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The laccase producing abilities of four Basidiomycete fungi species were 
compared using solid-state fermentation using four different lignocellulosic 
residues. The biosynthetic potential of the Basidiomycetes was highly 
dependent on the type of fungi. In general, the laccase secreting ability of 
Cerrena unicolor Han 849 was greater than Lenzites betulinus Han 851, 
Stropharia rugosoannulata Han 1321, and Auricularia heimuer Han 1333. 
The maximum laccase production of C. unicolor Han 849 was 
approximately 11.25, 122.26, and 15.27 times higher than L. betulinus Han 
851, S. rugosoannulata Han 1321 and A. heimuer Han 1333, respectively. 
Different species of fungi had a preference in lignocellulosic residues. The 
presence of Firmiana platanifolia was conducive to secreting laccase via 
C. unicolor Han 849 during solid-state fermentation. A continuous and 
stable laccase production via C. unicolor Han 849 was an obvious 
advantage of solid-state fermentation with any of the four lignocellulosic 
residues used. The maximum laccase production of C. unicolor Han 849 
using Firmiana platanifolia was approximately 2.12, 1.68, and 6.13 times 
higher than Populus beijingensis, Sorghum bicolor, and Oryza sativa, 
respectively. These findings will be helpful for developing new productivity 
strains in industrial applications and selecting suitable lignocellulosic 
residues for laccase production. 
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INTRODUCTION 
 

The application of enzymes in order to degrade pollutants has attracted a large 

amount of attention in the past few decades. Laccases (benzenediol: oxygen oxidoreductase, 

EC 1.10.3.2) are a group of blue multicopper oxidases that were first isolated from Rhus 

vernicifera (Yoshida 1883) and are widely present in plants, fungi, bacteria, and insects. 

Laccases can catalyze the oxidation of a wide variety of phenolic and nonphenolic lignin-

related compounds, causing the reduction of molecular oxygen to water (Li et al. 2011; 

Yang et al. 2015; Zerva et al. 2019). Fungal laccases are best known for their role in lignin 

degradation, but they serve many other roles involving various aspects of multiple fields 

(An et al. 2018). Since they are energy-saving and environmentally friendly, laccases have 

potential applications in numerous industrial and biotechnological fields, e.g., wine and 
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juice stabilization, fiber properties improvement, biosensor development, detoxification of 

environmental pollutants, dye decolorization, bio-synthesis, and bioremediation (Bilal et 

al. 2019; Deska and Kończak 2019; An et al. 2020a,b; Han et al. 2020). However, their 

application to biotechnological processes has been limited due to high production costs, 

which results in low enzyme activity and low yields. Increasing amounts of attention have 

been paid to studies demonstrating effective laccase production strategies associated with 

increased activity and reduced costs (Akpinar and Urek 2017; Chenthamarakshan et al. 

2017; An et al. 2018; Singh and Arya 2019). 

Among the various fungal phyla, basidiomycete fungi produce different kinds of 

extracellular oxidoreductases including laccases, peroxidases (manganese peroxidase and 

lignin peroxidase), and oxidases that generate H2O2 (Shrestha et al. 2016). Laccase 

production is highest in white rot fungi (Basidiomycetes) (Wang et al. 2019). Commonly 

used fermentation methods are submerged fermentation and solid-state fermentation. In the 

past, submerged fermentation (SF) was the most commonly used technology for the 

production of most enzymes, including laccase. The advantage of submerged fermentation 

is the homogeneous distribution of nutrients, which can result in full contact by the cultured 

microorganisms and therefore the full absorption of the nutrients. However, it also causes 

the dilution of the enzyme. There has been a trend during the past decade towards the 

increased use of solid-state fermentation (SSF) for the production of certain enzymes (Xin 

and Geng 2011; Nguyen et al. 2018). During solid-state fermentation, the microorganism 

is grown in the near or complete absence of free water with an natural substrate as solid 

support (Jaramillo et al. 2017). Therefore, SSF more closely simulates the natural 

environment of the microorganism. In addition, SSF has numerous advantages over SF, 

e.g., lower energy consumption and higher product recovery (Jiang et al. 2017). However, 

disadvantages for SSF have been observed during laccase production, which included 

difficulties in scaling up and large batch-to-batch variation. 

