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Preparation of Anisole in Phenol by Zn/HZSM-5 Catalyst 
from Walnut Shell Catalyzed Liquefaction 
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The promotional effect of Zn was investigated relative to the calcining 
activation of HZSM-5. It was found that the lignin separated from walnut 
shell could be liquefied into small molecular ethers such as anisole by the 
promotional effect of the modified catalyst. Experimental results showed 

that, after the loading of Zn+, the HZSM-5 catalyst retained its original 
crystal structure, which exhibited good metal dispersion. Besides, due to 
the existence of two interactions respectively of Zn with Al and Zn with a 
Brønsted-Lowry acid on the Zn/HZSM-5 catalyst surface, the remaining 
catalyst intergranular distance increased, particularly for the 2% 
Zn/HZSM-5 catalyst. The inside of the catalyst was in a state of spherical 
particle aggregation with a narrow pore size distribution and uniform 
particle size. The peak intensity of the Si-O stretching vibration was 

affected by the content of Zn+, which was least affected for the 2% 
Zn/HZSM-5 catalyst. The signal peak of this small molecule ether was not 
found in the absence of the metal ions, and the catalytic effect of 2% 
Zn/HZSM-5 was more distinct. Calculated by the mass difference method, 
the yield of the liquid via the 2% Zn/HZSM-5 catalyst was 59.8%, including 
phenol and small molecule ethers represented by anisole. 
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INTRODUCTION 

The environmental impact of global warming is motivating a shift to biomass 

resources, which entail less environmental contamination and fewer health risks compared 

with fossil fuel (Isa et al. 2018). Among the bio-renewable polymers, lignin, as the second 

most ample biomass next to cellulose, is an amorphous and carbon-rich aromatic polymer 

composed with aromatic structure units (Kang et al. 2013). The structure of lignin is based 

on phenylpropanoid units involving alkyl aryl ether linkages, some of which carry phenolic 

hydroxyl groups (Cox 2012). Native lignin has complex and three-dimensional amorphous 

structures, which limits the commercial utilization of it that less than 5% of the lignin 

removed from wood during pulping operations (Alzari et al. 1990). Due to environmental 
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concerns and the shortage of petroleum resources, lignin has been investigated to be a 

lower-cost raw material compared to other current organic materials (Kubo and Kadla 2005; 
Gordobil et al. 2014; Mota et al. 2016). The prominent properties of lignin, such as high 

abundance, low weight, and environmental friendliness, as well as its antioxidant, 

antimicrobial, and biodegradable nature, make it an ideal candidate for the development of 

novel polymer composite materials (Thakur et al. 2014). The prerequisite to synthesize a 

novel polymer composite material is that the raw materials must be small molecules with 

definite molecular structures, which means that the liquefaction of lignin is essential for 

such syntheses (Lee et al. 2011; Cinelli et al. 2013; Ma et al. 2016). The preparation of 

small-molecule platform compounds by liquefying pure lignin or other biomass with high 

lignin contents is also a new direction for biomass research and utilization. Walnut shell is 

a widely available biomass resource having lignin contents of that can reach up to 56.6% 

(Zheng et al. 2007). It can be concluded from previous studies that phenol is a good 

liquefaction agent for walnut shell, because that it can degrade walnut shell to produce 

small molecules by providing an active group for the liquefaction (Yin et al. 2012). 

Catalysts have played a crucial role in the utilization of biomass in recent years, 

especially in the liquefaction of biomass. The zeolite catalyst is widely applied due to its 

convenience of being readily separated and reused without corrosion (Batistela et al. 2017). 

A crystalline aluminosilicate zeolite (molecular sieve) catalyst (HZSM-5) is universally 

used for the catalytic conversion of olefins (Sadrameli 2016), and it also can be applied for 

the preparation of some chemicals by various supported modifiers (Li et al. 2015; Xu et al. 

