Caesalpiniaceae
36	Tectona grandis	Verbenaceae	101	Diospyros sp.	Ebenaceae
37	Peltogyne sp.	Caesalpiniaceae	102	Prunus sp.	Rosaceae
38	Entandrophragma cylindricum	Meliaceae	103	Xylia sp.	Mimosoideae
39	Mangifera sp.	Anacardiaceae	104	Terminalia tomentosa	Combretaceae
40	Lophira alata	Ochnaceae	105	Aglaia sp.	Meliaceae
41	Fraxinus sp.	Oleaceae	106	Afzelia sp.	Caesalpiniaceae
42	Fraxinus mandshurica	Oleaceae	107	Swietenia sp.	Meliaceae
43	Quercus sp.	Fagaceae	108	Xanthostemon sp.	Myrtaceae
44	Quercus sp.	Fagaceae	109	Berchemia discolor	Rhamnaceae
45	Caesalpinia paraguariensis	Caesalpiniaceae	110	Guibourtia coleosperma	Caesalpiniaceae
46	Juglans sp.	Juglandaceae	111	Machaerium sp.	Papilionaceae
47	Dipteryx sp.	Papilionaceae	112	Samanea saman	Mimosoideae
48	Bombax sp.	Bombacaceae	113	Campnosperma sp.	Anacardiaceae
49	Buchenavia sp.	Combretaceae	114	Buxus sp.	Buxaceae
50	Vatairea sp.	Papilionaceae	115	Erythrophleum sp.	Caesalpiniaceae
51	Hieronyma sp.	Euphorbiaceae	116	Anadenanthera macrocarpa	Mimosoideae
52	Fagus sylvatica	Fagaceae	117	Chlorophora sp.	Moraceae
53	Erythrophleum fordii	Caesalpiniaceae	118	Staudtia sp.	Myristicaceae
54	Pinus sp.	Pinaceae	119	Cynometra sp.	Caesalpiniaceae
55	Pinus sylvestris	Pinaceae	120	Swartzia leiocalycina	Papilionaceae
56	Pinus sp.	Pinaceae	121	Baphia kirkii	Papilionaceae
57	Pseudotsuga sp.	Pinaceae	122	Dalbergia cearensis	Papilionaceae
58	Tsuga sp.	Pinaceae	123	Dalbergia tucurensis	Papilionaceae
59	Pinus radiata	Pinaceae	124	Acer sp.	Aceraceae
60	Litchi chinensis	Sapindaceae	125	Dipterocarpus sp.	Dipterocarpaceae
61	Euphoria longan	Sapindaceae	126	Liriodendron tulipifera	Magnoliaceae
62	Cinnamomum sp.	Lauraceae	127	Michelia sp.	Magnoliaceae
63	Daniellia sp.	Caesalpiniaceae	128	Palaquium sp.	Sapotaceae
64	Aquilaria sp.	Thymelaeaceae	129	Acacia sp.	Mimosoideae
65	Cylicodiscus gabunensis	Mimosoideae	130	Toona sinensis	Meliaceae

Table S2. Listing of Density, Function Coefficient, Parallel Thermal Conductivity,and Perpendicular Thermal Conductivity

No.	Latin name	Density (g/cm ³)	Function coefficient (gradient term A)	Function coefficient (gradient term B)	Parallel conduct. (W/mK)	Perpend. conduct. (W/mk)
1	Pterocarpus macrocarpus	1.165171	0.618300	-0.017000	0.161854	0.432371
1	Pterocarpus macrocarpus	1.165171	0.619800	-0.011800	0.155029	0.446106
1	Pterocarpus macrocarpus	1.165171	0.621300	-0.007700	0.159181	0.434052
2	Pterocarpus pedatus	1.102950	0.597300	0.316700	0.126526	0.576902
2	Pterocarpus pedatus	1.102950	0.604500	0.292600	0.135651	0.533575
2	Pterocarpus pedatus	1.102950	0.610100	0.291200	0.135282	0.527667
3	Pterocarpus erinaceus	0.928731	0.579100	0.221200	0.183496	0.431954
3	Pterocarpus erinaceus	0.928731	0.585700	0.190300	0.195902	0.400747
3	Pterocarpus erinaceus	0.928731	0.589000	0.174700	0.190493	0.405785
4	Dalbergia latifolia	0.919562	0.623400	0.397700	0.202100	0.343478
4	Dalbergia latifolia	0.919562	0.620300	0.443500	0.200035	0.349706
4	Dalbergia latifolia	0.919562	0.626200	0.427900	0.202559	0.339315
5	Dalbergia frutescens var. tomentosa	1.302713	0.492500	0.069900	0.200076	0.549978
5	Dalbergia frutescens var. tomentosa	1.302713	0.495800	0.062700	0.186524	0.573295
5	Dalbergia frutescens var. tomentosa	1.302713	0.497700	0.064600	0.186792	0.570284
6	Pterocarpus indicus	0.447992	1.115300	-0.338500	0.086823	0.240520
6	Pterocarpus indicus	0.447992	1.119200	-0.342300	0.093358	0.226009
6	Pterocarpus indicus	0.447992	1.121300	-0.352300	0.088745	0.234749