Laccase is generally produced at low concentrations by fungi grown on basal media 

(Songulashvili et al. 2011), but relatively higher concentrations are obtained by the 

addition of various supplements or altering other factors, e.g., pH, temperature, and 

included aromatic compounds (Dominguez et al. 2007; Janusz et al. 2015; Metreveli et al. 

2017; An et al. 2018; Filipe et al. 2019; An et al. 2020a,b; Atilano-Camino et al. 2020; 

Rajavat et al. 2020). Metal ions, e.g., Cd2+, Ag+, Hg2+, Mn2+, and Cu2+, are often used as 

additional supplements (Mäkela et al. 2013; An et al. 2016a, 2020a). Among the various 

metal ions, Cu2+ is considered to be an excellent inducer at certain concentrations. An et 

al. (2016) reported that in general, the presence of copper could increase the laccase activity 

obtained from strains belonging to the Flammulina genus. An et al. (2020a) reported that 

a final ion concentration of 2 mM could increase the laccase activity obtained from 

Pleurotus ostreatus CCEF 89. A combination of copper and manganese ions as the inducer 

for enhancing the laccase activity of P. ostreatus was shown to be superior to the use of 

single copper ions or manganese ions as inducers. The substrates used for SSF are typically 

lignocellulosic wastes needed for microorganism growth, enzyme production, and 

metabolite synthesis (Hatvani and Mécs 2001). Fungi, particularly white rot fungi, have a 

strong ability to degrade lignins and other cellulosic substances. Many research groups 

have attempted to improve laccase production by screening fungal strains based on the 

choice of lignocellulosic waste and optimization of the medium (Tišma et al. 2012; 

Soumya et al. 2016). Approximately 200 billion tons of agricultural wastes are generated 

each year all over the world (Ren et al. 2009). Lignocellulose, the major form of 

agricultural waste, is regarded as a low-cost nutrient substitute for laccase production in 
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SSF systems in comparison with other complex nutrient sources (Huang et al. 2017). 

Lignocellulosic biomass, e.g., agro-industrial residues (straw, corncob, sugar cane bagasse, 

cottonseed hull, and corn stover) and forestry materials (leaves and sawdust), are 

principally made up of cellulose, hemicellulose, and lignins. A large majority of 

agricultural waste is used as livestock feed, fuel, and in paper production, or burned or left 

to rot, which contributes to environmental pollution and resource waste. Therefore, the 

efficient bioconversion of lignocellulose is an important goal in terms of agricultural waste 

resource utilization. It is a better method for producing laccase via culture fungus with 

lignocellulosic wastes. In addition, laccase activity is greatly dependent on the type of 

fungal species or strain (An et al. 2016, 2018; Han et al. 2018, 2020). The capacity of 

producing laccase from different fungi is different, so it is necessary to compare the laccase 

production of different species (Agrawal et al. 2018; An et al. 2018, 2020a,b). 

Most of the previous studies in this area were focused on the laccase production 

secreted by the fungal genera Pleurotus and Trametes. However, the development of new 

productive strains is a persistent topic. Meanwhile, using inexpensive lignocellulosic 

wastes to ferment productive strains to produce laccase is a popular method. However, it 

is extremely necessary to evaluate the laccase activity of new productive strains using 

various lignocellulosic wastes. Under the circumstances, the present work deals with the 

evaluation of the laccase producing ability of four strains belonging to different species via 

solid-state fermentation using various lignocellulosic residues. 

 
 
EXPERIMENTAL 
 
Materials 
Microorganisms 

The four tested Basidiomycete strains (Han 849, Han 851, Han 1321, and Han 1333) 

were maintained on malt extract agar (MEA) medium (composed of 10 g/L of glucose, 20 

g/L of malt extract, 3 g/L of KH2PO4, and 20 g/L of agar) at 4 °C at the College of Life 

Science, Langfang Normal University. Two wild strains (Han 849 and Han 851) were 

isolated from the Wulingshan National Nature Reserve, Xinglong county, Chengde city, 

Hebei province, China. One cultivated strain (Han 1321) was purchased from a market and 

isolated, and another cultivated strain (Han 1333) was donated by farmers from the 

Heilongjiang province, China. The fungus was reactivated in Petri dishes containing a 

complete yeast medium (CYM) (composed of 20 g/L of glucose, 2 g/L of peptone, 2 g/L 

of yeast extract, 0.5 g/L of MgSO4·7H2O, 1 g/L of K2HPO4·3H2O, 0.46 g/L of KH2PO4, 

and 20 g/L of agar) at 26 °C for 9 d. 

