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This study characterized the lignin peroxidase (LiP) activity of soil via an 
enzyme assay to determine the reaction rates and activation energies for 
5 wt%, 10 wt%, 15 wt%, and 20 wt% lignin loads in urea crosslinked starch 
biocomposites. The results revealed that a mixed mode of LiP inhibition 
occurred after the soil was mixed with these biocomposites with different 
loads of lignin. Loading of lignin at 5 wt% and 10 wt% lignin resulted in 
higher values of catalytic activity of LiP: -39.58 and 49.14 µM h-1 g-1 soil, 
respectively. In comparison, with higher loading of lignin at 15 wt% and 20 
wt%, decreases in the catalytic activity of LiP were found and were 28.72  
to 37.25 µM h-1 g-1 soil, respectively. The activation energy of LiP 
increased approximately 1.11- to 1.22-fold when 15 and 20 wt% of lignin 
was loaded in biocomposites. Research findings established the 
possibility of unfavorable binding of the LiP to lignin with an increase in the 
load of lignin, possibly due to the complex structure of intact lignin and 
presence of inhibitory biodegradation products of lignin accumulates 
during lignin biodegradation in biocomposites. It was concluded that higher 
lignin contents (15 wt% and 20 wt%) were effective in reducing the activity 
of the soil LiP. Hence, higher lignin content possibly protects against 
losses of lignin, while acting as a filler in the formulation of biocomposites.   
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INTRODUCTION 
 

Lignin is made up of three phenylpropane units, which are syringyl, guaiacyl, and 

p-hydroxyphenyl. These units build up the complex aromatic structure of the lignin, which 

has an important role in maintaining the integrity of plant’s cell wall. Lignin also is known 

to provide protection to plants against pathogens. Lignin peroxidase (LiP) is the first 

enzyme that has ligninolytic activity, and it was purified from a fungal species, 

Phanerochaete chrysosporium. 
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LiP contains a heme cofactor that is able to break bonds of aromatic rings present 

in lignin (Romero et al. 2019). LiP is capable of oxidizing lignin directly at the protein 

surface by a long-range electron transfer process (Johjima et al. 1999). This electron 

transfer involves the His–Asp⋅⋅⋅proximal-His motif, which routes the electrons to oxidize 

polymeric lignin.  In the motif, His-239 acts as a possible lignin-binding site on the surface, 

which is linked to Asp-238. This Asp residue is hydrogen-bonded to the proximal His-176. 

In another study, energy changes demonstrated that the interface between Trp171 of LiP is 

more favorable with veratryl alcohol cation radical (VA•+) than with veratryl alcohol (VA). 

VA•+ stabilization at the LiP surface. This difference has been linked to the increase in 

enzyme turnover in the form of final product veratraldehyde, after the rapid reaction of 

VA•+ with O2; these events also make possible its participation in lignin degradation as a 

redox mediator (Houtman et al. 2018; Romero et al. 2019). The catalytic activity (Kcat) of 

LiP is also strongly associated with specific ratios of monomers, e.g., cinnamyl/vanillin, 

and syringyl:cinnamyl:vanillin/vanillin, in lignin. The maximum reaction velocity (Vmax) 

and enzyme-substrate affinity (Km) are tightly modulated by the nature of the source of the 

lignin. LiP has shown low Vmax and Km values, but high catalytic efficiency (kcat  = Vmax/Km) 

estimates in lignin-rich soils (Wang et al. 2012). In enzyme reactions, activation energy 

(Ea) has also  been viewed as a degree of conformational stability of enzymes in soil 

(Wallenstein et al. 2010). A low-quality carbon substrate, e.g., lignocellulose, requires a 

higher net Ea for biotransformation (Kleber 2010).  

Lignin is an important bioresource that is recommended as a hydrophobic filler for 

hydrophilic and bioabsorbent types of biocomposite matrices (Ariyanti et al. 2012). Lignin 

also protects the biocomposites degradation from microorganisms present in soil (Wool et 

al. 2000). In addition, the hydrophilic fraction of phenolic compounds has a low molecular 

weight, which may also affect the biodegradation of lignin fillers in biocomposites. The 

biodegradation of the lignin filler in starch biocomposites has not been reported in previous 

literature, which establishes the novel nature of this proposed research. If lignin 

biodegrades, then use as filler will impact negatively on the starch biocomposite in terms 

of its optimal mechanical properties. Therefore, the biodegradation of hydrophobic lignin 

in a hydrophilic starch matrix would not be effective in reducing the biodegradation of 

starch biocomposites. Furthermore, little research has been reported on the biodegradation 

of fillers in starch biocomposites. Therefore, lack of systematic studies pertaining to how 

the rates of enzyme reactions and their activation energies change during the filler 

biodegradation process warrants further research on this topic. In addition, the purpose of 

this study is to answer the question that how lignin constrain the activity of LiP in starch 

biocomposites that are carrying the increasing loads of lignin as filler. Thus, the objective 

of this work was to determine the reaction rates and activation energies of LiP, in response 

to low (5 wt% and 10 wt%) and high (15 wt% and 20 wt%) lignin loaded urea crosslinked 

starch (UcS) biocomposites. 