2015; Fattahi et al. 2016; Shen et al. 2016). Several papers had reported the use of HZSM-

5 zeolite for the catalyzed fast pyrolysis of lignin. For instance, Jackson et al. (2009) 

screened various catalysts, including HZSM-5, KZSM-5, Al-MCM-41, solid phosphoric 

acid, and a commercial hydrodesulfurization catalyst (Co/Mo/Al2O3) in oxygenated form, 

and concluded that the HZSM-5 zeolite was the best choice for producing deoxygenated 

organics. Mullen et al. (2017) studied the catalytic fast pyrolysis of lignin from four 

different sources by using both HZSM-5 and CoO/MoO3 in a microscale pyroprobe, and 

the former was proved to be more efficient than the later to produce oxygen-free aromatics, 

regardless of the types of lignin. Asadieraghi et al. (2015) studied the upgrading of 

pyrolysis vapors derived from palm kernel shells catalyzed by various catalysts, including 

the HZSM-5 and Ga/HZSM-5, the main products obtained by which were alkoxy phenol 

and aromatic hydrocarbons. HZSM-5 exhibited better activity in the aromatization and 

deoxygenation during the upgrading of pyrolytic vapors, although it did decrease the bio-

oil yield. Compared with that, the Ga/HZSM-5 catalyst increased the bio-oil yield, and the 

aromatics selectivity can be enhanced by the introduction of appropriate amount of gallium. 

Huang et al. (2017) explored inexpensive catalysts supported with Ni/HZSM-5 for the 

depolymerization of kraft lignin with formic acid at lower temperatures. Results showed 

that the presence of a supported metal catalyst can effectively reduce the molecular weight 

(MW) of the depolymerized lignin product, although the catalyst did not have effects on 

the yield of product. On the other hand, the Zn/HZSM-5 catalyst can be used for both the 

catalytic conversion of methanol to aromatics and the aromatization of alkanes 

(Abdelsayed et al. 2015; Fei et al. 2015; Lai and Veser 2016); the content of Zn markedly 

enhances the aromatization performance (Xin et al. 2013). Zhou et al. (2016) studied the 

effect of temperature on the catalyst HZSM-5 for the pyrolysis vapor derived from the 

upgrading of lignin. Results showed that a high catalyst temperature (600 C) was required 

to produce oxygen-free aromatics, and an organic liquid product containing 70 wt% of 

oxygen-free aromatics (mainly benzene and toluene) was obtained at 600 C. 
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Anisole is not only used as a solvent, but also used in the preparation of essential 

oils and organic synthesis (Jaworski et al. 2005). It can be obtained by reacting 

dimethylsulfate with phenol in an alkaline solution, but the dimethylsulfate is highly toxic. 

Current research is aimed at finding a healthier, simpler, and lower-cost preparation method 

to obtain anisole. In this paper, the Zn/HZSM-5 catalyst is used to catalyze the liquefaction 

of walnut shell biomass, and anisole is obtained via catalyzed liquefaction at a low 

temperature (150 C) and a low atmospheric pressure.  

 

 

EXPERIMENTAL 
 
Materials  

Walnut shell powder was provided by Dali Yangbi Walnuts Co., Ltd. (Dali, China). 

The powder was less than 74 µm in size. The lignin content of walnut shell is known to 

contain many phenolic hydroxyl groups, which are capable of reacting with formaldehyde 

to produce long-chain substances. Phenol was purchased from Tianjin Fengchuan 

Chemical Reagent Technology Co., Ltd. (Tianjing, China). The catalyst HZSM-5 was 

obtained from Tianjin Nanhua Catalyst Co., Ltd. (Tinjing, China). The silicon-to-aluminum 

ratio (Si/Al) of HZSM-5 was 38. After the activation reaction at 550 C for 5 h, the pore 

size increased to 6.93 nm (the non-activated diameter was 3.83 nm). Zinc chloride was 

purchased from Xilong Chemical Co., Ltd. (Guangdong, China). Concentrated sulfuric 

acid was obtained from the Yunnan Yanglin Industrial Development Zone, Yunnan 

Pharmaceutical Co., Ltd. (Yunnan Sheng, China). All reagents were of analytical grade. 

 

Catalyst synthesis 

The HZSM-5 was treated by activation at 550 °C for 5 h to be used as support 

material. The Zn/HZSM-5 catalysts with different mass ratios of ZnCl2 loading (1%, 1.5%, 

2%, 2.5%, and 3%) were prepared using the wet impregnation method, as shown in Fig. 1. 

 

 
 

Fig. 1. Synthetic process of the Zn/HZSM-5 catalyst 
 

Catalytic liquefied walnut shell 

The walnut shell powder was first mixed with phenol with a mass ratio of 1:5 

(powder to phenol), and Zn/HZSM-5 was subsequently added, with a mass of 3% of phenol. 