7	Dalbergia melanoxylon	1.212328	0.446600	-0.337000	0.355354	0.386427
7	Dalbergia melanoxylon	1.212328	0.446700	-0.340800	0.340824	0.401112
7	Dalbergia melanoxylon	1.212328	0.444500	-0.345300	0.339145	0.407174
8	Dalbergia cochinchinensis	1.206870	0.484000	0.187400	0.294592	0.393226
8	Dalbergia cochinchinensis	1.206870	0.481100	0.147100	0.279869	0.415921
8	Dalbergia cochinchinensis	1.206870	0.482900	0.095000	0.290005	0.400216
9	Dalbergia bariensis	1.109172	0.481500	0.051800	0.292508	0.396600

9	Dalbergia bariensis	1.109172	0.482600	0.098700	0.293197	0.394006
9	Dalbergia bariensis	1.109172	0.485200	0.059700	0.296942	0.386043
10	Dalbergia oliveri	1.029013	0.551800	-0.147500	0.252634	0.354907
10	Dalbergia oliveri	1.029013	0.550000	-0.133500	0.258457	0.349730
10	Dalbergia oliveri	1.029013	0.549300	-0.106800	0.250210	0.359739
11	Dalbergia retusa	1.111832	0.520400	-0.055800	0.263943	0.379434
11	Dalbergia retusa	1.111832	0.520700	-0.047200	0.262607	0.381018
11	Dalbergia retusa	1.111832	0.520900	-0.045200	0.268553	0.374366
12	Millettia stuhlmannii	0.704358	0.629400	0.238500	0.231822	0.293131
12	Millettia stuhlmannii	0.704358	0.627700	0.258800	0.229216	0.297553
12	Millettia stuhlmannii	0.704358	0.627500	0.272100	0.229516	0.297397
13	Dalbergia louvelii	0.891003	0.541400	0.354700	0.293332	0.317385
13	Dalbergia louvelii	0.891003	0.539300	0.365600	0.283237	0.329343
13	Dalbergia louvelii	0.891003	0.538900	0.374700	0.279472	0.334545
14	Dalbergia cultrata	0.982438	0.528000	0.460500	0.209495	0.462264
14	Dalbergia cultrata	0.982438	0.525800	0.457600	0.216793	0.451862
14	Dalbergia cultrata	0.982438	0.516000	0.502800	0.192974	0.519831
15	Diospyros celebica	1.002307	0.523100	0.473900	0.191892	0.508537
15	Diospyros celebica	1.002307	0.538700	0.363600	0.205341	0.453025
15	Diospyros celebica	1.002307	0.549000	0.243900	0.223425	0.405447
16	Cassia siamea	1.040916	0.428300	0.025600	0.337041	0.450427
16	Cassia siamea	1.040916	0.423600	0.049700	0.342502	0.442231
16	Cassia siamea	1.040916	0.423900	0.054600	0.367169	0.415692
17	Baphia nitida	1.285356	0.423700	-0.117800	0.322692	0.472019
17	Baphia nitida	1.285356	0.424200	-0.120200	0.327810	0.463150
17	Baphia nitida	1.285356	0.424400	-0.114600	0.326353	0.464167
18	Bulnesia sp.	0.860297	0.604800	-0.512900	0.229640	0.323331
18	Bulnesia sp.	0.860297	0.602500	-0.512200	0.229348	0.327073
18	Bulnesia sp.	0.860297	0.602300	-0.487000	0.227833	0.329218
19	Cordia sp.	0.987425	0.516200	0.098400	0.609024	0.168040
19	Cordia sp.	0.987425	0.516600	0.099700	0.576984	0.176316
19	Cordia sp.	0.987425	0.516600	0.122900	0.601212	0.170123
20	Combretum imberbe	1.228766	0.441600	-0.232800	0.567351	0.245577
20	Combretum imberbe	1.228766	0.439900	-0.201100	0.588419	0.239569
20	Combretum imberbe	1.228766	0.439900	-0.179100	0.571114	0.247132
21	Swartzia madagascariensis	1.083138	0.481300	0.493700	0.465255	0.250270

21	Swartzia madagascariensis	1.083138	0.481300	0.493000	0.468362	0.248175
21	Swartzia madagascariensis	1.083138	0.482800	0.490400	0.465004	0.248877
22	Ulmus sp.	0.507920	0.979100	-0.381200	0.212949	0.132173
22	Ulmus sp.	0.507920	0.974400	-0.366600	0.207972	0.135876
22	Ulmus sp.	0.507920	0.973500	-0.361200	0.203419	0.138670
23	Pterocarpus tinctorius	0.992981	0.540700	0.178900	0.377942	0.244073
23	Pterocarpus tinctorius	0.992981	0.540700	0.183500	0.377160	0.244513
23	Pterocarpus tinctorius	0.992981	0.540800	0.188500	0.377713	0.243997
24	Colophospermum mopane	1.297750	0.433200	-0.093800	0.414519	0.351685