 
Lignocellulosic materials 

Populus beijingensis was obtained from the Langfang Normal University (Hebei, 

China). Firmiana platanifolia was also obtained from Langfang. Sorghum bicolor and 

Oryza sativa were kindly provided by farmers in Chengde city, Hebei province, China. All 

of the lignocellulosic residue samples were chopped into small pieces before being air-

dried and ground. The particle size of the lignocellulosic residues was between 20 mesh 

and 60 mesh. 
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Methods 
Inoculum preparation 

Inoculants with a diameter of 5 mm were made with a hole punch from reactivated 

fungus in Petri dishes. Then, 5 inoculants were placed in 250 mL flasks containing 100 mL 

of CYM medium (composed of 20 g/L of glucose, 2 g/L of peptone, 2 g/L of yeast extract, 

0.5 g/L of MgSO4·7H2O, 1 g/L of K2HPO4·3H2O, and 0.46 g/L of KH2PO4) and cultured 

on a rotary shaker at temperature of 26 °C and 150 rpm. After 8 d, the mycelial pellets were 

harvested and homogenized with a laboratory blender for 2 min at 5000 rpm. The resulting 

suspension was used as an inoculum. 

 
Culture conditions 

The solid-state fermentation (SSF) processes of the Populus beijingensis, Firmiana 

platanifolia, Sorghum bicolor, and Oryza sativa wastes were performed individually at a 

temperature of 26 °C in 250 mL flasks containing 3 g of the substrate with 12 mL of 

deionized water. The Erlenmeyer flasks containing the substrate and deionized water were 

autoclaved at 121 °C for 30 min. When it cooled to room temperature, 3 mL of inoculum 

was added to inoculate each flask. All flasks were incubated at 26 °C. 

Extracellular laccase was extracted with 100 mL of 50 mM acetate-sodium acetate 

buffer (a pH 5.5). The extractions were performed on a rotary shaker at a temperature of 

10 °C and a speed of 150 rpm for 4 h (Han et al. 2020). The extracted liquid was filtered 

with Whatman No. 1 filter paper and then centrifuged at a temperature of 4 °C with a speed 

of 12000 rpm for 20 min. The supernatant was the crude enzyme liquid used for measuring 

the enzyme activity. 

 
Enzyme activities assays 

Laccase activity was assayed via the changes in the absorbance at 415 nm, which 

is related to the rate of oxidation of 1 mM 2,2’-azinobis-[3-ethyltiazoline-6-sulfonate] 

(ABTS). The reaction mixture was referred to in Han et al. (2020) and measured using an 

iMarkTM microplate absorbance reader (Bio-Rad, Hercules, CA). One unit of enzyme 

activity was defined as the amount of enzyme forming 1 µmol of ABTS+ per min (Ɛ415 = 

3.16 × 104 M-1 cm-1). 

The mean values were taken from three independent experiments and the standard 

deviations for the experiments were less than ± 10% of the mean values. 

 
Statistical analysis 

Two-way analysis of variance between the lignocellulosic residues and the different 

species was performed according to Han et al. (2020), using SPSS software (PROC GLM, 

version 22.0, IBM, Armonk, NY). All statistical figures were generated using the program 

Origin 2016 (OriginLab Corporation, Northampton, MA). 

 
Genomic DNA extraction, polymerase chain reaction, and sequencing 

Mycelia for the DNA extraction were grown on CYM for 9 d, and the samples were 

obtained from the surfaces of the CYM via scraping. The total genomic DNA of the 

mycelia was extracted via a cetyltrimethylammonium bromide rapid plant genome 

extraction kit (Aidlab Biotechnologies Co., Ltd., Beijing, China) according to the 

instructions provided by the manufacturer with some modifications (An et al. 2016; Han 

et al. 2016; An et al. 2020a). The method of amplifying the ITS regions and polymerase 

chain reaction (PCR) cycling schedule for ITS was in accordance with a study by Han et 
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al. (2016). The PCR products were purified and sequenced at Beijing Genomics Institute 

(Beijing, China). The newly generated sequence was deposited in GenBank. 