The reaction lasted for 2.5 h at 150 C under atmospheric pressure. After that, the solution 

was filtered while it was still hot. Afterwards, the filtrate was kept for subsequent reactions. 

The process of catalytic liquefied walnut shells is shown in Fig. 2. 
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Fig. 2. Catalyzed liquefaction of walnut shells in phenol via Zn/HZSM-5 catalyst 

 

Methods 
Characterization of catalysts 

X-ray diffraction analysis (XRD) was performed on an Ultima IV X-ray 

diffractometer (KYOWAGLAS-XA; Rigaku, Kuraray, Japan), utilizing the Si holder and 

scanning from 5° to 35° (2θ). Nitrogen adsorption experiments (BET measurement method) 

were performed with an ASAP 2020 plus HD 88 instrument (Micromeritics, Shanghai, 

China). The Fourier transform infrared (FTIR) analysis was performed with a Nicolet 6700 

FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) using the KBr pellets. 

 

Characterization of liquefied products 

The carbon-13 nuclear magnetic resonance (13C-NMR) analysis was performed on 

an AVANCE III 600 MHz NMR spectrometer (Bruker, Billerica, MA, USA) at 298 K and 

at a frequency of 150 MHz. Deuterated methanol was used as the solvent. Gas 

chromatography-mass spectrometry analysis (GCMS) was performed using a gas 

chromatograph-mass spectrometer (GCMS-QP2010 SE; Shimadzu Corp., Kyoto, Japan) 

utilizing chromatographic-grade methanol as a solvent. The FTIR analysis was performed 

with a Nicolet 6700 FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) 

using the KBr pellet method. 

 

 

RESULTS AND DISCUSSION 
 
Characterization of Catalysts 
XRD analysis 

The XRD patterns for the prepared HZSM-5 catalysts loading Zn are shown in Fig. 

1a. The high intensity diffraction peak between approximately 2θ = 20 to 25° indicated 

that all the catalysts retained their HZSM-5 crystal structure after being loaded and calcined 

with different metal oxides (Abdelsayed et al. 2015). The absence of any metal oxide peaks 

in the XRD patterns showed there was a good metal dispersion with a small particle size 

on the zeolite surfaces (Abdelsayed et al. 2013). The small angle XRD patterns of the 

microporous materials were sensitive to the presence of any particles inside their 

microporous channel structures, where the intensity and the d-spacing of the diffraction 

peak changed accordingly (Wang et al. 2017). To compare the XRD patterns of these 

catalysts, the data were normalized at 2θ = 23°. Figure 1b shows the influence of metal 
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loading on the microporous structure monitored at low angle diffraction peaks between 

approximately 2θ = 7 to 10° when the data were normalized. The value of the low angle 

diffraction peaks between approximately 2θ = 7 to 10° was noticeably less than that of 

pure HZSM-5 catalysts except for the 2% ZnHZSM-5. According to the equation for 

Bragg’s Law (2d  sin  θ = nλ), a smaller angle indirectly reflects an increase in the 

interplanar spacing. This could have been due to a strong interaction between the Zn and 

the Al framework on the catalyst surface, which led to a lower crystallinity (Abdelsayed et 

al. 2013). Additionally, there was a strong interaction between the Zn and the external 

Brønsted-Lowry acid sites on the external surface of the catalyst (Mhamdi et al. 2009). 

There was some balance between the two interactions using 2% Zn.  

 

 
 

Fig. 3. (a) XRD patterns for freshly calcined HZSM-5 supported with different proportions of Zn 
catalysts and (b) small angle XRD patterns for these catalysts 

 

Surface area and micropore analysis 

The concentration of ZnCl2 and HZSM-5, the average pore size (Pave), and the 

Brunauer-Emmett-Teller (BET) surface area (SBET) of the studied catalysts are listed in 

Table 1. The aperture distribution diagrams for the Zn/HZSM-5 catalysts are shown in Fig. 