24	Colophospermum mopane	1.297750	0.431300	-0.080100	0.397757	0.369210
24	Colophospermum mopane	1.297750	0.430800	-0.076200	0.398090	0.369766
25	Gluta sp.	0.827704	0.617800	-0.149700	0.390349	0.181512
25	Gluta sp.	0.827704	0.616000	-0.150500	0.392499	0.181783
25	Gluta sp.	0.827704	0.615500	-0.140000	0.392814	0.182387
26	Streblus sp.	1.074903	0.490600	0.000700	0.307764	0.366963
26	Streblus sp.	1.074903	0.487700	0.026400	0.306516	0.372701
26	Streblus sp.	1.074903	0.486800	0.015100	0.296193	0.384275
27	Phoebe sp.	0.525604	0.981300	-0.387300	0.122730	0.225797
27	Phoebe sp.	0.525604	0.975400	-0.381500	0.121518	0.229888
27	Phoebe sp.	0.525604	0.974300	-0.370500	0.118499	0.235295
28	Platycladus orientalis	0.735277	0.622500	-0.062500	0.476453	0.147375
28	Platycladus orientalis	0.735277	0.622200	-0.048000	0.460912	0.152735
28	Platycladus orientalis	0.735277	0.621900	-0.041300	0.465912	0.151491
29	Lindera sp.	0.721878	0.628100	0.232100	0.416335	0.164444
29	Lindera sp.	0.721878	0.629800	0.226800	0.425144	0.160477
29	Lindera sp.	0.721878	0.631200	0.223400	0.404970	0.166793
30	Myroxylon balsamum	0.939866	0.518800	0.556400	0.590882	0.170246
30	Myroxylon balsamum	0.939866	0.519500	0.556000	0.558872	0.177710
30	Myroxylon balsamum	0.939866	0.519700	0.553800	0.585200	0.170566
31	Guibourtia tessmannii	0.805228	0.598500	-0.203600	0.473571	0.159659
31	Guibourtia tessmannii	0.805228	0.599500	-0.229300	0.483411	0.156683
31	Guibourtia tessmannii	0.805228	0.599500	-0.225400	0.474448	0.158878
32	Pterocarpus soyauxii	0.729505	0.664900	-0.154700	0.356234	0.169853

32	Pterocarpus soyauxii	0.729505	0.670200	-0.163500	0.351205	0.169085
32	Pterocarpus soyauxii	0.729505	0.672800	-0.172300	0.355554	0.165925
33	Microberlinia sp.	0.909226	0.524300	-0.230000	0.634575	0.153207
33	Microberlinia sp.	0.909226	0.524000	-0.227500	0.625293	0.155393
33	Microberlinia sp.	0.909226	0.522700	-0.181900	0.619872	0.157165
34	Paraberlinia bifoliolata	0.676283	0.540700	-0.194000	0.563798	0.164840
34	Paraberlinia bifoliolata	0.676283	0.537800	-0.193600	0.573171	0.164614
34	Paraberlinia bifoliolata	0.676283	0.536600	-0.200800	0.575657	0.164661
35	Intsia sp.	0.901845	0.581400	-0.305500	0.549891	0.146972
35	Intsia sp.	0.901845	0.580800	-0.289400	0.537605	0.149921
35	Intsia sp.	0.901845	0.581400	-0.278100	0.537056	0.149693
36	Tectona grandis	0.686852	0.734400	-0.633500	0.381557	0.132480
36	Tectona grandis	0.686852	0.732000	-0.628200	0.379527	0.134080
36	Tectona grandis	0.686852	0.731400	-0.590900	0.370113	0.137436
37	Peltogyne sp.	1.168446	0.438300	0.241400	0.444329	0.316106
37	Peltogyne sp.	1.168446	0.437800	0.295800	0.430290	0.324053
37	Peltogyne sp.	1.168446	0.437700	0.295800	0.435110	0.322261
38	Entandrophragma cylindricum	0.741889	0.662100	-0.070500	0.306886	0.199311
38	Entandrophragma cylindricum	0.741889	0.663400	-0.063400	0.309998	0.197215
38	Entandrophragma cylindricum	0.741889	0.664200	-0.050000	0.311907	0.195823
39	Mangifera sp.	0.639062	0.798800	0.150600	0.140295	0.297228
39	Mangifera sp.	0.639062	0.797800	0.158800	0.147250	0.286109
39	Mangifera sp.	0.639062	0.798600	0.153000	0.141898	0.295397
40	Lophira alata	0.941912	0.544900	0.364600	0.499367	0.183433
40	Lophira alata	0.941912	0.542300	0.381600	0.499316	0.185917
40	Lophira alata	0.941912	0.542200	0.380500	0.497418	0.186145
41	Fraxinus sp.	0.665602	0.705900	-0.217500	0.162172	0.327200
41	Fraxinus sp.	0.665602	0.704100	-0.195700	0.160910	0.331019
41	Fraxinus sp.	0.665602	0.703500	-0.192200	0.167996	0.319902