 
 
EXPERIMENTAL 
 
Materials 

The following materials were used: di-sodium tetraborate heptahydrate (99.9%) 

(Merck, Darmstadt, Germany), sodium potassium tartrate (99%) (HmbG Chemicals, 

Hamburg, Germany), L(+)-tartaric acid (99.5%) (Merck), trisodium citrate dihydrate 

(>99%) (Merck), citric acid monohydrate (>99%) (Merck), veratryl alcohol (96%) (Sigma-
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Aldrich, St. Louis, MO), hydrogen peroxide (30% w/v) (Thermo Fisher Scientific, 

Waltham, MA), urea (46% N) (PETRONAS Chemicals Fertilizer Kedah Sdn Bhd, Kedah, 

Malaysia), alkaline kraft lignin (Sigma-Aldrich, St. Louis, MO, USA), and tapioca 

starch (Cap Kapal ABC brand) (Thye Huat Chan Sdn Bhd, Penang, Malaysia). Loamy sand 

soil used in this work was collected from Titi Gantung (4.36° North, 100.84° East), Perak, 

Malaysia (Majeed et al. 2017). 

 
Lignin loading process for urea crosslinked starch biocomposites 

The lignin-loaded UcS biocomposites were prepared according to the authors’ 

previous published report (Majeed et al. 2017). The UcS with lignin were termed 

biocomposites and designated names based on the basis of lignin loadings which were 

UcS5%L, UcS10%L, UcS15%L, and UcS20%L (the L stands for lignin). The UcS0%L 

was used as control for the comparison of reaction rates and Ea of LiP. 

 
LiP reaction rates and activation energies 

The aerobic soil microcosm was constructed at laboratory scale at pH 4.8 to 5.0 and 

50% water holding capacity (Majeed et al. 2017) for the LiP kinetic studies. Approximately 

2.5 g of aerobic soil was separately extracted in a 50 mL sodium tartrate–citric acid buffer 

(100 mM, pH 2.5) for 30 minutes in an ice cooled water bath. The LiP activity was assayed 

by measuring the conversion of 0 to 300 µM of veratryl alcohol (substrate) into veratryl 

aldehyde (product) quantified at 310 nm via UV-Visible spectrophotometer (Shimadzu, 

Kyoto, Japan) (Ramírez et al. 2010). The unit activity of LiP is defined as the oxidative 

cleavage of 1 µM of veratryl alcohol to veratryl aldehyde in one minute. The molar 

extinction coefficient of veratryl aldehyde (9300 M-1 cm-1) was used to determine the unit 

activity of LiP (German et al. 2011). The Michaelis-Menten kinetic  was used to calculate 

the Vmax (maximum reaction velocity), Km (substrate affinity), and Kcat (catalytic efficiency) 

(Johnson and Goody 2011). OriginPro software (OriginLab Corporation, Northampton, 

MA) was used to fit the data into a Michaelis-Menten kinetic, a non-linear regression 

model, for predicting the Vmax and Km values for LiP. The Ea was calculated to measure the 

temperature sensitivities of soil LiP at three different temperatures (20 °C, 30 °C, and 40 

°C). The temperature and LiP reaction rates were analysed by fitting the data into the 

Arrhenius Equation (Arrhenius 1889).  

 
Statistical analysis 

One-way ANOVA was applied and followed by a post hoc Dunnett's test to 

determine whether the addition of lignin into biocomposites significantly reduced the 

reaction rates and Ea of LiP found in soil. 

 
 
RESULTS AND DISCUSSION 
 
Effect of Lignin’s Loadings on Reaction Rates of LiP 

Figure 1 shows the change in LiP reaction rates in response to different loads of 

lignin in starch biocomposites. The reaction rates of LiP decreased with the increase of 

lignin loads from 5 to 20 wt% in starch biocomposites. At 5 and 10 wt% of lignin loads, 

the reaction rates of LiP were higher than the control. By contrast, for 15 and 20 wt% of 

lignin loads, reaction rates were lower than the control in aerobic soil. However, the lignin 

loads at all concentrations showed a non-significant change in the reaction rates of LiP 
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(One-way ANOVA, F5,42 = 0.91, p-value greater than 0.05) in comparison to control. These 

findings showed that higher loads of lignin have observable impact on reducing the activity 

of LiP and hence protects the biodegradation of the lignin in biocomposites. The difference 

in reaction rates for LiP can be explained by the composition of lignin monomers, i.e., 

syringyl, cinnamyl, and vanillin.  Vanillyl-phenols are reported to be more resistant as 

compared to syringyl type of phenols in lignin (Thevenot et al. 2010). In the authors’ earlier 

work, biodegradation analysis revealed that higher starch to lignin ratios in low wt% lignin 

loaded biocomposites increased the hydrophilicity of the degraded lignin, which caused 

fast turnover of the lignin’s acid (Majeed et al. 2016). 
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Fig. 1. The reaction rates of LiP in aerobic soil mixed with lignin reinforced biocomposites  