 
 
RESULTS AND DISCUSSION 
 
Molecular Biological Results 

The four tested basidiomycete strains (Han 849, Han 851, Han 1321, and Han 1333) 

were identified via molecular biology as Cerrena unicolor, Lenzites betulinus, Stropharia 

rugosoannulata, and Auricularia heimuer. The corresponding GenBank numbers were 

MW467890, MW467891, MW467892, and MW467893, respectively. 

 
Laccase Activity from Different Lignocellulosic Residues 

Recent studies have shown that lignocellulosic residues stimulate enzyme 

production in basidiomycetes (Pinar et al. 2017; Gupta and Jana 2018; Huang et al. 2019; 

Leite et al. 2019; Sadeghian-Abadi et al. 2019; Atilano-Camino et al. 2020; Han et al. 

2020). Moreover, lignocellulosic residues are suitable for solid-state fermentation and 

submerged fermentation. Previous studies on the laccase production of fungi grown on 

lignocellulosic residues have primarily used common lignocellulosic materials, e.g., poplar 

wood, cottonseed hull, tree leaves, corncob, and coffee shells (An et al. 2020b; Han et al. 

2020). However, there is a large variety of lignocellulose residues. Finding new suitable 

lignocellulosic residues for the growth of fungi in order to produce laccase is also important 

for solid-state fermentation. In this study, Populus beijingensis, Firmiana platanifolia, 

Sorghum bicolor, and Oryza sativa were used to stimulate the tested fungi grown into 

secreting laccase. As shown in Table 1, the effect of the lignocellulosic residues on the 

laccase production of four Basidiomycete fungi strains was significant (p-value was less 

than 0.001) throughout the fermentation stage. 

In terms of Cerrena unicolor Han 849, laccase activity was detected in all 

lignocellulosic residues on day 1 (as shown in Figs. 1 through 4). The laccase activity of 

C. unicolor Han 849 with Oryza sativa, Sorghum bicolor, Firmiana platanifolia and 

Populus beijingensis residues was 35.56 U/L ± 1.81 U/L, 26.92 U/L ± 0.87 U/L, 121.86 

U/L ± 3.48 U/L, and 45.11 U/L ± 1.96 U/L, respectively, on day 1. Compared to the other 

three lignocellulosic residues, C. unicolor Han 849 secreted higher laccase activity with 

Firmiana platanifolia from day 1 (as shown in Fig. 3). The laccase activity of C. unicolor 

Han 849 with Oryza sativa, Sorghum bicolor, Firmiana platanifolia, and Populus 

beijingensis residues ranged from 25.12 U/L ± 0.97 U/L to 102.17 U/L ± 3.55 U/L, 26.92 

U/L ± 0.87 U/L to 371.71 U/L ± 5.69 U/L, 121.86 U/L ± 3.48 U/L to 625.98 U/L ± 24.08 

U/L, and 45.11 U/L ± 1.96 U/L to 295.96 U/L ± 4.85 U/L, respectively (as shown in Figs. 

1 through 4). The laccase activity of C. unicolor Han 849 with Firmiana platanifolia was 

maintained at a high level during the entire fermentation stage (as shown in Fig. 3). The 

maximum laccase activity using Firmiana platanifolia was higher than Oryza sativa, 

Sorghum bicolor, and Populus beijingensis, approximately 6.13, 1.68, and 2.12 times as 

much (as shown in Table 2). The time to reach maximum laccase activity for C. unicolor 

Han 849 with Oryza sativa, Sorghum bicolor, Firmiana platanifolia, and Populus 

beijingensis was 6 d, 6 d, 7 d, and 10 d, respectively (as shown in Table 2). The time to 

reach maximum laccase activity for soft lignocellulosic residues (Oryza sativa and 