42	Fraxinus mandshurica	0.577673	0.946600	-0.313100	0.102602	0.288487
42	Fraxinus mandshurica	0.577673	0.942800	-0.308300	0.104438	0.287049
42	Fraxinus mandshurica	0.577673	0.941800	-0.302000	0.103875	0.289129
43	Quercus sp.	0.747687	0.603000	0.701000	0.267280	0.276848
43	Quercus sp.	0.747687	0.601500	0.710300	0.251895	0.292222
43	Quercus sp.	0.747687	0.600700	0.717900	0.257163	0.287863

44	Quercus sp.	0.576364	0.822100	-0.217500	0.146048	0.272421
44	Quercus sp.	0.576364	0.819500	-0.192900	0.140659	0.282038
44	Quercus sp.	0.576364	0.818800	-0.201200	0.139954	0.284770
45	Caesalpinia paraguariensis	1.107699	0.456900	-0.037700	0.324405	0.402546
45	Caesalpinia paraguariensis	1.107699	0.456200	-0.039200	0.327469	0.401155
45	Caesalpinia paraguariensis	1.107699	0.454800	-0.040000	0.322830	0.407661
46	Juglans sp.	0.673362	0.740400	-0.124700	0.186434	0.265836
46	Juglans sp.	0.673362	0.736700	-0.105800	0.179454	0.276921
46	Juglans sp.	0.673362	0.735900	-0.103600	0.184797	0.271398
47	Dipteryx sp.	0.987204	0.463600	0.250100	0.421900	0.298544
47	Dipteryx sp.	0.987204	0.460700	0.257300	0.403784	0.313720
47	Dipteryx sp.	0.987204	0.459300	0.258800	0.409781	0.312514
48	Bombax sp.	0.518998	0.992000	-0.608800	0.105173	0.256243
48	Bombax sp.	0.518998	0.992600	-0.646300	0.106220	0.254233
48	Bombax sp.	0.518998	0.994400	-0.651800	0.105624	0.255607
49	Buchenavia sp.	0.681548	0.733400	0.003900	0.165903	0.299841
49	Buchenavia sp.	0.681548	0.732400	0.007200	0.170413	0.294427
49	Buchenavia sp.	0.681548	0.732900	0.002700	0.171532	0.292437
50	Vatairea sp.	0.867096	0.647000	-0.054500	0.195592	0.329352
50	Vatairea sp.	0.867096	0.644000	-0.042400	0.187906	0.343531
50	Vatairea sp.	0.867096	0.642900	-0.026000	0.188234	0.344199
51	Hieronyma sp.	0.811421	0.663800	-0.115000	0.185556	0.330955
51	Hieronyma sp.	0.811421	0.663300	-0.109900	0.183008	0.334187
51	Hieronyma sp.	0.811421	0.664100	-0.095500	0.187891	0.327057
52	Fagus sylvatica	0.764708	0.652300	0.187000	0.163120	0.379943
52	Fagus sylvatica	0.764708	0.651700	0.184800	0.166327	0.373473
52	Fagus sylvatica	0.764708	0.651700	0.187100	0.164552	0.376757
53	Erythrophleum fordii	0.989414	0.501100	0.379700	0.286028	0.379769
53	Erythrophleum fordii	0.989414	0.500000	0.386700	0.289418	0.376531
53	Erythrophleum fordii	0.989414	0.500300	0.381700	0.283669	0.383283
54	Pinus sp.	0.478365	0.956300	-0.425200	0.158022	0.187301
54	Pinus sp.	0.478365	0.953000	-0.428900	0.158341	0.188216
54	Pinus sp.	0.478365	0.952800	-0.410100	0.153720	0.193617
55	Pinus sylvestris	0.531608	0.887700	-0.165300	0.148717	0.227529
55	Pinus sylvestris	0.531608	0.884700	-0.134000	0.144614	0.233700

55	Pinus sylvestris	0.531608	0.884200	-0.106100	0.146604	0.231999
56	Pinus sp.	0.653822	0.799400	-0.304500	0.156493	0.269121
56	Pinus sp.	0.653822	0.797500	-0.299400	0.158013	0.267464
56	Pinus sp.	0.653822	0.796900	-0.303200	0.158650	0.267226
57	Pseudotsuga sp.	0.452062	1.056500	-0.034500	0.102312	0.230175
57	Pseudotsuga sp.	0.452062	1.050100	-0.018100	0.100422	0.236348
57	Pseudotsuga sp.	0.452062	1.048900	-0.002300	0.099825	0.237874
58	Tsuga sp.	0.386462	1.294600	-0.364400	0.076975	0.204913
58	Tsuga sp.	0.386462	1.287400	-0.337400	0.078013	0.205244
58	Tsuga sp.	0.386462	1.285200	-0.332600	0.075482	0.211044
59	Pinus radiata	0.426624	0.917800	0.107900	0.158625	0.215889
59	Pinus radiata	0.426624	0.912300	0.126700	0.152820	0.220610
59	Pinus radiata	0.426624	0.909800	0.136200	0.185939	0.185502
60	Litchi chinensis	0.865412	0.571100	0.359600	0.515161	0.163573