 
In addition, low wt% of lignin loads could easily be oxidized due to better electron 

transference from the lignin to the LiP. This transfer of electrons is assumed to be favored 

by the higher starch to lignin ratio in biocomposites with low wt% of the lignin. The 

oxidation state of hydrophilic starch is lower than the oxidation state of hydrophobic lignin 

(Voitkevich et al. 2012; Kabo et al. 2013). This possibly increases the electron transfer 

efficiently to lignin. Insoluble high molecular weight lignin has been reported to be 

involved in long-range electron transfer and to serve as a reservoir of electrons known for 

facilitating the activity of oxidative enzymes (Westereng et al. 2015). It is therefore 

possible that the proportionally higher starch in 5 and 10 wt% compared to 15 and 20 wt% 

lignin biocomposites increased the electron transfer efficiently from the lignin to LiP. 

Therefore, a low concentration of lignin is possibly easily oxidized in biocomposites. This 

concept is supported by the observed higher reaction rates of LiP. In fact, LiP needs the 

electron transfer from the lignin (substrate) in order to form the oxidized intermediate 

forms of the LiP, i.e., LiP I and LiP II. In fact, dimeric lignins or monolignolic analogs 

containing free-hydroxyl phenolic groups are reported as unfavourable substrates and a 

potent inhibitor of the LiP. Therefore, higher loads of lignin (15 and 20 wt%) carry higher 

concentration of free hydroxyl phenolic moieties, which are known to reduce the enzymatic 

degradation rate of lignin by misbalancing the electron transfer between LP I and LiP II 

(Johjima et al. 1999; Eom and Kim 2014).  

In Table 1, the values of the reaction rates of LiP are shown, which were calculated 

in aerobic soil. The fold change in activity of LiP for lignin loaded biocomposites assessed 
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through the comparison with known activity for control. It was found that increasing the 

lignin concentration in the biocomposites had a negative correlation with the Vmax of LiP. 

The Vmax of LiP was approximately 1.01 to 1.08 times higher for 5 and 10 wt% lignin 

loaded biocomposites compared to the activity observed against control. The LiP activity 

observed for 15 and 20 wt% loads of lignin was approximately 1.05 to 1.22 times less than 

the activity found for control. The Km of LiP did not show much difference between the 

various lignin loadings in the biocomposites under aerobic soil conditions.  

Addition of lignin into the biocomposites reduced Km of LiP to approximately 1.26 

to 1.73 times less than the control. This can be explained if it is assumed that the LiP has 

higher affinity for lignin as its substrate. However, the Km of LiP did not change much 

despite the different loads of lignin. The difference in Vmax was not well correlated with the 

change in Km, which indicated the formation of LiP-lignin complexes involved mix mode 

of inhibition mechanism (Berg et al. 2012). It was concluded that at low concentration of 

lignin, LiP has higher affinity for lignin, but at higher concentration of lignin the activity 

of LiP is constrained.   

 
Table 1. Reaction Rate Constants of LiP in Aerobic Soil Mixed with Lignin 
Reinforced Biocomposites 

Biocomposites 

Vmax 

(µM h-1 g-1 soil) 

Mean ± SE 

Km (µM) 
Mean ± SE 

Kcat 

(h-1 g-1 soil) 
R2 

Dunnett's 

Test 

p-values 

UcS0%L 578.39 ± 37.14 20.69 ± 6.90 27.96 0.963 - 

UcS5%L 627.32 ± 40.15 15.85 ± 5.85 39.58 0.955 0.981 

UcS10%L 584.76 ± 36.24 11.90 ± 4.73 49.14 0.950 0.995 

UcS15%L 549.82 ± 26.00 14.76 ± 4.14 37.25 0.972 1.000 

UcS20%L 470.43 ± 25.05 16.38 ± 4.97 28.72 0.969 0.964 

Blank soil 366.822 ± 18.53 15.90 ± 4.63 23.07 0.970 0.568 

 
The Kcat of LiP was approximately 1.02 to 1.75 times greater in lignin-loaded 

biocomposites as compared to the control. When comparing the lignin loading amounts in 

the biocomposites in terms of the Kcat values, it was found that the Kcat of LiP decreased as 

the lignin wt.%  in biocomposites increased. This decrease in Kcat could be due to either 