4b. As shown, the increase of Zn load resulted in the trend of both increasing and 

decreasing of pore size. When the Zn load was 2%, the pore size reached maximum, and 

the pore size of the catalyst loaded was still less than the unloaded catalyst. The specific 

surface area slowly declined before suddenly declining further, with an abrupt turning point 

of 2.5%, which was mainly due to the strong interaction between Zn and the external 

Brønsted-Lowry acid sites that blocked some of the pore structures on the external surface 

of the catalyst (Mhamdi et al. 2009). When the diameter was closer to that of the original 

HZSM-5 catalyst, the interaction between Zn and external Brønsted-Lowry acid sites on 

the catalyst was lower, e.g., the 2% Zn/HZSM-5 catalyst (Wang et al. 2016), consistent 

with the similar d-spacing shift observed in the XRD data. 
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Table 1. Properties of Prepared Zn/HZSM-5 Catalysts 

No. Samples 
Concentration 
of ZnCl2 (wt%) 

Concentration of 
HZSM-5 (wt%) 

Average Pore 
Size (nm) 

BET Surface 
Area (m2/g) 

1 HZSM-5 0 100 7.0489 293.1314 

2 1% Zn/HZSM-5 1 99 6.6478 274.7728 

3 1.5% Zn/HZSM-5 1.5 98.5 6.7797 275.7754 

4 2% Zn/HZSM-5 2 98 6.9337 260.2011 

5 2.5% Zn/HZSM-5 2.5 97.5 6.8840 268.7894 

6 3% Zn/HZSM-5 3 97 6.6921 190.4880 

 

 

 
 

Fig. 4. (a) N2-adsorption isotherms and N2-desorption isotherms for Zn/HZSM-5 catalysts. The 
solid and open symbols are for the N2-adsorption and N2-desorption points, respectively. (b) 
Aperture distribution diagram for Zn/HZSM-5 catalysts 
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The N2-adsorption isotherms, N2-desorption isotherms, and the aperture 

distribution diagrams for the Zn/HZSM-5 catalysts are shown in Fig. 4a. All catalysts 

exhibited typical type Ⅳ isotherms with a small hysteresis loop in the range of p/p0 = 0.4 

to 0.9, which revealed the existence of mesoporous in the zeolites catalysts. This was due 

to the adsorption of N2 on the external surface of their crystallites and the capillary 

condensation in the spaces between the crystallites (Liu et al. 2012). All of the small 

hysteresis loops belong to the H1 type, according to the new International Union of Pure 

and Applied Chemistry (IUPAC) classification (Ihsan et al. 2016). This showed that the 

inside of catalysts was still in a state of spherical particle aggregation with a narrow pore 

size distribution and uniform particle size. 

 

FTIR analysis of catalysts 

In most cases, infrared spectrum are mainly used to analyze organic functional 

groups but not inorganic matter. However, the use of infrared spectroscopy to analyze the 

oxides of inorganic materials, such as catalysts, does exist. The type of cation for inorganic 

materials can affect the vibrational frequency of its anion (Davantès et al. 2015). The 

influence of Zn+ on the whole catalyst system was analyzed by noting the frequency of its 

infrared vibration. As shown in Fig. 5, with the addition of Zn+, the amplitude of the Si-O 

bond stretching vibration first showed a downward trend after rising at 1092 cm-1, which 

was the smallest for 2% Zn/HZSM-5, indicating a positive impact after the negative impact 

of that along with the Zn+ addition. The reason for this was that a small amount of Zn+ 

entered the pores of the catalyst, due to the strong interaction between the Zn and external 

Brønsted acid sites on the catalyst external surface that blocks some of its pore structures 

(Wang et al. 2016). That affected the stretching vibration absorption peak of the Si-O bond. 

After reaching the critical point (2% Zn/HZSM-5), the added Zn+ expanded this impact 

(Pradeep and Chandrasekaran 2006). 
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Fig. 5. FTIR spectra for calcined HZSM-5 supported with different proportions of Zn catalysts 
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Characterization of Liquefied Products 
NMR analysis  

The 13C-NMR spectrum of the liquefied product is shown in Fig. 6. The analysis of 

the liquefied material catalyzed through the 2% Zn/HZSM-5 catalyst and the catalyst-free 

liquefied material was conducted because the NMR spectrum of the catalyst was basically 

the same in this work, according to the data. The region inspected was the signal peak of 

the solvent phenol in the catalytic liquefaction process from about 115 ppm to 156 ppm. 

Within this region, the peak at 156.04 ppm corresponded to the carbon atom at position 1 

where the phenolic hydroxyl group was located; the peak at 115.94 ppm was related to the 

ortho position respectively at positions 2 and 6; the peak at 130.32 ppm was characteristic 

of positions 3 and 5; and the signal peak at 121.18 ppm was related to position 4 of the 

para-phenolic hydroxyl group (Park and Riedl 2000). The signal peak near 50 ppm was 

related to the carbon atom at position 7 of methoxytoluene, but it did not appear in the 

catalyst-free liquefaction product. The presence of catalyst promoted formation of 

methoxytoluene. 
 