60	Litchi chinensis	0.865412	0.569100	0.320300	0.524361	0.161631
60	Litchi chinensis	0.865412	0.569100	0.325300	0.531801	0.159026
61	Euphoria longan	0.874470	0.577200	0.836700	0.447850	0.181437
61	Euphoria longan	0.874470	0.579100	0.855300	0.450539	0.179422
61	Euphoria longan	0.874470	0.581100	0.892700	0.434954	0.183783
62	Cinnamomum sp.	0.631014	0.737700	-0.079000	0.273697	0.181002
62	Cinnamomum sp.	0.631014	0.743900	-0.087800	0.281624	0.173678
62	Cinnamomum sp.	0.631014	0.747300	-0.086700	0.289524	0.167803
63	Daniellia sp.	0.525293	0.928600	0.154200	0.134436	0.227641
63	Daniellia sp.	0.525293	0.927000	0.172600	0.136329	0.228070
63	Daniellia sp.	0.525293	0.926400	0.179400	0.135985	0.228828
64	Aquilaria sp.	0.342625	1.305200	-0.519900	0.065463	0.236521
64	Aquilaria sp.	0.342625	1.299400	-0.504200	0.065003	0.240161
64	Aquilaria sp.	0.342625	1.298800	-0.492100	0.063606	0.244507
65	Cylicodiscus gabunensis	0.838227	0.597900	0.329500	0.497513	0.151014
65	Cylicodiscus gabunensis	0.838227	0.599100	0.324100	0.498026	0.150112
65	Cylicodiscus gabunensis	0.838227	0.600100	0.327600	0.502603	0.148604
66	Khaya sp.	0.834070	0.615500	0.239100	0.193305	0.370173
66	Khaya sp.	0.834070	0.612300	0.242700	0.186921	0.385277
66	Khaya sp.	0.834070	0.611400	0.245100	0.191201	0.378844
67	Eusideroxylon zwageri	0.979415	0.485100	0.445300	0.286687	0.403248
67	Eusideroxylon zwageri	0.979415	0.486000	0.431400	0.291831	0.394354
67	Eusideroxylon zwageri	0.979415	0.488700	0.420800	0.296161	0.384380
68	Spirostachys africana	0.989715	0.539100	-0.002500	0.313044	0.299917

68	Spirostachys africana	0.989715	0.537600	0.001600	0.302798	0.310832
68	Spirostachys africana	0.989715	0.537500	0.003200	0.306778	0.306859
69	Guibourtia conjugata	1.084004	0.457600	-0.096100	0.384623	0.338527
69	Guibourtia conjugata	1.084004	0.456700	-0.100700	0.381157	0.342777
69	Guibourtia conjugata	1.084004	0.457000	-0.095000	0.378836	0.345324
70	Terminalia sp.	0.476664	1.015100	-0.644800	0.130715	0.198399
70	Terminalia sp.	0.476664	1.012400	-0.690200	0.128557	0.202408
70	Terminalia sp.	0.476664	1.013400	-0.685400	0.129360	0.201078
71	Triplochiton scleroxylon	0.294327	1.417400	-0.547800	0.030682	0.422248
71	Triplochiton scleroxylon	0.294327	1.412400	-0.523100	0.030837	0.423086
71	Triplochiton scleroxylon	0.294327	1.412400	-0.526900	0.030157	0.432364
72	Dryobalanops sp.	0.653053	0.820700	0.337600	0.107503	0.373806
72	Dryobalanops sp.	0.653053	0.815100	0.360300	0.104982	0.386938
72	Dryobalanops sp.	0.653053	0.813600	0.370500	0.101882	0.398209
73	Berlinia sp.	0.673009	0.816700	-0.070200	0.081968	0.476651
73	Berlinia sp.	0.673009	0.815400	-0.065600	0.080330	0.485764
73	Berlinia sp.	0.673009	0.815700	-0.065500	0.080584	0.484326
74	Koompassia sp.	0.919015	0.557500	0.063000	0.204677	0.425149
74	Koompassia sp.	0.919015	0.554900	0.066600	0.200009	0.437072
74	Koompassia sp.	0.919015	0.554600	0.060400	0.201790	0.433320
75	Hevea brasiliensis	0.729811	0.707600	0.032100	0.155545	0.347050
75	Hevea brasiliensis	0.729811	0.704100	0.044100	0.150145	0.360980
75	Hevea brasiliensis	0.729811	0.695100	0.068400	0.142357	0.386808
76	Aucoumea klaineana	0.480767	0.911500	-0.409700	0.134792	0.240608
76	Aucoumea klaineana	0.480767	0.907800	-0.386200	0.134135	0.242808
76	Aucoumea klaineana	0.480767	0.907100	-0.358500	0.130825	0.249668
77	Calophyllum sp.	0.767951	0.688300	0.337500	0.225691	0.254496
77	Calophyllum sp.	0.767951	0.685000	0.344100	0.223241	0.258571