the direct participation of the lignin in regulating the expression of LiP in soil residing 

microorganisms or the indirect involvement of the starch to lignin ratio in lignin-loaded 

biocomposites. First, lignin may be directly used as a substrate, which stimulates the soil 

microorganisms to produce more LiP. The expressed LiP is possibly inhibited by excess 

of lignin due to mixed-type of inhibition effect, which reduces the Kcat of LiP. This is 

further validated by the fact that the presence of additional recalcitrant vanillyl units in 

lignin can possibly reduce Kcat of peroxidases (Triebwasser-Freese et al. 2015). Second, 

starch could contribute to the lignin directed indirect inhibition of LiP and reduce the Kcat 

estimates. As starch provides glucose, which is an essential energy molecule, it is 

metabolized intracellularly to produce energy and promote cellular activities in 

microorganisms. However, the wt% of starch proportionally decreased in the lignin 

reinforced biocomposites in response to the stepwise increase in the amount of lignin 

added. Thus, ultimately less starch was available for microorganisms to metabolize and 

produce sufficient LiP to biodegrade the higher loads of lignin compared to lower loads of 

lignin in biocomposites. 



 

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Majeed et al. (2021). “Lignin-starch biocomposites,” BioResources 16(1), 1940-1948.  1945 

 
Activation Energy of LiP 

Figure 2 shows the reactions rates (ln k vs. 1/T (K) and the slope determined by the 

Ea. Table 2 summarizes the Ea values of the soil LiP obtained from Fig. 2, which was 

calculated after conducting the biodegradation experiments in aerobic soil for each 

biocomposite with different lignin wt%. Compared to the control biocomposites, the Ea of 

LiP generally increased in proportion to the increase in lignin wt% in biocomposites. This 

trend is in agreement with reports, which showed that starch biocomposites with 30 wt% 

toluene diisocyanate modified cellulose reduced the velocity rate constant of amylase 

enzymes by approximately 40% and doubled the Ea (as high as 23.93 KJ/mol to 25.35 

KJ/mol) in comparison to the unmodified starch biocomposite (Spiridon et al. 2015). Thus, 

under the current research work, the addition of lignin into starch reduced the rates of 

reaction but increased the Ea for LiP, which was in agreement with the literature. Thus, the 

increase in Ea of LiP was approximately 1.11 to 1.22 times greater in biocomposites than 

the control.  
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Fig. 2. Reaction rates ln k versus 1/T (K) 

 
Table 2. Ea of LiP Determined in Aerobic Soil Conditions After Mixing of Lignin 
Reinforced Biocomposites 

Biocomposites 
Activation Energy 

(KJ mol-1) 
Mean ± SE 

Linear Fit Eq. R2 
Dunnett's Test 

p-values 

UcS0%L 38.58 ± 4.24 y = 4640x - 18.67 0.998 - 

UcS5%L 36.22 ± 3.98 y = 4356x - 18.18 0.947 0.955 

UcS10%L 43.09 ± 4.74 y = 5183x - 20.99 0.999 0.663 

UcS15%L 44.70 ± 4.91 y = 5377x - 21.38 0.999 0.406 

UcS20%L 47.38 ± 5.21 y = 5699x - 22.16 1.00 0.142 

Blank soil 45.74 ± 5.03 y = 5501x - 21.48 0.933 0.278 

1/T (K) 
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The effect of different wt% of lignin on the Ea of LiP in biocomposites showed a 

non-significant difference (one-way ANOVA F5,12 = 2.55,  p-value less than 0.05). The 

increase in Ea indicated that LiP activity greatly depends on the temperature, in terms of 

the depolymerization of lignin, in comparison to increasing lignin wt.% in the 

biocomposites. A lower lignin wt% in the biocomposite was possibly related to a lower 

temperature sensitivity of the reactions catalyzed by LiP, which was needed in order to 

pass the energy barrier for the conversion of the lignin into their biodegradation products. 

 

 
CONCLUSIONS 
 

1. Soil lignin peroxidase (LiP) responded differently to low and high wt% of lignin added 

as a filler to starch termed as biocomposites. Higher amounts, i.e., 15 and 20 wt% of 

lignin, can more effectively reduce the reaction velocity of LiP due to constraint of the 

lignin on LiP affinity, which ultimately reduces its catalytic activity.  
 

2. The reaction rates of LiP corresponded to the higher energy of activation (Ea) in 15 

and 20 wt% lignin-reinforced biocomposites, which explained why the LiP needed a 

greater temperature to have equal reaction rates observed in the 5 and 10 wt% lignin 

loaded biocomposites.  
 

3. Based on this work, it is recommended to employ a higher lignin load (>15%) for 

lignin reinforced biocomposites in order to effectively constrain the LiP activity to 

reduce the depolymerization of lignin, i.e., reduce the loss of filler properties in the 

biocomposites.   
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