 
 

 
 

Fig. 6. (a) NMR spectra for catalytic liquefaction products with 2% Zn/HZSM-5 catalysts and  
(b) NMR spectra for catalytic liquefaction products with the pure catalyst 
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GC-MS analysis 

Figure 7 shows the GC-MS spectrum of the liquefied product. As shown in Fig. 7, 

after the addition of the catalyst, the liquefied product had a higher content of 

methoxytoluene. However, the content of the substance in the liquefied material with the 

customary catalyst was not conspicuous. The content of methoxytoluene was the highest 

in the liquefied products catalyzed by 2% Zn/HZSM-5, while the other products were 

relatively lower. It was presumed that the catalytic effect was remarkable because the 

crystal structure of the 2% Zn/HZSM-5 catalyst had just reached the saturation point, and 

the catalytic effect was remarkably reduced due to the cluster phenomenon that was caused 

by an excess of Zn higher than 2% (Berry and Smirnov 2009). 

 

FTIR analysis of liquefied product via Zn/HZSM-5 catalysts 

Infrared spectroscopy has been shown to be a highly effective way to investigate 

specific interactions between polymers. Fourier transform infrared analysis can be used to 

qualitatively and quantitatively study the mechanism of interpolymer miscibility through 

hydrogen-bonding (Kadla and Kubo 2004). Figure 8 shows the infrared spectra of the 

liquefied products obtained via the catalytic liquefaction by the catalysts. As shown in Fig. 

8, the signal peak of the macromolecule ether bond appeared in the liquefied product with 

the HZSM-5 catalyst at 1040 cm-1, but the addition of the catalyst liquefied infrared 

spectrum did not find the same signal peak. Instead, a small molecular ether bond signal 

peak appeared at 1061 cm-1, indicating that the catalyst promoted the degradation of 

macromolecules (Kordić et al. 2017). 
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Fig. 7. GC-MS spectra for catalytic liquefaction products with Zn/HZSM-5 catalysts 

 

 
 
Fig. 8. FTIR spectra of liquefied product via Zn/HZSM-5 catalysts 

 

 

CONCLUSIONS 
 

The catalyst Zn/HZSM-5 was prepared using Zn+ on a HZSM-5 support through 

conventional incipient wetness impregnation. Liquefied walnut shell was catalyzed by 

Zn/HZSM-5 catalysts to estimate their catalytic performance. The following conclusions 

were obtained through analysis:  

1. The X-ray diffraction (XRD) results showed that all of the catalysts retained the 

original HZSM-5 crystal structure, demonstrating that Zn had good metal dispersion 
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on catalyst surfaces. However, apart from 2% Zn/HZSM-5, compared with the 

unloaded metal catalyst, the interplanar spacing increased. Particularly in the 2% 

Zn/HZSM-5 catalyst, the Zn was able to maintain an interaction balance between the 

Zn with Al framework and Zn with external Brønsted-Lowry acid sites on the surface 

of the catalyst.  

2. The Brunauer-Emmett-Teller (BET) data indicated that the pore size of 2% Zn/HZSM-

5 was the largest of the metal supported catalysts but still less than that of the 

unsupported. The hysteresis loop model in the adsorption-desorption isotherm 

illustrated that the catalyst was still in the shape of spherical particles, with a narrow 

pore size distribution and uniform particle size even through the interior of the catalyst 

loaded metal.  

3. Fourier transform infrared (FTIR) analysis of the catalysts implied that with an increase 

in the load ratio, the amplitude of Si-O stretching vibration first decreased and then 

increased, while the lowest amplitude point occurred when metal was loaded at 2%, 

which was also due to its interaction with Al and the Brønsted-Lowry acid on the 

catalyst surface.  

4. The nuclear magnetic resonance (NMR), gas chromatography – mass spectrometry 

(GC-MS), and FTIR data of the liquefied product indicated that the catalysts that 

supported metal promoted the formation of anisole, a small-molecule ether, whereas 

the pure catalysts did not produce this small-molecule ether. In addition, the catalyst 2% 

Zn/HZSM-5 generated a high amount of small-molecule ether. 
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