77	Calophyllum sp.	0.767951	0.684400	0.347400	0.222262	0.260136
78	Excentrodendron hsienmu	0.967439	0.445300	0.729200	0.498767	0.268891
78	Excentrodendron hsienmu	0.967439	0.448800	0.712400	0.511882	0.259351
78	Excentrodendron hsienmu	0.967439	0.450900	0.694100	0.512827	0.256615
79	Pericopsis elata	0.659547	0.728500	0.064100	0.178374	0.286079
79	Pericopsis elata	0.659547	0.723700	0.065900	0.177868	0.291264
79	Pericopsis elata	0.659547	0.722100	0.072700	0.169415	0.304472

80	Betula alnoides	0.691240	0.643600	-0.319700	0.227081	0.288412
80	Betula alnoides	0.691240	0.642300	-0.360600	0.217076	0.301826
80	Betula alnoides	0.691240	0.642400	-0.369700	0.225371	0.292397
81	Pterocarpus angolensis	0.595328	0.643600	-0.319700	0.112801	0.321098
81	Pterocarpus angolensis	0.595328	0.642300	-0.360600	0.112496	0.323899
81	Pterocarpus angolensis	0.595328	0.642400	-0.369700	0.109509	0.331477
82	Sindora sp.	0.623389	0.795400	-0.054200	0.162426	0.262398
82	Sindora sp.	0.623389	0.794600	-0.090500	0.163002	0.262201
82	Sindora sp.	0.623389	0.795100	-0.098400	0.162956	0.262154
83	Shorea sp.	0.449577	0.916000	0.071700	0.135095	0.235423
83	Shorea sp.	0.449577	0.910000	0.095000	0.133764	0.239919
83	Shorea sp.	0.449577	0.908800	0.112500	0.130237	0.245437
84	Swintonia sp.	0.871661	0.566800	0.166100	0.225411	0.373741
84	Swintonia sp.	0.871661	0.563200	0.170700	0.216391	0.391845
84	Swintonia sp.	0.871661	0.561500	0.174200	0.221848	0.386181
85	Pometia sp.	0.650265	0.875100	-0.249900	0.107120	0.324426
85	Pometia sp.	0.650265	0.869000	-0.229900	0.102626	0.340312
85	Pometia sp.	0.650265	0.867200	-0.215800	0.103058	0.340469
86	Ochroma sp.	0.227389	1.848700	-0.427400	0.045187	0.163573
86	Ochroma sp.	0.227389	1.720300	-0.093200	0.039499	0.202276
86	Ochroma sp.	0.227389	1.612200	0.178900	0.036619	0.234925
87	Platymiscium sp.	1.061543	0.512500	0.133500	0.240884	0.428739
87	Platymiscium sp.	1.061543	0.508800	0.140900	0.235342	0.444772
87	Platymiscium sp.	1.061543	0.507200	0.134200	0.224991	0.463766
88	Dicorynia sp.	0.720713	0.561800	0.139200	0.287348	0.300849
88	Dicorynia sp.	0.720713	0.556100	0.164800	0.277343	0.315991
88	Dicorynia sp.	0.720713	0.554300	0.171300	0.274516	0.321603
89	Marmaroxylon racemosum	0.933722	0.525800	0.837800	0.241757	0.403719
89	Marmaroxylon racemosum	0.933722	0.519600	0.867200	0.236663	0.419308
89	Marmaroxylon racemosum	0.933722	0.523300	0.849400	0.252704	0.391712
90	Loxopterygium sagotii	0.754428	0.682000	-0.376700	0.183595	0.318539
90	Loxopterygium sagotii	0.754428	0.678700	-0.344100	0.183316	0.321262
90	Loxopterygium sagotii	0.754428	0.678400	-0.309700	0.180495	0.327625
91	Tabebuia sp.	0.881257	0.534700	0.365100	0.299567	0.317376
91	Tabebuia sp.	0.881257	0.530300	0.386000	0.307522	0.315799

91	Tabebuia sp.	0.881257	0.528900	0.397900	0.300256	0.324634
92	Andira sp.	0.765733	0.535400	0.055900	0.332481	0.284964
92	Andira sp.	0.765733	0.533100	0.059600	0.327352	0.292442
92	Andira sp.	0.765733	0.532500	0.067400	0.327022	0.293341
93	Humiria balsamifera	0.794814	0.718300	0.437000	0.143253	0.359031
93	Humiria balsamifera	0.794814	0.713500	0.455100	0.139537	0.371177
93	Humiria balsamifera	0.794814	0.711200	0.466200	0.142181	0.368251
94	Diplotropis sp.	0.814358	0.593400	0.124200	0.229285	0.335510
94	Diplotropis sp.	0.814358	0.590200	0.144300	0.222811	0.346256
94	Diplotropis sp.	0.814358	0.589900	0.146700	0.222837	0.347663
95	Brosimum sp.	0.878494	0.566800	0.309000	0.292391	0.290324
95	Brosimum sp.	0.878494	0.562700	0.320100	0.288183	0.298616