Sorghum bicolor) was slightly sooner than for hard wood residues (Firmiana platanifolia 

and Populus beijingensis). Han et al. (2020) reported that the time to reach maximum 
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laccase activity using Pleurotus ostreatus CY 568 with poplar sawdust was earlier than 

when using corncob, while the time to reach maximum laccase activity using P. ostreatus 

CCEF 99 with corncob was earlier than when using poplar sawdust. An et al. (2020b) 

reported that the time to reach and the value of the maximum laccase activity from some 

of P. ostreatus and F. velutipes strains using corncob were earlier and higher, respectively, 

than those strains using poplar wood. Therefore, different species or different strains of the 

same species have different preferences for lignocellulosic residues. Based on C. unicolor 

Han 849, generally speaking, Firmiana platanifolia was more suitable for C. unicolor Han 

849 in terms of producing laccase. For Lenzites betulinus Han 851, no laccase activity was 

detected when using Sorghum bicolor on the 1st day (as shown in Figs. 1 through 4). The 

laccase activity of L. betulinus Han 851 using Oryza sativa, Sorghum bicolor, Firmiana 

platanifolia, and Populus beijingensis was 5.22 U/L ± 0.17 U/L, 0 U/L ± 0 U/L, 3.32 ± 

0.30 U/L, and 5.83 U/L ± 0.17 U/L, respectively, on day 1. Furthermore, laccase activity 

was first detected in Sorghum bicolor on the day 5 and was very low (as shown in Fig. 2). 

The maximum laccase activity for L. betulinus Han 851 using Oryza sativa (55.66 U/L ± 

3.60 U/L on day 5) was higher than Sorghum bicolor (3.62 U/L ± 0.30 U/L on day 7), 

Firmiana platanifolia (6.73 U/L ± 0.35 U/L on day 10), and Populus beijingensis (21.20 

U/L ± 1.42 U/L on day 8), 15.38, 8.27, and 2.63 times greater, respectively (as shown in 

Table 2). In general, Oryza sativa was more suitable for L. betulinus Han 851 in terms of 

producing laccase according to the value and the time to reach maximum laccase activity. 

For Stropharia rugosoannulata Han 1321, the laccase activity was barely detected when 

using Populus beijingensis on day 1 (as shown in Figs. 1 through 4). The laccase activity 

of S. rugosoannulata Han 1321 when using Sorghum bicolor was undetected during the 

entire fermentation stage (as shown in Fig. 2). The maximum laccase activity for S. 

rugosoannulata Han 1321 using Populus beijingensis, Firmiana platanifolia, and Oryza 

sativa was 3.11 U/L ± 0.17 U/L, 1.61 U/L ± 0.17 U/L, and 5.12 U/L ± 0.30 U/L, 

respectively (as shown in Table 2). Relatively speaking, Oryza sativa was more suitable 

for S. rugosoannulata Han 1321 in term of producing laccase. For Auricularia heimuer 

Han 1333, the laccase activity when using Oryza sativa, Firmiana platanifolia, and 

Populus beijingensis ranged from 7.13 U/L ± 0.46 U/L to 40.99 U/L ± 2.09 U/L, 1.00 U/L 

± 0.17 U/L to 15.07 U/L ± 0.80 U/L, and 0.30 U/L ± 0 U/L to 11.05 U/L ± 0.17 U/L, 

respectively (as shown in Figs. 1, 3, and 4). No laccase activity was detected when using 

Sorghum bicolor (as shown in Fig. 2). Therefore, Oryza sativa was more suitable for A. 

heimuer Han 1333 in terms of secreting laccase. 