95	Brosimum sp.	0.878494	0.561000	0.321700	0.281360	0.307076
96	Martiodendron sp.	0.880864	0.544800	1.089200	0.264063	0.344469
96	Martiodendron sp.	0.880864	0.539700	1.102800	0.263982	0.351948
96	Martiodendron sp.	0.880864	0.538100	1.111600	0.268228	0.348580
97	Vouacapoua americana	0.942338	0.546700	-0.064900	0.218213	0.412650
97	Vouacapoua americana	0.942338	0.543800	-0.061600	0.222247	0.410848
97	Vouacapoua americana	0.942338	0.543200	-0.050800	0.217221	0.419992
98	Manilkara sp.	0.973081	0.557100	0.658000	0.253659	0.345894
98	Manilkara sp.	0.973081	0.553000	0.672000	0.247038	0.357864
98	Manilkara sp.	0.973081	0.551800	0.671800	0.237684	0.372249
99	Platonia insignis	0.767178	0.667300	-0.245000	0.210669	0.289081
99	Platonia insignis	0.767178	0.662200	-0.234300	0.212701	0.291922
99	Platonia insignis	0.767178	0.660100	-0.225900	0.204773	0.302762
100	Hymenaea sp.	0.794748	0.650200	-0.359500	0.187399	0.340787
100	Hymenaea sp.	0.794748	0.648600	-0.395400	0.185573	0.346121
100	Hymenaea sp.	0.794748	0.648800	-0.406100	0.185143	0.346477
101	Diospyros sp.	0.927915	0.617700	-0.105100	0.181763	0.389713
101	Diospyros sp.	0.927915	0.613100	-0.087000	0.182305	0.395038
101	Diospyros sp.	0.927915	0.611700	-0.085600	0.180329	0.401372
102	Prunus sp.	0.548866	0.949500	-0.311200	0.110726	0.268363
102	Prunus sp.	0.548866	0.941200	-0.286800	0.107469	0.279472
102	Prunus sp.	0.548866	0.937700	-0.276800	0.103920	0.288229
103	Xylia sp.	0.988551	0.501900	0.133600	0.311069	0.349481
103	Xylia sp.	0.988551	0.497600	0.148000	0.300697	0.365732
103	Xylia sp.	0.988551	0.495700	0.150800	0.305541	0.364575
104	Terminalia tomentosa	1.063786	0.546000	-0.119400	0.201658	0.450593

104	Terminalia tomentosa	1.063786	0.545700	-0.165400	0.204858	0.444925
104	Terminalia tomentosa	1.063786	0.546800	-0.174700	0.205030	0.442926
105	Aglaia sp.	0.761030	0.664200	-0.101800	0.194385	0.316354
105	Aglaia sp.	0.761030	0.662200	-0.077000	0.193898	0.319218
105	Aglaia sp.	0.761030	0.662000	-0.044400	0.193121	0.320592
106	Afzelia sp.	0.889125	0.628200	-0.205100	0.176047	0.388489
106	Afzelia sp.	0.889125	0.630300	-0.212200	0.178356	0.380489
106	Afzelia sp.	0.889125	0.630700	-0.211400	0.181016	0.375500
107	Swietenia sp.	0.480581	0.901200	-0.076700	0.119546	0.270334
107	Swietenia sp.	0.480581	0.896500	-0.107300	0.117223	0.278452
107	Swietenia sp.	0.480581	0.893500	-0.103400	0.118549	0.277659
108	Xanthostemon sp.	1.236086	0.420700	-0.272000	0.340130	0.454455
108	Xanthostemon sp.	1.236086	0.418500	-0.250700	0.331770	0.469812
108	Xanthostemon sp.	1.236086	0.417900	-0.219000	0.343227	0.456330
109	Berchemia discolor	0.955796	0.440300	-0.059100	0.343249	0.407776
109	Berchemia discolor	0.955796	0.441400	-0.065200	0.335285	0.416392
109	Berchemia discolor	0.955796	0.442500	-0.055500	0.342491	0.404910
110	Guibourtia coleosperma	0.961755	0.480000	0.493800	0.247727	0.465509
110	Guibourtia coleosperma	0.961755	0.485600	0.476800	0.251969	0.449494
110	Guibourtia coleosperma	0.961755	0.489200	0.473300	0.254810	0.440842
111	Machaerium sp.	1.036025	0.540200	-0.167800	0.257045	0.365273
111	Machaerium sp.	1.036025	0.536700	-0.158300	0.257025	0.369606
111	Machaerium sp.	1.036025	0.536800	-0.153800	0.258110	0.368141
112	Samanea saman	0.649719	0.735000	-0.223400	0.148626	0.326778
112	Samanea saman	0.649719	0.730000	-0.233700	0.146187	0.335043
112	Samanea saman	0.649719	0.728700	-0.243900	0.142051	0.343955
113	Campnosperma sp.	0.517803	0.874900	-0.212000	0.107579	0.315994
113	Campnosperma sp.	0.517803	0.873000	-0.200400	0.106137	0.320752
113	Campnosperma sp.	0.517803	0.872300	-0.210400	0.104986	0.323791
114	Buxus sp.	0.856124	0.540600	-0.090200	0.228593	0.402760
114	Buxus sp.	0.856124	0.544700	-0.104000	0.227389	0.400029
114	Buxus sp.	0.856124	0.545600	-0.100200	0.236131	0.385738
115	Erythrophleum sp.	0.735967	0.555700	0.899600	0.263818	0.330459
115	Erythrophleum sp.	0.735967	0.558700	0.894300	0.258199	0.334473
115	Erythrophleum sp.	0.735967	0.560600	0.886700	0.267426	0.321362
116	Anadenanthera macrocarpa	0.963992	0.468700	0.488000	0.278381	0.438481

116	Anadenanthera macrocarpa	0.963992	0.470100	0.479000	0.294035	0.415687
116	Anadenanthera macrocarpa	0.963992	0.471600	0.478800	0.298703	0.407231
117	Chlorophora sp.	0.658406	0.842400	0.290700	0.092128	0.410363
117	Chlorophora sp.	0.658406	0.844500	0.271500	0.091936	0.410606
117	Chlorophora sp.	0.658406	0.846700	0.269100	0.093083	0.403008
118	Staudtia sp.	0.874887	0.658700	-0.272700	0.184866	0.339750
118	Staudtia sp.	0.874887	0.654100	-0.298100	0.173794	0.365157
118	Staudtia sp.	0.874887	0.652100	-0.291100	0.176034	0.362301
119	Cynometra sp.	0.956749	0.535500	-0.139700	0.260568	0.363228
119	Cynometra sp.	0.956749	0.524600	-0.094800	0.275848	0.357458
119	Cynometra sp.	0.956749	0.524600	-0.072500	0.283005	0.350148
120	Swartzia leiocalycina	1.268000	0.398900	0.240900	0.338884	0.498649
120	Swartzia leiocalycina	1.268000	0.400200	0.247900	0.333596	0.502014
120	Swartzia leiocalycina	1.268000	0.401000	0.242800	0.317597	0.519360
121	Baphia kirkii	1.103675	0.419300	0.793100	0.242629	0.598341
121	Baphia kirkii	1.103675	0.430100	0.764200	0.252181	0.555863
121	Baphia kirkii	1.103675	0.438200	0.739900	0.281730	0.493626
122	Dalbergia cearensis	0.764343	0.684800	0.188000	0.142700	0.387019
122	Dalbergia cearensis	0.764343	0.694900	0.153500	0.149112	0.364188
122	Dalbergia cearensis	0.764343	0.701000	0.150800	0.153943	0.349516
123	Dalbergia tucurensis	0.705964	0.664700	-0.063000	0.150726	0.385740
123	Dalbergia tucurensis	0.705964	0.674300	-0.094300	0.167175	0.347733
123	Dalbergia tucurensis	0.705964	0.677700	-0.100500	0.169788	0.339051
124	Acer sp.	0.653885	0.672600	0.184900	0.173153	0.336741
124	Acer sp.	0.653885	0.684500	0.146900	0.183838	0.311365
124	Acer sp.	0.653885	0.691100	0.126100	0.184221	0.305166
125	Dipterocarpus sp.	1.117999	0.511100	-0.069600	0.197430	0.519449
125	Dipterocarpus sp.	1.117999	0.529400	-0.121800	0.212043	0.456446
125	Dipterocarpus sp.	1.117999	0.539600	-0.155700	0.215487	0.432719
126	Liriodendron tulipifera	0.540571	0.876100	-0.352900	0.108838	0.312070
126	Liriodendron tulipifera	0.540571	0.872300	-0.387300	0.105287	0.321855
126	Liriodendron tulipifera	0.540571	0.871400	0.391600	0.105963	0.320668
127	Michelia sp.	0.455938	0.998100	-0.181200	0.109204	0.237761
127	Michelia sp.	0.455938	1.001600	-0.167800	0.106548	0.241026
127	Michelia sp.	0.455938	1.002500	-0.155300	0.107437	0.239839
128	Palaquium sp.	0.532069	0.973000	-0.125900	0.113845	0.243335

128	Palaquium sp.	0.532069	0.983600	-0.151000	0.116823	0.234508
128	Palaquium sp.	0.532069	0.988300	-0.159600	0.116958	0.232273
129	Acacia sp.	1.034903	0.410000	0.155400	0.212391	0.676609
129	Acacia sp.	1.034903	0.427500	0.099300	0.258711	0.545133
129	Acacia sp.	1.034903	0.434200	0.084600	0.262054	0.527250
130	Toona sinensis	0.435651	1.008600	-0.087500	0.155046	0.171287
130	Toona sinensis	0.435651	1.014600	-0.097100	0.159820	0.164715
130	Toona sinensis	0.435651	1.017300	-0.116100	0.156972	0.166762