Many species from the Basidiomycetes genus are excellent laccase producers, e.g., 

Trametes trogii and Pleurotus ostreatus. Bacteria and actinomycetes also have ability to 

secrete laccase, but the activity and the yield of the secreted laccase are lower. The activity 

of laccase secreted by Actinobacteria strains using Olive pomace as substrate is between 

5.63 x 10-3 U/mL and 2.15 x 10-3 U/mL (Medouni-Haroune et al. 2017). Therefore, most 

of the studies related to laccase have focused on Basidiomycetes. Lakhtar et al. (2010) 

reported a laccase activity of 0.2 U/mL via the cultivation of Lentinula edodes with olive 

mill wastewater. The maximum laccase activities obtained from SSF cultures of Trametes 

trogii and T. versicolor using Corylus maxima, Zea mays and Triticum sativum were 384 

U/L and 68 U/L, 198 U/L and 387 U/L, and 244 U/L and 215 U/L, respectively (Birhanli 

and Yesilada 2013). The maximum laccase activity for Flammulina velutipes CCMSSC 

05331 using cottonseed hull, corncob, and poplar wood was 68.11 U/L ± 1.09 U/L, 50.13 

U/L ± 3.68 U/L, and 39.98 U/L ± 0.17 U/L, respectively (An et al. 2020b). In this study, 

the maximum laccase activity of C. unicolor Han 849 using Firmiana platanifolia was 
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625.98 U/L ± 24.08 U/L (as shown in Fig. 3); therefore, C. unicolor Han 849 showed a 

strong laccase secretion ability with Firmiana platanifolia compared to the other 

lignocellulosic residues. The maximum laccase activity of Coriolopsis trogii or T. 

versicolor using walnut shells was higher than using wheat straw (Birhanli and Yeşilada 

2013). The time to reach of maximum laccase activity for strains in genus Pleurotus and 

Flammulina when using cottonseed hull was earlier than using corncob or poplar wood, 

except for P. ostreatus CY 568 and CCMSSC 00406 (An et al. 2020b).  

 
Table 1. Effects of Different Fungi, Lignocellulosic Residues, and Different Fungi  
and Lignocellulosic Residues Interactions in Terms of Laccase Activity (Two-Way 
ANOVA) 

Incubation 
Period (d) 

Different 
Fungi 

Lignocellulosic 
Residues 

Different Fungi and Lignocellulosic 
Residue Interactions 

1 6866.645*** 1226.357*** 1072.840*** 

2 1205.870*** 431.322*** 468.957*** 

3 11201.673*** 1511.725*** 1763.314*** 

4 960.380*** 127.401*** 171.851*** 

5 8285.991*** 778.426*** 1348.293*** 

6 9255.133*** 809.694*** 1116.479*** 

7 3527.157*** 739.195*** 870.547*** 

8 2527.963*** 209.090*** 300.075*** 

9 3417.071*** 542.353*** 644.346*** 

10 3729.877*** 558.370*** 601.512*** 

*Note: df = 3, 3, 9; *P < 0.05, **P < 0.01, ***P < 0.001 
 

 
Fig. 1. The laccase activity from Han 849, Han 851, Han 1321, and Han 1333 grown on Oryza 
sativa. The average values were calculated from individual measurements from three parallel 
cultures of the corresponding strains. 
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Fig. 2. The laccase activity from Han 849, Han 851, Han 1321, and Han 1333 grown on Sorghum 
bicolor. The average values were calculated from individual measurements from three parallel 
cultures of the corresponding strains. 

 
Fig. 3. The laccase activity from Han 849, Han 851, Han 1321, and Han 1333 grown on Firmiana 
platanifolia. The average values were calculated from individual measurements from three 
parallel cultures of the corresponding strains. 
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The laccase activity obtained from P. ostreatus CCEF 99 and CY 568 using 

sawdust as a substrate was sometimes higher than using a corncob substrate, but sometimes 

lower than using a corncob substrate in a solid-state fermentation process (Han et al. 2020). 

The results of this study were similar to previous studies, which indicated that there was 

no complete correlation between lignin content and laccase activity. Of course, the 

difference of lignocellulosic residues and the adaptability of fungi to different 

lignocellulosic residues will lead to great differences in laccase production time and yield. 
 

 
Fig. 4. The laccase activity from Han 849, Han 851, Han 1321 and Han 1333 grown on Populus 
beijingensis. The average values were calculated from individual measurements from three 
parallel cultures of the corresponding strains. 

 
Table 2. Maximum Laccase Activities, Lignocellulosic Residues, and the Time 
Maximum Laccase Activity was Detected for Different Fungi 

Maximum Laccase Activity 
(U/L) 

Lignocellulosic 
Residues 

Fungi Time (d) 

295.96 ± 4.85 Populus beijingensis Han 849 10  

625.98 ± 24.08 Firmiana platanifolia Han 849 7  

371.71 ± 5.69 Sorghum bicolor Han 849 6  

102.17 ± 3.55 Oryza sativa Han 849 6  

21.20 ± 1.42 Populus beijingensis Han 851 8  

6.73 ± 0.35 Firmiana platanifolia Han 851 10  

3.62 ± 0.30 Sorghum bicolor Han 851 7  

55.66 ± 3.60 Oryza sativa Han 851 5  

3.11 ± 0.17 Populus beijingensis Han 1321 2  

1.61 ± 0.17 Firmiana platanifolia Han 1321 7  

0 Sorghum bicolor Han 1321 - 

5.12 ± 0.30 Oryza sativa Han 1321 5  

11.05 ± 0.17 Populus beijingensis Han 1333 3  

15.07 ± 0.80 Firmiana platanifolia Han 1333 3  

0 Sorghum bicolor Han 1333 - 

40.99 ± 2.09 Oryza sativa Han 1333 4  

Note: Data is presented as the mean ± standard deviation in triplicate 
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Laccase Activity in Different Fungi 
Previously studies on improving laccase activity have primarily focused on the 

effects of different physico-chemical parameters, e.g., substrate ratio, inoculum age, 

inoculum size, pH, and temperature (Elissetche et al. 2007; Vibha and Negi 2018; Gupta 

and Jana 2019; Unuofin et al. 2019a,b; Han et al. 2020). However, different species or 

different strains of the same species are an important factor affecting laccase activity 

(Lamia et al. 2017; Huang et al. 2019; An et al. 2020a,b; Han et al. 2020). It is important 

to analyze the capacity of laccase production from fungi among different genera for the 

development of new productive strains as well as providing more valuable strains for 

industrial production. In this study, using four different Basidiomycete fungi strains had a 

significant (p-value is less than 0.001) effect on laccase activities throughout the 

fermentation stage (as shown in Table 1). Cerrena unicolor Han 849, Lenzites betulinus 

Han 851, Stropharia rugosoannulata Han 1321, and Auricularia heimuer Han 1333 

displayed their unique ability of secreting laccase (Figs. 1 through 4). 

The laccase activity from Cerrena unicolor Han 849 with Oryza sativa was 

approximately 6.81 and 4.99 times greater than the activity from Lenzites betulinus Han 

851 and Auricularia heimuer Han 1333, respectively, on day 1, while the laccase activity 

of Stropharia rugosoannulata Han 1321 with Oryza sativa was undetected on day 1 (as 

shown in Figs. 1 through 4). In addition, the maximum laccase activity of C. unicolor Han 

849 on Oryza sativa was 102.17 U/L ± 3.55 U/L, which is approximately 1.84, 19.96, and 

2.49 times greater than L. betulinus Han 851, S. rugosoannulata Han 1321, and A. heimuer 

Han 1333, respectively (as shown in Table 2). The laccase activity from C. unicolor Han 

849 with Oryza sativa was higher than L. betulinus Han 851, S. rugosoannulata Han 1321, 

and A. heimuer Han 1333 during the entire fermentation process (as shown in Fig. 1). The 

laccase activity of L. betulinus Han 851 and A. heimuer Han 1333 was roughly equivalent, 

and the laccase activity from S. rugosoannulata Han 1321 was extremely low. Different 

from Oryza sativa, C. unicolor Han 849 showed a high laccase activity when using 

Sorghum bicolor, while the other three species showed extremely low or even undetectable 

laccase activity levels during the entire fermentation process (as shown in Fig. 2). The 

maximum laccase activity of C. unicolor Han 849 using Sorghum bicolor was 371.71 U/L 

± 5.69 U/L, which was approximately 102.68 times greater than L. betulinus Han 851 (as 

shown in Table 2). Both S. rugosoannulata Han 1321 and A. heimuer Han 1333 had 

undetected laccase activity. The laccase activity trends of the four species using Firmiana 

platanifolia were similar to the trends of Sorghum bicolor (as shown in Fig. 3). As such, 

C. unicolor Han 849 showed a superior laccase secreting capacity with Firmiana 

platanifolia and a maximum laccase activity of 625.98  U/L ± 24.08 U/L (as shown in 

Table 2). The maximum laccase activity using Firmiana platanifolia was approximately 

93.01, 388.81, and 41.54 times greater than L. betulinus Han 851, S. rugosoannulata Han 

1321, and A. heimuer Han 1333, respectively. The laccase activity of the four species using 

Populus beijingensis was similar to the trends of the other three lignocellulosic residues. 

(as shown in Fig. 4). The maximum laccase activity of C. unicolor Han 849 using Populus 

beijingensis was 295.96 U/L ± 4.85 U/L, which was approximately 13.96, 95.16, and 26.78 

times greater than L. betulinus Han 851, S. rugosoannulata Han 1321, and A. heimuer Han 

1333, respectively. Only C. unicolor Han 849 maintained a high level of laccase activity; 

the other species all maintained a low level of laccase activity (as shown in Fig. 4). An et 

al. (2020b) reported that the maximum laccase activity for P. ostreatus CY 568 grown on 

cottonseed hull was approximately 1.21, 1.47, 1.84, 11.33, 12.57, 12.82, and 13.26 times 

greater than P. ostreatus CCEF 89, P. ostreatus CCMSSC 00322, P. ostreatus CCMSSC 
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00406, F. velutipes CCMSSC 00114, F. velutipes CCMSSC 00118, F. velutipes CCMSSC 

05317, and F. velutipes CCMSSC 05331, respectively. The maximum laccase activity of 

P. ostreatus CCEF 89 with corncob was approximately 1.14, 1.89, 4.46, 11.46, 12.00, 

12.49, and 13.95 times greater than P. ostreatus CY 568, P. ostreatus CCMSSC 00322, P. 

ostreatus CCMSSC 00406, F. velutipes CCMSSC 00114, F. velutipes CCMSSC 00118, F. 

velutipes CCMSSC 05317, and F. velutipes CCMSSC 05331, respectively (An et al. 

2020b). Therefore, it was found that different strains have substrate bias and their laccase 

secretion capacities are different. In this study, L. betulinus Han 851 and A. heimuer Han 

1333 showed a more obvious preference for Oryza sativa (as shown in Fig. 1). However, 

C. unicolor Han 849 preferred Firmiana platanifolia. Han et al. (2020) reported that a 

continuous and stable laccase production from P. ostreatus was an extremely important 

advantage when using solid-state fermentation with poplar sawdust. Similarly, a 

continuous and stable laccase production from C. unicolor Han 849 was obvious advantage 

when using solid-state fermentation with any of the four lignocellulosic residues used in 

this study (as shown in Figs. 1 through 4). In general, the laccase secreting ability of C. 

unicolor Han 849 was stronger than the other three tested species, and the laccase secreting 

ability of S. rugosoannulata Han 1321 was extremely poor in this study. 

 
 
CONCLUSIONS 
 
1. The biosynthetic potential of Basidiomycetes was highly dependent on the species of 

fungi. In general, the laccase secreting ability of C. unicolor Han 849 was stronger than 

L. betulinus Han 851, S. rugosoannulata Han 1321, and A. heimuer Han 1333. In 

addition, the laccase secreting ability of S. rugosoannulata Han 1321 was extremely 

poor. 

2. The biosynthetic potential of Basidiomycetes was highly dependent on the 

lignocellulosic residues. 

3. Different species of fungi had a preference in lignocellulosic residues. Cerrena 

unicolor Han 849 preferred Firmiana platanifolia, while L. betulinus Han 851 and A. 

heimuer Han 1333 showed a more obvious preference for Oryza sativa. 

4. The continuous and stable laccase production from C. unicolor Han 849 was an obvious 

advantage of solid-state fermentation when using any of the four lignocellulosic 

residues tested in this study. 

5. The presence of Firmiana platanifolia was conducive to C. unicolor Han 849 secreting 

laccase during solid-state fermentation. The maximum laccase production of C. 

unicolor Han 849 grown on Firmiana platanifolia was approximately 2.12, 1.68, and 

6.13 times greater than Populus beijingensis, Sorghum bicolor, and Oryza sativa, 

respectively. 
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